用户名: 密码: 验证码:
松嫩草地芦苇种群无性繁殖过程中果聚糖代谢组成的分布格局及调控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在松嫩草地植被组成成员中,多年生根茎型禾草是一类最重要和最基本的生活型成员,是草原群落层片的建造者,也是维持草地生态系统平衡的限制者。根茎禾草在松嫩草地植被中的重要地位主要取决于根茎禾草的无性繁殖特性及营养贮藏能力。根茎禾草的地下器官可宿存于土壤多年,是联接植物与土壤的重要环节,是植物与土壤相互作用的界面。根茎的无性繁殖特性及营养贮藏能力不仅与环境条件、季节变化和宿存土壤的年限有关,更重要的是与根茎内部非结构性碳水化合物组成的分配格局、生物化学代谢途径及生理调节过程密切相关。因此,多年生根茎禾草非结构性碳水化合物的生物化学代谢机制与其营养繁殖特性的关系是生理生态学研究的重要内容。
     芦苇(Phragmites communis)是松嫩草地植被中优势禾草之一,是典型的无性系植物,其地下器官具有较强的无性繁殖特征及营养贮藏功能。本论文以芦苇种群根茎构件为研究对象,初步研究了芦苇根茎中果聚糖的组成及理化性质;建立了检测果聚糖组成、含量及分子量的定性、定量分析方法体系,论证了该方法体系对芦苇根茎样品的适应性;在此基础上研究了芦苇种群不同龄级根茎及每一龄级根茎中不同繁殖体构件中果聚糖的分布格局、生物化学代谢途径及生理调节作用。本研究基于生物化学和生态学两个视角,从芦苇种群不同龄级根茎构件的生态特征及适应过程为切入点,分析芦苇根茎内果聚糖生物化学代谢途径及对芦苇种群无性繁殖及营养贮藏的调控作用,籍以揭示芦苇种群不同龄级根茎的繁殖对策及种群更新机制。通过调查分析及研究获得如下结果:
     1芦苇根茎中非结构性碳水化合物的组成和理化性质的研究结果表明:采用生物化学制备方法,对芦苇根茎样品经提取、纯化后获得一白色粉末状的多糖PAWDG,将其水解经HPLC分析获得单糖组成为果糖和葡萄糖,其摩尔比为8.7,证明该多糖是果聚糖,其聚合度为大于8以上的多聚果糖;通过薄层色谱分析认证该多糖是直线型果聚糖且其平均总量为23.56%。由此证明松嫩草地芦苇种群根茎中果聚糖为非结构性碳水化合物的主要贮藏类型。
     2根据色谱学、光谱学的原理建立了芦苇根茎样品中检测果聚糖组成、含量和分子量等分析方法体系,获得了如下三种分析方法:
     ⑴建立并论证了《芦苇根茎禾草总果聚糖高通量分析方法》;
     ⑵建立并论证了《芦苇根茎果聚糖及其代谢物的同时分离及定量分析方法》;
     ⑶建立并论证了《芦苇根茎果聚糖分子量及分子量分布检测分析方法》;
     3芦苇种群根茎样品中果聚糖组成的定性分析结果如下:芦苇根茎样品中可定性检测到多聚果糖、蔗果四糖、蔗果三糖、蔗糖、葡萄糖和果糖等6种糖组分;
     4芦苇种群根茎样品中果聚糖组成的定量分析结果如下:在方法限定的检测限及灵敏度下可定量检测到多聚果糖、蔗果三糖、蔗糖、葡萄糖和果糖5种糖组分。
     5通过对芦苇根茎构件的数量特征调查发现,芦苇种群的营养繁殖及种群更新等无性系特证是通过不同龄级根茎构件功能的精确分工实现的。其中,芦苇种群不同龄级根茎上根茎节的数量特征为二次多项式分布,其中三龄级根茎上其根茎节的数量分布最多。同时,萌发芽和休眠芽繁殖体构件在二、三和四龄根茎上的数量分布最多。由此表明,这三个龄级根茎主要承担着即要扩展生态位空间又要进行营养繁殖的双重功效。
     6不同龄级根茎对利用型组合糖及贮藏型组合糖的分配格局说明一龄根茎对环境的影响较为敏感,各种糖的分配响应变异较大,种群意义上通过生理调节可塑性对一龄根茎进行调节和保护;二龄和三龄根茎生物化学代谢周期长,生理调节活跃,对呼吸消耗底物的利用有稳定的生物化学代谢调控补偿机制,形态生长快速,种群意义上通过扩张领域,繁殖后代等重要作用在芦苇种群根茎年龄结构中表现出绝对优势的社会生态位;四龄和五龄根茎生物化学代谢周期相对较短,但生理贮藏周期相对较长,贮藏物质积累丰富,种群意义上承担着后勤保障,补给供养的作用,一旦芦苇根茎年龄结构中社会生态位出现断层,它们所具备的生物代谢活性能够进行营养繁殖,及时以补充种群数量进行更新,故四龄、五龄根茎是芦苇种群稳定发展的基础。
     7通过研究不同繁殖体根茎构件中生物代谢调控过程与季节变化的关系,从生物化学和生态学两个视角透视了不同繁殖体根茎构件功能对芦苇种群根茎系统总体生态效应的协调作用。研究证实,芦苇种群营养繁殖构件自身贮藏物质的生物化学代谢过程与季节变化密切相关,不同的变化时期有不同的代谢途径和不同组成糖的利用方式,由此传递的化学信息暗示芦苇种群无性繁殖的总体功能是由不同繁殖体根茎构件协同作用实现的。首先,环境变化促使根茎构件内部代谢途径的改变,然后在生理上通过对糖的不同利用方式实现芦苇根茎系统的整体繁殖特征及由此产生的生态效应,在整个过程中不同繁殖体根茎构件依次发挥自身的调节作用,以实现构件功能与整体功能的一致性。
     综上所述,芦苇根茎构件中果聚糖的分布格局不仅依赖于季节变化,而且还与芦苇根茎的年龄及每一龄级根茎上不同繁殖体根茎构件有关。果聚糖组成对芦苇根茎构件种群的生理调控作用及代谢机制蕴含着芦苇种群特有的繁殖对策及更新机制。
Perennial rhizomatic grasses are the most basic and important life forms which make up the grassland vegetation in Songnen grassland, and they also construct the community synusia of grassland and limit the balance of grassland ecosystems. The important positions of rhizomatic grasses mainly depend on its asexual reproduction and strong function of storage in Songnen grassland. Because the perennial rhizomes grasses live in the soil for many years, and they are the important parts of connection with plants and soil, and they are also the interface between plant and environment, especially the interaction among soil systems. The reproductive and storage capacity of rhizomes not only correlate with environmental conditions, seasonal changes and the living years in soil, but also closely related with composition, distribution and physiological metabolic processes of the non-structural carbohydrate which the rhizomes store. The physiological changes by metabolic processes of plants depend on the pressure to survive, and always adapt to the habitat conditions. Therefore, study on the relationships between metabolic mechanism of non-structural carbohydrate and their vegetative propagation characteristics in the perennial rhizomatic grasses is one of the most important contents of physiological ecology.
