用户名: 密码: 验证码:
川西龙门山中段彭州式铜矿构造与成矿关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬子地块西缘是我国重要的铁铜等黑色、有色、稀土及贵金属成矿带,以独特的构造演化过程和丰富的矿产资源分布为特征,其中川西龙门山地区,以由一系列前震旦纪变质-岩浆杂岩和古生界、三叠系地层构成的规模巨大的逆冲推覆构造为特征,一直是国内地质研究的热点地区。“彭灌杂岩”是其中出露面积最大的前震旦纪变质-岩浆杂岩,并以产出马松岭铜矿床为地质界所关注。在本次国土资源部部署的全国矿产资源潜力预测评价工作中,将彭州式铜矿床(马松岭铜矿)类型纳入全国资源潜力评价项目子课题,其中“川西龙门山中段彭州式铜矿构造与成矿关系研究”是此次潜力评价子课题的分支课题。课题组最终研究成果不仅有利于指导区域同类型矿床的成矿预测及资源潜力评价工作,而且将为扬子陆块西北缘基底构造特征研究提供理论基础。
     论文在综合搜集和分析了有关研究区板块-地体构造成矿理论研究的基础上,结合野外实地考察,将龙门山构造的形成和演化过程分为洋盆和岛弧发育期、亲弧地体-增生构造期、被动陆缘发育期和陆内俯冲-推覆滑覆构造期四个演化阶段,形成的构造分带包括前龙门山带、后龙门山带、陆架推覆构造带、基底推覆构造带四种。彭灌地体、轿子顶地体、大滩等不同类型的地体同处在龙门山构造带上正是通过地体的增生而完成的。首先,各地体被相同的扬子型地层南华纪(NH)-古生代(Pz)盖层覆盖。再者,从新的康定地体年龄为791+10Ma,轿子顶地体南华纪年龄为800Ma~850Ma,晋宁-澄江期花岗岩侵入年龄为792±11Ma和793±11Ma,说明岛弧增生时间为澄江期。岛弧地体的形成与洋壳俯冲极性密切相关。龙门山岛弧地体的形成是其西北侧可能曾经存在的洋壳向东俯冲,或是其东南侧的龙门山-安宁洋壳向北西俯冲形成的,一直存有争议。在元古界龙门山带上,沿构造走向,出现类型不同的洋岛-岛弧、成熟弧、张裂弧地体表明:①这些地体原本不是同一构造带、同一构造环境的产物。②在扬子原地块以西的海域中,存在类型不同,发育历史不同的亲弧地体。③它们是在增生于扬子大陆时,拼贴于同一构造带中,并构成了整个扬子地块西缘的地体构造成矿带。带内产有轿子顶铁-锌-铜矿床、槽子沟铅-锌-铜和马松岭铜-锌矿床。通过对马松岭铜锌矿系列、通木梁铁锌铜矿系列和槽子沟铅锌铜矿系列的对比分析,建立了岛弧构造成矿模式。
     研究区内岛弧火山活动和龙门山推覆构造作为重要的地质构造事件,马松岭矿区地体不可避免地经历了岛弧构造环境成矿和后期推覆构造的叠加改造,通过深入分析马松岭矿区出露最多的火山岩-辉绿岩体及含矿火山围岩-变凝灰岩、夹缝岩矿区火山岩稀土特征以及研究区内的蛇绿岩套组合特征等,确定了矿区内变火山岩的化学成分介于拉斑玄武岩系列及高铝玄武系列之间,属过度类型;含矿围岩基本属钙碱性系列,证实了中基性岩以岛弧拉斑玄武岩系列为主,中酸性岩以钙碱性系列为主,形成于成熟岛弧环境。
     通过开展1/5万构造简测及构造薄片鉴定等工作,从宏观和微观上综合分析马松岭矿区断裂构造和褶皱构造等构造变形特征。马松岭矿区共有矿体27个,多为透镜状、似层状、扁豆状,受构造作用的影响,沿走向和倾向方向均有膨胀、狭缩、尖灭再现和分层复合等现象,显现出构造对成矿形成与分布的控制作用。根据研究内地层形变的各种构造形迹,将区内构造类型划分为北北西向雁列式和北东向逆冲推覆构造两种。其中,雁列式构造整体上是由元古界黄水河群绿片岩系组成的复式褶皱群,局部来看,组成雁列式构造的各级断裂、褶皱构造,是由黄水河群变质岩系构成的大型韧性剪切系统,初步研究结果表明,马松岭矿区铜矿体附近往往伴随有韧性剪切作用的发生,而韧性剪切系统与成矿并没有必然的联系;北东向逆冲推覆构造形成时代较新,反映了三叠纪以来来自北东南西方向上巨大的挤压应力,以发育“飞来峰”和叠瓦状断裂为显著特点;根据二者的平面展布形态、构造出露特征及其动力学标志,将其划分为包容和交接两种复合关系,即“雁列式”构造包容于北东向逆冲推覆构造体系中,在研究区南部二者呈反接关系。区域彭灌、大滩、轿子顶地体均为NNW-NNE向,而马松岭地区构造类型呈近SN向,从超基性岩体南北向展布特点,结合断续出现在红岩一带的呈北北西向展布的蛇绿岩套特征,可以判断为先期北北东向北北西方向低角度逆时针旋转所至,构造应力早期(Pt)为NNE-SN,右行+逆冲;晚期为左行+逆冲。
     由国土资源部部署的全国资源潜力评价项目,是以成矿系列理论为指导,采用矿床模型综合地质信息评价预测方法,全面利用已有地质构造、成矿规律