     Reed (Phragmites communis) is one of the dominant and representative rhizomatic grasses in Songnen grassland; the underground organs of reed have stronger ability of asexual reproduction and nutrient storage. In this study, reed population which has integrated physiological connection was the research object, a preliminary study was consulted on the physical and chemical properties of carbohydrate of the reed rhizomes; established to detect the components of non-structural carbohydrate and the level of qualitative and quantitative analysis system, and demonstrated the methodology of the adaptation to reed rhizome samples; on the basis of this, non-structural carbohydrate of reed age-specific rhizome and each age rhizomes were studied, viz, metabolism biochemistry, physiology and spatial distribution patterns of fructans in reed population. This study is based on biochemistry and ecology, started with ecological characteristics and adaptation process of reed population at different aged rhizomes, researched the physiological role of components of fructans effecting on composition of different aged rhizomes, analyzed the biochemical mechanisms of fructans, hoping to show the reproductive strategies and regenerative mechanism of reed population at different age levels.
     1 The physical and chemical properties and components of non-structural carbohydrate in the reed rhizomes showed as fallows:
     Biochemical methods was used by the extraction and purification to obtain the white powder which was a polysaccharide (PAWDG), then got its hydrolysis and obtain the fructose and glucose, the molar ratio is 8.7 which was certificated to fructans and it’s a polymer of fructose whose degree of polymerization is more than 8; and it was certificated to liner type fructosan by TLC analysis; the averaged total fructans make up 23.56% of the reed rhizome. It provided that the fructans was a main stored type of non-structural carbohydrate of reed population.
     2 Established the method systems for detecting the components, contents, and molecular weight of fructans in reed rhizomes according to chromatography and spectroscopy, accessing to three analysis methods as follows:
     (1) Established and demonstrated "the high-throughput analysis methods of total fructan in reed rhizomes";
     (2) Established and demonstrated "the simultaneous separation and quantitative analysis methods of fructan and metabolites in reed rhizomes";
     (3) Established and demonstrated the "the molecular weight and molecular weight distribution methods of fructan in reed rhizomes ".
     3 The qualitative analysis of components of fructans in reed rhizomatic samples as follows: there are six kinds of carbohydrates in the reed rhizome by qualitative analysis which are poly-fructose, Kestotetraose, 1-kestose, sucrose, glucose and fructose
     4 The quantitative analysis of components of fructans in reed rhizomatic samples as follows: the quantitative analysis methods could detect the poly-fructose, 1-kestose, sucrose, glucose, and fructose by limited detection degree and sensitivity in reed rhizomes.
     5 According to survey quantity characteristics, asexual features of reed population such as vegetative reproduction and regeneration were achieved by precise division through different age rhizomes. In general, the quantitative character of different age rhizomes of reed population showed obvious normal distribution and a large number of probability distribution at 2-4 ages. At the same time, the quantitative character of break and dormant buds of reed rhizomes also showed normal distribution at 2-4 ages. Thus, the reed rhizomes at these three ages undertook the dual efficacy of both expanding niche space and vegetative reproduction.
     6 The distribution pattern of utilized and storage type of combined carbohydrates showed that 1 age rhizome was sensitive to environments, the response variation of all kinds of carbohydrates was big, and increased the physical adjustment plasticity to input and protect the 1 age rhizome; the 2 and 3 age rhizomes had the long biochemistry metabolic cycle, actively physiological regulatory, stable biochemistry regulatory mechanism to use the metabolic consumption substrate, and fast growth of morphology. It showed the absolute advantage of social niche of reed rhizomes though the important function such as expanding space and reproduction at population level; the 4 and 5 age rhizomes had a shorter biochemistry metabolic cycle, but a longer physiological storage cycle and rich storage materials accumulations. It undertook the logistics and supply nutrition at population level. If there is a faulting in the social niche of reed age rhizomes, their biological metabolic activity could do vegetative propagation for supplemental population regeneration timely. Thus, 4 and 5 age rhizomes were the base rhizomes for reed population developing stably.
     7 The different traits of rhizome modules coordinated effecting on reed population rhizomes system was observed at biological chemistry and ecology perspectives though studying the relationship between biological metabolic regulation process of the different traits of rhizomes and seasonal changing. The results show that there was a closely relationship between biochemistry metabolic process of storage materials of reed population vegetative propagation and seasonal changing, and there was different metabolic pathways and ways of using carbohydrates with seasonal changing, so the way of transferring chemical message implied that the total special function of reed population was achieved by synergy of different traits of rhizome modules. Firstly, the internal metabolic pathways of the rhizome modules were changed by environmental changing, then the total ecological effect of reed rhizome system was achieved by different ways of using carbohydrates on the physiology. The different traits of rhizome modules played adjustment effect in the whole process, in order to achieve the consistency of the module function and whole function.
     In a word, the spatial distribution patterns of fructans of reed rhizomes not only depended on seasonal changing, but also related with the age of reed rhizomes and the propagule traits. The components of fructans effecting on physiological regulation and metabolic mechanisms of reed module rhizome population implied the special reproductive strategies and regenerative mechanism of reed population.
引文
[1]祖元刚,孙梅,康乐主编.生态适应与生态进化的分子机理.北京:高等教育出版社,2000,12.
    [2] Mei Sun & Martin Lascoux. The Development of Molecular Ecology: An Amalgam of New Molecular Genetic Tools with Established Fields.北京:高等教育出版社,2000,12.
    [3] Magyar G, Kun, Oborny B, Stuefer JF. The importance of plasticity and decision-making strategies for plant resource acquisition in spatiotemporally variable environments. New Phytologist, 2007, 174: 182-193.
    [4]李玉花,沈海龙.植物对胁迫生态环境适应的分子机制.北京:高等教育出版社,2000,12.
    [5] Silvertown J.W.著.祝宁等译.植物种群生态学导论[M].哈尔滨:东北林业大学出版社,1987.
    [6]周纪纶,郑师章,杨持.植物种群生态学[M].北京:高等教育出版社, 1992.
    [7]钟章成.植物生态学研究进展[M].重庆:西南师范大学出版社, 1997.
    [8]钟章成.植物种群生态学适应机理研究[M].北京:科学出版社, 2000.
    [9] Silvertown J. & Charlesworth D. Introduction to Plant Population Biology, Fourth Edition, Oxford: Blackwell Publishing, 2001.
    [10]王雷,董鸣,黄振英.种子异型性及其生态意义的研究进展.植物生态学报, 2010,34(5): 578-590.
    [11] Clements, Frederic E. Experimental methods in adaptation and morphology. Journal ecology, 1929, 17: 356-379.
    [12] Harper J.L. and J. White. The Demography of plants. Annu. Rev. Ecol. Syst, 1974, 5: 419-463.
    [13] Harper J.L. Population Biology of Plants. London, New York, San Francisco: Academic Press, 1977.
    [14] Hutchinson G. E. An Introduction to Population Ecology. Yale University Press, New Haven, CT, 1978.
    [15] Phillip Hedrick, Philip W. Hedrick. Population Biology: The Evolution and Ecology of Populations, Jones and Bartlett Pub, 1984.
    [16] White J. The population structure of vegetation. Dordrecht, Boston, Lancaster: Dr. W. Junk Publishers, 1985.
    [17] Solbrig O. Demography and evolution in plant populations. University of California Press, Berkeley, 1980.
    [18] Harper J L. Darweniam approach to plant ecology. J. Ecol. 1967, 55: 147-270.
    [19] Rodolfo Dirzo, JoséSarukhán. Perspectives on plant population ecology. Sunderland, Mass, Sinauer Associates, 1984.
    [20] Silvertown J. & Charlesworth D.著李博等译.简明植物种群生物学(第四版).北京:高等教育出版社, 2002.
    [21]国家自然科学基金委员会.自然科学学科战略调研报告—生态学.北京:科学出版社,1997.61-63.
    [22]胡建莹,郭柯,董鸣.高寒草原优势种叶片结构变化与生态因子的关系.植物生态学报, 2008, 32(2)370-378.
    [23]刘建,李钧敏,余华,何维明,于飞海,桑卫国,刘国方,董鸣.植物功能性状与外来植物入侵.生物多样性, 2010, 18 (6): 569–576
    [24]李钧敏,董鸣.植物寄生对生系统结构和功能的影响,生态学报, 2011,31(4):1174-1184.
    [25]杨允菲,李建东.松嫩平原几种根茎型禾草种群的营养繁殖特性及其持续更新分析[J].草业学报,1996,5(2):43-48.
    [26]杨允菲,张宝田,李建东.松嫩平原硬拂子茅无性系种群营养繁殖的数量特征[J].草业学报,1998,7(4):7-12.
    [27]杨允菲,王升忠,郎惠卿.松嫩平原湿地菰无性系种群结构的研究[J].草业学报,1999,8(3):66-71.
    [28]杨允菲,李建东.松嫩平原寸草苔无性系种群分株的结构[J].草业学报,2001,10(1):35-41.
    [29]董鸣.资源异质性环境中的植物克隆生长:觅食行为[J].植物学报, 1996a,38(10):828-835.
    [30]董鸣.异质性生境中的植物克隆生长:风险分摊[J].植物生态学报,1996b,20(6):543-548.
    [31]张淑敏,陈玉福,董鸣.匍匐茎草木绢毛匍匐委陵菜对局部遮荫的克隆可塑性[J].植物学报,2000,42(l):89-94.
    [32]董鸣,张淑敏,陈玉福.匍匐茎草本蛇莓对基质养分条件的克隆可塑性[J].植物学报,2000,42(5):518-522.
    [33]罗学刚,董鸣.匍匐茎草本蛇莓克隆构型对土壤养分的可塑性反应[J].生态学报,2001a,21(12):1957-1963.
    [34]罗学刚,董鸣.蛇莓克隆构型对光照强度的可塑性反应[J].植物生态学报,2001b,25(4):494-497.
    [35]何维明,董鸣.分蘖型克隆植物黍分株和基株对异质养分环境的等级反应[J]. 2002,生态学报,22(2):169-175.
    [36]张淑敏,陈玉福,于飞海等.林下和林窗内绢毛匍匐委陵菜的克隆生长和克隆形态[J].植物生态学报,2003,27(4):567-571.
    [37]陶建平,钟章成.支持物倾角对攀援植物栝楼形态和生长的影响[J].生态学报,2003,23(1):1-7.
    [38]张称意,杨持,董鸣.根茎半灌木羊柴对光合同化物的克隆整合[J].生态学报,2001,21(12):1986-1993.
    [39]陈劲松,董鸣,于丹,刘庆.资源交互斑块性生境中两种不同分枝型匍匐茎植物的克隆内分工[J].生态学报,2004,24(5):920-924.
    [40]张运春,苏智先,高贤明.克隆植物的特性及研究进展[J].四川师范学院学报(自然科学版), 2001, 22 (4): 338-343.
    [41] Harper, J. L. Plant demography and evolutionary theory. Oikos, 1980, 35: 244-253.
    [42] Hara, T., J. van der Toorn, and J. H. Mook. Growth dynamics and size structure of shoots of Phragmites australis, a clonal plant. Journal of Ecology, 1993, 81, 47-60.
    [43] Andrieu B, Hillier J, Birch C. Onset of sheath extension and duration of lamina extension are major determinants of the response of maize lamina length to plant density. Ann. Bot, 2006, 98:1005-1016.
    [44] Harper J L, Bell A D. The population dynamics of growth form in organisms with modular growth. In: Anderson, R.M., B. D. Turner &L. R. Taylor eds. Population dynamics. Oxford: Blackwell Scientific Publications. 1979, 29-52.
    [45] Maillet te L. Seasonal model of modular growth in plants [J]. Journal Ecology, 1992, 80: 123-130.
    [46] de Kroon H, Huber H, Stuefer J F, van Groenendael J M. A modular concept of phenotypic plasticity in plants. New Phytologist, 2005, 166: 73-82.
    [47] Dong M. Foraging through Morphological Responses in Clonal Herbs. Utrecht: Utrecht University, 1994.
    [48] de Koon H, van Groenendael J. The Ecology and Evolution of Clonal Plants. Backbuys Publisher, Leiden, 1997.
    [49] Liu Q,Zhong Z C. Advances in ecological research of clonal plant population and some related concepts. Chinese Journal of Ecology,1995,18(8) : 40-45.
    [50] Schmid B,Bazzaz F A. Growth responses of rhizomatous plants to fertilizer application and interference. Oikos, 1992, 65: 13-24.
    [51] Humphrey L D, Pyke D A. Clonal foraging in perennial wheatgrasses: a strategy for exploiting patchy soil nutrients. Journal of Ecology, 1997, 85: 601-610.
    [52] Elisabeth H S,Pyke D A, Caldwell M M, Durham S. Effects of nutrient patches and root systems on the clonal plasticity of a rhizomatous grass. Ecology, 1998, 79( 7) : 2267-2280.
    [53] Yu F H,Dong M. Hot spot in ecology research: clonal plant ecology. Plants,2001, 3: 32-33.
    [54] Xiao K Y,Yu D,Wang J W. Habitat selection in spatially heterogeneous environments: a test of foraging behavior in the clonal submerged macrophyte Vallisneria spiralis. Freshwater Biology, 2006, 51( 8) : 1552-1559.
    [55] Yu F H,Dong M. Hot spot in ecology research: clonal plant ecology. Plants, 2001, 3: 32-33.
    [56] Schmid B,Bazzaz F A. Clonal integration and population structure in perennials: effects of severing rhizome connections. Ecology, 1987, 68: 2016-2022.
    [57] Dong M, de Kroon H. Plasticities in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes. Oikos, 1994, 70: 90-106.
    [58] Wennstrom A, Ericson L. Environmental heterogeneity and disease transmission within clones of Lactuca sibirica. Journal of Ecology, 1992, 80:71-77.
    [59] Marshall C,Sagar G R. The distribution of assimilates in Lolium multiforum Lam: following differential defoliation. Annals of Botany,1968,32:715-719.
    [60] Salzman A G , Parker M A. Neighbours ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia, 1985, 65: 273-277.
    [61] Abrahamson W G , Anderson S S,McCrea K D. Clonal integration: nutrient sharing between sister ramets of Solidago altissima( Compositae) .American Journal of Botany, 1991, 78: 1508-1514.
    [62] de Kroon H,Fransen B, van Rheenen, van Dijk A, Kreulen R. High levels of inter-ramet water translocation in two rhizomatous Carex species,as quantified by deuterium labelling. Oecologia, 1996, 106: 73-84.
    [63] Cain M L. Consequences of foraging in clonal plant species. Ecology, 1994, 75 (4): 933-944.
    [64] Van Kleunen M, Fischer M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 2005, 166: 49-60.
    [65] Sutherland W J. Growth and foraging behavior. Nature, 1987, 350: 18-19.
    [66] Lopez F,Serrano J M,Acosta F J. Parallels between the foraging strategies of ants and plants. Trends in Ecology and Evolution, 1994, 9: 150-153.
    [67] Humphrey L D,Pyke D A. Ramet spacing of Elymus lanceolatus( thick spike wheat grass) in response to neighbour density. Canadian Journal of Botany, 2001, 79: 1122-1126.
    [68] Chen Y F, Dong M. Genet characters of Hedysarum laeve and the characters of its ramet population in different habitats in Muus sandland. Acta Phytoecologica Sinica, 2000, 24(1): 40-45.
    [69] Alpert P,Mooney H A. Resource sharing among ramets in the clonal herb,Fragaria chiloensis. Oecologia, 1986, 70: 227-233.
    [70] Lau R R,Young D R. Influence of physiological integration on survivorship and water relations in a clonal herb. Ecology, 1988, 69: 215-219.
    [71] Maillette L. The value of meristem states, as estimated by a discrete time Markov chain. Oikos, 1990, 59: 235-240.
    [72] van Groenedael J, K roonH. Clonal grow thin plant. SPB A cademic publishing, 1990.
    [73]刘庆,钟章成.无性系植物种群生态学研究进展及有关概念[J].生态学杂志,1995,4(3)40-45.
    [74]赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J].生态学报,2003,23(6):1138-1146.
    [75]何丙辉,钟章成.不同养分条件对银杏枝种群构件生长影响研究[J].西南农业大学学报,2003,25(6):475-479.
    [76]徐莉,王丽,岳明,等.新疆阜康荒漠红砂种群构件结构与环境因子的灰色关联度分析[J].植物生态学报,2003,27(6):742-748.
    [77]孙崇玖,安沙州,许鹏.伊犁绢蒿构件动态变化研究[J].草地学报,2007, 15(5):454-459.
    [78]陶建平,钟章成.黄林苦瓜植株不同构件层次对支持物直径变化的行为反应[J].植物生态学报,2003,27(1):86-92.
    [79] Buitink J, Hoekstra FA, Hemminga MA. A critical assessment of the role of oligosaccharides in intracellular glass stability. In: Black M, Bradford KJ, Vasques-Ramos J, eds. Seed biology: advances and applications. Wallingford, UK: CAB International. 2000, 461-466.
    [80] Cairns AJ. Fructan biosynthesis in transgenic plants. Journal of Experimental Botany. 2003, 54, 549-567.
    [81] Canny MJ. Apoplastic water and solute movement: new rules for an old space. Annual Reviews of Plant Physiology and Plant Molecular Biology. 1995, 46, 215-236.
    [82] Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T. Specific and unspecific responses of plants to cold and drought stress. Journal of Bioscience. 2007, 32, 501-510.
    [83] Allison SD, Chang B, Randolph TW, Carpenter JF. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Archives of Biochemistry and Biophysics. 1999, 365, 289-298.
    [84] Weinmann, H. & R. Leonora. Reserve carbohydrates in South African grasses. Journal of South African Botany. 1946, 12: 57-73.
    [85] Ojima, K. & I. Takeshi. The variation of carbohydrates in various species of grasses and legumes. Canadian Journal of Botany. 1968, 46: 1507-1511.
    [86] Smith, D. Classification of several native North American grasses as starch or fructan accumulation in relation to taxonomy. Journal of British Grassland Society. 1968, 23: 306-309.
    [87] Donaghy, D. J. &W. J. Fulkerson. Priority for allocation of water- soluble carbohydrate reserves during regrowth of Lolium perenne. Grass and Forage Science. 1998, 53: 211-218.
    [88] Conway, W. C., L. M. Smith, R. E. Sosebee & J. F Bergan. Total nonstructural carbohydrate trends in Chinese tallow roots. Journal of Range Management. 1999, 52: 539-542.
    [89] White, L. M. Carbohydrate reserves of grasses: a review. Journal of Range Management. 1973, 26: 13-17.
    [90] Crawford C, Sepulveda M F, Elliott J, Harris P A, & Bailey S R. Dietary fructan carbohydrate increases amine production in the equine large intestine: implications for pasture-associated laminitis. Journal of Animal Science. 2007, 85, 2949-2958.
    [91] Hendry GAF. Evolutionary origins and natural functions of fructans: aclimatological, biogeography and mechanistic appraisal. New Phytologist. 1993, 123:3-14.
    [92] Andriotis VME, Kruger N J, Pike M J, Smith A M. Plastidial glycolysis in developing Arabidopsis embryos. New Phytologist. 2010,185: 649-662.
    [93] Conway W C, L M Smith, Sosebee R E, & Bergan J F, Total nonstructural carbohydrate trends in Chinese tallow roots. Journal of Range Management. 1999, 52: 539-542.
    [94] Tymowska-Lalanne Z, Kreis M. The plant invertases: physiology, biochemistry, and molecular biology. Adv Bot Res 1998, 28:71-117.
    [95] Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 2000, 35:253-289.
    [96] SturmA, Tang G-Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 1999, 4:401-407.
    [97] Zeng Y, Wu Y, Avigne W T, Koch K E. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiol 1999, 121:599-608.
    [98] Brocard-Gifford I M, Lynch T J, Finkelstein R R. Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling. Plant Physiol 2003, 131:78-92.
    [99] Roitsch T, Ehne SR, Goetz M, Hause B, Hofmann M, Sinha AK. Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling. Aust J Plant Physiol 2000, 27:815-825.
    [100] Hajirezaei MR, Bornke F, Peisker M, Takahata Y, Lerchl J, Kirakosyan A, Sonnewald U. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). J Exp Bot 2003, 54:477-488.
    [101] Vaughn MW, Harrington GN, Bush DR. Sucrose-mediated transcriptional regulation of sucrose symporter activity in phloem. Proc Natl Acad Sci USA, 2002, 99:10876-10880
    [102] Sherson S M, Afford H L, Forbes S M, Wallace G, Smith S M. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot, 2003, 54:525-531.
    [103] Subbaiah C C, Sachs M M. Altered patterns of sucrose synthase phosphorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physiol, 2001, 125:585-594.
    [104] Herbers K, Sonnewald U. Altered gene expression brought about by inter- and intracellularly formed hexoses and its possible implications for plant–pathogen interactions. J Plant Res, 1998, 111:323-328.
    [105] Stone J M, Trotochaud A E, Walker J C, Clark S E. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol, 1998, 117: 1217–1235.
    [106] Winter H, Huber J, Huber S C. Identification of sucrose synthase as an actin-binding protein. FEBS Lett, 1998, 430: 205–208.
    [107] Fankhauser C, Yeh K-C, Lagarias J C, Zhang H, Elic T D, Chory J. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science, 1999, 284: 1539–1541.
    [108] Chourey P S, Taliercio E W, Carlson S J, Ruan Y-L. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet, 1998, 259: 88–96.
    [109] Zeng Y, Avigne W T, Koch K E. Rapid repression of maize invertase by low oxygen: invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiol, 1999, 121: 599–608.
    [110] Baud S, Boutin J P, Miquel M, Lepiniec L, Rochat C. An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry, 2002. 40: 151-160.
    [111] Keeling P L, Wood J R, Tyson R H, Bridges I G. Starch biosynthesis in developing wheat grain. Plant Physiol, 1988, 87: 311-319.
    [112] Ball S, Guan H-P, James M. From glycogen to amylopectin: a model explaining the biogenesis of the plant starch granule, Cell, 1996, 86: 349-352.
    [113] Denyer K, Foster J, Smith A M. The contributions of adenosine 5’-diphospho-glucose pyrophosphorylase and starch branching enzyme to the control of starch synthesis in developing pea embryos, Planta, 1995, 97: 57-62.
    [114] Schaffer A A, Petreikov M, Sucrose-to-starch metabolism tomato fruit undergoing transient starch accumulation, Plant Physiol, 1997. 113: 739-746.
    [115] Umemoto T, Aoki N, Lin H X, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S. Natural variation in rice starch synthase IIaaffects enzyme and starch properties. Functional Plant Biology, 2004, 31: 671-684.
    [116] Weegels P I, Pijpekamp A M, Van de Graveland A, Depolymerisation and repolymerisation of wheat glutenin during macrop-olymer content and quality parameters. J Cereal Sci, 1996, 23: 103-114.
    [117] Martin C, Smith A M. Starch biosynthesis, Plant cell, 1995, 7: 971-985.
    [118] Kotting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G. Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology,1998,137: 242-252.
    [119] Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules,1998, 23: 85-112.
    [120] Gao Z, Keeling P, Shibles R, Guan H P. Involvement of lysine-193 of the conserved‘K-T-G-G’motif in the catalysis of maize starch synthase IIa. Archives of Biochemistry and Biophysics. 2004, 427: 1-7.
    [121] French AD, Waterhouse AL (1993) Chemical structure and characteristics. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC Press, Boca Raton, pp 41–81
    [122] Hendry GAF. Evolutionary origins and natural functions of fructans: a climatological, biogeography and mechanistic appraisal. New Phytologist, 1993,123:3–14.
    [123] Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami A. Fructan 1-exohydrolase:β(2,1) trimmers during graminan biosynthesis in stems of wheat (Triticum aestivum L.): purification, characterization, mass mapping and cloning of two 1-FEH isoforms. Plant Physiology, 2003, 131:621–631.
    [124] Suzuki M. Fructans in crop production and preservation. In : Suzuki M, Chatterton NJ ( eds) . Science and Technology of Fructans. Boca Raton Fla : CRC Press , 1993. 227-247.
    [125] Hendry G F, Wallace R K. The origin, distribution and evolutionary significance of fructans. In: Suzuki M, Chatterton N J(eds). Science and Technology of Fructans. Boca Raton, Fla : CRC Press , 1993, 120-139.
    [126] Morvan-Bertrand A, Boucaud J, Le Saos J, Prud’homme MP. Roles of the fructans from the leaf sheaths and from the elongating leaf bases in theregrowth following defoliation of Lolium perenne L. Planta, 2001, 213:109-120.
    [127] Le Roy K, Vergauwen R, Cammaer V, Yoshida M, Kawakami A, Van Laere A, Van den Ende W. Fructan 1-exohydrolase is associated with flower opening in Campanula rapunculoides. Functional Plant Biology. 2007a, 34: 972-983.
    [128] Hincha DK, Zuther E, Hellwege EM, Heyer AG. Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying. Glycobiology. 2002,12:103-110.
    [129] Eagles C F. Variation in the soluble carbohydrate content of climatic races of Dactylis glomerata (cocksfoot) at different temperatures. Ann Bot 1967,31:645-651.
    [130] Babenko V I, Gevorkyan A M. Accumulation of oligosaccharides and their significance in the low-temperature hardening of cereal grains. Fiziol Rast, 1967, 14:727-736.
    [131] Suzuki M, Nass H G.Fructan in winter wheat, triticale and fall rye cultivars of varying cold hardiness. Can J Bot, 1988, 66:1723–1728.
    [132] Pontis H G. Fructans and cold stress. J Plant Physiol, 1989, 134:148-150.
    [133] Levitt J. (ed) Responses of plants to environmental stress, vol. 1, 2nd ed. Acade-mic Press, New York, 1980.
    [134] Cloutier Y, Siminovitch D. Correlation between cold- and drought-induced frost hardiness in winter wheat and rye varieties. Plant Physiol, 1982, 69:256-258.
    [135] Hincha D K, et al. Plant fructan stabilize phosphatidylcholine liposomes during freeze-drying. Eur. J. Biochem, 2000, 267: 535-540.
    [136] Hincha D K, et al. Fructans from oat and rye: composition and effects on membrane stability during drying. Biochim Biophys Acta, 2007, 1768, 1611-1619.
    [137] Kawakami A, et al. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J. Exp. Bot, 2008, 59: 793-802.
    [138] Livingston DP III, Henson CA. Apoplastic sugars, fructans, fructan exohydrolase and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol, 1998, 116: 403-408.
    [139] Livingston DP III, Tallury SP, Premakumar R, Owens S, Olien C R. Changes in the histology of cold hardened oat crowns during recovery from freezing. Crop Sci, 2005, 45:1545-1558.
    [140] Livingston D P III, Premakumar R, Tallury S P. Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. Cryobiology, 2006, 52:200-208.
    [141] Pollock C J, Cairns A J. Fructan metabolism in grasses and cereals. Ann Rev Plant Physiol Plant Mol Biol.1991, 42:77-101.
    [142] Vijn I, Smeekens S. Fructan: more than a reserve carbohydrate?Plant Physiol, 1999,120:351-359.
    [143] Roberfroid MB (2005) Inulin-type fructans: functional food ingredients. CRC Press, Boca Raton, p 392.
    [144] Bancal P, Carpita N C, Gaudillere J P. Differences in fructan accumulated in induced and field-grown wheat plants: an elongation-trimming pathway for their synthesis. New Phytol, 1992, 120: 313-321.
    [145] Shiomi N. Properties of fructosyltransferases involved in the synthesis of fructan in liliaceous plants. J Plant Physiol, 1989, 134:151-155.
    [146] Livingston DP III, Chatterton NJ, Harrison PA. Structure and quantity of fructan oligomers in oat (Avena spp.). New Phytol, 1993, 123:725-734.
    [147] Sims I M, Pollock C J, Horgan R. Structural analysis of oligomeric fructans from excised leaves of Lolium temulentum. Phytochemistry, 1992, 31: 2989-2992.
    [148] Waterhouse A L, Chatterton N J. Glossary of fructan terms. In: Suzuki M, Chatterton N J (eds) Science and technology of fructans. CRC Press, Boca Raton, 1993, pp 1-7.
    [149] Pollock C J. Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temultentum L. New Phytol, 1984, 96:527-534.
    [150] Edelman J, Jefford T G, The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol, 1968, 67:517-531.
    [151] Hellwege E M, Gritscher D, Willmitzer L, Heyer AG. Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossomdiscs. Plant J, 1997, 12:1057-1065.
    [152] Hendry G A. The ecological significance of fructan in a contemporary flora. New Phytol, 1987, 106:201-216.
    [153] Chatterton NJ, Harrison PA, Bennett JH, Asay KH. Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cold environments. J Plant Physiol, 1989, 134:169-179.
    [154] Pontis HG, Del Campillo E. Fructans. In: Dixon RA (ed) Biochemistry of storage carbohydrates in green plants. Academic Press, London, 1985, pp 205-227.
    [155] Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami M. Fructan 1-exohydrolases.Β(2, 1) trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping and cloning of two fructan 1-exohydrolase isoforms. Plant Physiol, 2003, 131:621-631.
    [156] Henson CA, Livingston DP III. Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages. Plant Physiol Biochem, 1998, 36:715-720.
    [157] Fujishima M, Sakai H, Ueno K, Takahashi N, Onodera S, Benkeblia N, Shiomi N. Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytologist, 2005, 165: 513-524.
    [158] Vijn I, van Dijken A, Sprenger N, Dun K, van Weisbeek P, Wiemken A, Smeekens SCM. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6-fructosyltansferase. Plant J, 1997, 11: 387-398.
    [159] Nagaraj VJ, Altenbach D, Galati V, Luscher M, Meyer A D, Boller T, Wiemken A Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol, 2004, 161: 735-748.
    [160] Michiels A, Van Laere A, Van den Ende W, Tucker M. Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. Journal of Experimental Botany, 2004, 55: 1325-1333.
    [161] Kawakami A, Sato Y, Yoshida M. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot, 2008, 59:793-802.
    [162] Li HJ, Yang AF, Zhang XC, Gao F, Zhang JR. Improving freezing tolerance of transgenic tobacco expressing-sucrose sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tissue Organ Cult, 2007, 89:37-48
    [163] Verslues P E, Agarwal M, Katiyae-Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stressesthat affect plant water status. The Plant Journal, 2006, 45: 523-539.
    [164] Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci, 2004, 167: 861-868.
    [165] Volaire F, Thomas H, Lelievre F. Survival and recovery of perennial forage grasses under prolonged Mediterranean drought. I. Growth, death, water relations, and solute content in herbage and stubble. New Phytologist, 1998, 140, 439-449.
    [166] Winzeler M, Dubois D, Nosberger J. Absence of fructan degradation during fructan accumulation in wheat stems. J Plant Physiol, 1990,136: 324-329
    [167] Tognetti J A, Caldron P L, Pontis H G. Fructan metabolism: Reversal of cold acclimation. Plant Physiol, 1989, 14: 232-234.
    [168] Wang C W, Tillberg J E. Effects of nitrogen deficiency on accumulation of fructan and fructan metabolizing enzyme activities in sink and source leaves of barley (Hordeum vulgare). Physiologia Plantarum, 1996, 97(2): 339-345.
    [169] Frossard R, Stadelmann Fx, Niederhauer J. Effects of different heavy metals on fructan, sugar, and starch content of ryegrass. Plant Physiology, 1989, 134:180-183.
    [170]王志敏.高等植物的果聚糖代谢[J ].植物生理学通讯, 2000, 36(1): 71-76.
    [171] Pollck C J, Jones T. Seasonal patterns of furctan metabolism in forage grasses. New Phytol, 1979, 83:9-15.
    [172] Pollard C J, Amuti KS, Fructose oligosaccharides, possible markers of phylogenetic relationships among dicotyledonous plant families, Biochem Syst Ecol, 1981, 9:69-78.
    [173] Pollock, C J. Sucrose accumulation and in the initiation of fructan biosynthesis in l.olium temulentum. L. New Phytologist, 1984, 96:527-534.
    [174] Pollock, C J. Fructans and the metabolism of sucrose in vascular plants. New Phytologist, 1986, 104: 1-24.
    [175] Rutherford P P, Deacon A C, Seasonal variation in dandelion roots of fructosan composition, metabolism and response to treatment with 2,4- dichlorophenoxyacetic acid, Ann Bot, 1974, 38:251-260.
    [176] Itaya N M, Figueiredo-Ribeiro R C L, Buckeridge M S, Synthesis of fructans by fructosyltransferase from the tuberous roots of Viguiera discolor (Asteraceae), Braz. J. Med. Biol. Res, 1999, 32:435-442.
    [177] Pollock C J, Cairns A J, Fructan metabolismin grasses and cereals. Ann Rew Plant Physiol Plant Mol Biol , 1991, 42 : 77-101.
    [178] Sims I M, Pollock C J, Horgan R. Structural analysis of oligomeric fructans from excised leaves of Lolium temulentum. Phytochemistry, 1992, 31: 2989-2992.
    [179] Portes M T, Carvalho M A M. Spatial distribution of fructans and fructan metabolizing enzymes in rhizophores of Vernonia herbacea (Vell.) Rusby (Asteraceae) in different developmental phases. Plant Science, 2006, 170:624-633.
    [180] Van den Ende W, Yoshida M, Clerens S, Vergauwen R, Kawakami A, Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum L.), New Phytol. 2005,166:917-932.
    [181] Asega A F, Carvalho M A M, Fructan metabolising enzymes in rhizophores of Vernonia herbacea upon excision of aerial organs, Plant Physiol Biochem, 2004, 42: 313-319.
    [182] Smouter H, Simpson R J, Occurrence of fructans in the Gramineae (Poaceae) . New Phytol, 1989, 111: 359-368.
    [183] Spollen W G, Nelson C J, Characterization of fructan from mature leaf blades and elongation zones of developing leaf blades of wheat, tall fescue, and timothy. Plant Physiol, 1988, 88: 1349-1353.
    [184]潘庆民,白永飞,韩兴国,张丽霞.羊草根茎的贮藏碳水化合物及对氮素添加的响应.植物生态学报, 2004, 28 (1) 53-58.
    [185]杨允菲,郎惠卿.不同生态条件下芦苇无性系种群调节分析.草业学报, 1998, 6: 1-9.
    [186] Asaeda T, Karunaratne S, Dynamic modelling of the growth of Phragmites australis: model description. Aquat. Bot. 2000. 67:301-318.
    [187] Asaeda T, Trung VK, Manatunge J, Modeling the effects of macrophyte growth and decomposition on the nutrient budget in shallow lakes. Aquat Bot, 2000, 68: 217-237.
    [188] Asaeda T, Nam LH, Hietz P, Tanaka N, Karunaratne S. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquat Bot, 2002, 73, 223-239.
    [189] Asaeda T, Manatunge J, Fujino T, Sovira D, Effects of salinity and cutting on the development of Phragmites australis. Wetlands Ecol Manage. 2003,11:127-140.
    [190] Bjorndahl G. Structure and biomass of Phragmites stands. Ph.D. Thesis. University of Goteborg, Sweden, 1983, 207 pp.
    [191] Brix H. The European research project on reed die-back and progression (EUREED). Limnologica, 1999, 29: 5-10.
    [192] Hocking P J. Seasonal dynamics of production and nutrient accumulation and cycling by Phragmites australis (Cav) Trin. ex Steudel in a nutrient-enriched swamp in inland Australia. I. Whole plants. Aust. J. Mar. Freshwater Res. 1989a, 40: 421-444.
    [193] Hocking P J, Seasonal dynamics of production and nutrient accumulation and cycling by Phragmites australis (Cav) Trin. ex Steudel in a nutrient-enriched swamp in inland Australia. II. Individual shoots. Aust. J. Mar. Freshwater Res. 1989b, 40: 445-464.
    [194] Cizkova H, Bauer V. Rhizome respiration of Phragmites australis: effects of rhizome age, temperature and nutrient status of the habitat. Aquat Bot, 1998, 61: 239-253.
    [195] Cizkova H, Lukavska J. Rhizome age structure of three populations if Phragmites australis (Cav.) Trin. ex Steud: biomass and mineral nutrient concentrations. Folia Geobot Phytotax, 1999, 34: 209-220.
    [196] Klimes L, Klimesova J, Cizkova H. Carbohydrate storage in rhizomes of Phragmites australis: the effects of altitude and rhizome age. Aquat Bot. 1999, 64: 105-110.
    [197] Karunaratne S, Asaeda T, Toyooka S. Colour-based estimation of rhizome age in Phragmites australis. Wetlands Ecology and Management,2004,12: 353-363.
    [198] Takashi A, Jagath M, Jane R, Dinh N H. Seasonal dynamics of resource translocation between the aboveground organs and age-specific rhizome segments of Phragmites australis. Environ Exp Bot, 2006, 57: 9-18.
    [199]杨允菲,郎慧卿.不同生态条件下芦苇无性系种群调节分析.草业学报, 1998, 6:1-9.
    [200]杨允菲,郑慧莹,李建东.根茎禾草无性系种群年龄结构的研究方法.东北师大学报自然科学版, 1998, 1:49-53.
    [201]杨允菲,张宝田,田尚衣.松嫩平原旱地生境芦苇种群不同龄级的干物质贮藏及水溶糖含量.应用生态学报, 2008, 19: 1905-1910.
    [202] Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots[J]. CarbohydrateResearch, 2006, 341(9): 1147-1153.
    [203] Huang X, Wang D, Hu Y. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus[J]. International Journal of Biological Macromolecules, 2008, 42(2): 166-171.
    [204] Cardoso S M, Silva A M S, Coimbra M A. Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains[J]. Carbohydrate Research, 2002, 337(10): 917-924.
    [205]刘海林,贺丽.淀粉含量的快速比较测定法[J].技术监督纵横, 2001(6): 49.
    [206] Chambers R E, Clamp J R. An Assessment of Methanolysis and Other Factors Used in the Analysis of Carbohydrate-Containing Materials[J]. The biochemical journal, 1971, 125: 1009-1018.
    [207] StrydomDJ.Chromatographicseparationof1-phenyl-3-methyl-Spyrazolone-derivatized neutral, acidic and basic aldoses. Journal of Chromatography A, 1994, 678: 17-23.
    [208] Fu D, Oneill R A. Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins by High-Performance Liquid Chromatography. Analytical Biochemistry, 1995, 227: 377-384.
    [209] Lewis DH. Nomenclature and diagrammatic representation of oligomeric fructans a paper for discussion. New Phytologist, 1993, 124: 583-594.
    [210] Van Loo J, Clune Y, Collins J K, Br. J. Nutr. 2005, 93: S91-S98.
    [211] Abrams S A, Griffin I J, Hawthorne K M, Liang L, Gunn S K, Darlington G, Ellis K J, Am. J. Clin. Nutr. 2005, 82: 471-476.
    [212] Nyman, M. Br. J. Nutr.2002, 87 (Suppl. 2): S163-S168.
    [213] Van Loo J, Clune Y, Collins J K, Br. J. Nutr. 2005, 93: S91-S98.
    [214] Jane G M, Susan J S, Ourania R, Rosemary R, Jacqueline S B, Peter R G, J. Agric. Food Chem. 2007, 55: 6619-6627.
    [215] Box G E P, Wilson K B, Journal of the Royal Statistical Society Series A (General), 1951, 13: 1–45.
    [216] Atkinson A C, Donev A N, Oxford: Oxford University Press, 1992:132–189.
    [217] Ferreira S L C, Bruns R E, Ferreira H S, Matos G D, David J M, Brandao G C, Silva E G P da, Portugal L A, Reis P S dos, Souza A S, Santos W N L dos, Analytica Chimica Acta 2007, 597: 179–186.
    [218] M. Ericsson, A. ColmsjO, J. Chromatogr. A, 2002, 964: 11-20.
    [219] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F, Anal Chem, 1956, 28: 350–356.
    [220] Vermeir S, Hertog M L A T M, Schenk A, Beullens K, Nicola B M, Lammertyn J, Anal. Chim. Acta 2008, 6 1 8: 94–101.
    [221] Miller. J. N, Miller. J.C, Statistics and Chemometrics for Analytical Chemistry, Pearson Education Limited, London, 2000: 121.
    [222] Denis A, Brambati N, Dessauvage B, Guedj S. Molecular weight determination of hydrolyzed collagens. Food hydrocolloids, 2007, 22:989-994.
    [223] Porsch B, Welinder A, Korner A, Wittgren B. Distribution analysis of ultra-high molecular mass poly(ethylene oxide) containing silica particles by size-exclusion chromatography with dual light-scattering and refractometric detection. J Chromatogr. 2005, 1068:249-260.
    [224] Shu C H, Lung M Y. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorate in batch cultures. 2004, 39: 931-937.
    [225] Andersson A A M, Ruegg N, Aman P. Molecular weight distribution and content of water-extractableβ-glucan in rye crisp bread. 2008, 47:399-406.
    [226] Schlaper F., & Schmid B. Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecological Applications, 1999, 9: 893-912.
    [227]白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响.植物生态学报,2000,24(6):641-647.
    [228]易津,李青丰,谷安琳,门中华,何文兴.根茎类禾草生物学特性研究进展.干旱区资源与环境, 2001,15:1-16.
    [229] Roiloa S R,Alpert P,Tharayil N,Hancock G,Bhowmik P C. Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitats. Journal of Ecology,2007,95: 397-405.
    [230]刘庆,钟章成.无性系植物种群生态学研究进展及有关概念.生态学杂志,1995,18(8) : 40-45.
    [231]朱志红,刘建秀,王孝安.克隆植物的表型可塑性与等级选择.植物生态学报,2007,31(4) : 588-598.
    [232]罗学刚,董鸣.匍匐茎草本蛇莓克隆构型对不同海拔的可塑性反应.应用生态学报,2002,13 (4) : 399-402.
    [233] Dong M. Foraging through Morphological Responses in Clonal Herbs. Utrecht: Utrecht University,1994.
    [234] Grime J P , Crick J C , Rincon J E. The ecological significance ofplasticity∥J ennings D H,Trewavas A J. Plasticity in Plants. Cambridge: Biologists Limited,1986: 5-29.
    [235] Weisner S E B,Strand J A. Rhizome architecture in Phragmites australis in relation to water depth , implications for within-plant oxygen transport distances. Folia Geobotanicaet & Phytotaxonomica,1996,31: 91-97.
    [236] Turpin D H. (1988). Physiological mechanisms in phytoplankton resource competition. In: Growth and Reproductive Strategies of Freshwater Phytoplankton (ed. Sandgren, C.). Cambridge UniversityPress, New York, pp. 316–368.
    [237] Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems. Nature, 2007 446:1079-1081.
    [238] Lewis D H. Nomenclature and diagrammatic representation of oligomeric fructans: a paper for discussion. New Phytol, 1993, 124: 583-594.
    [239] Van den Ende W, Van Laere A (2007) Fructans in dicotyledonous plants: occurrence and metabolism. In N Shiomi, N Benkeblia, S Onodera, eds, Recent Advances in Fructooligosaccharides Research. Research Signpost, Kerala, India, pp 1–14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700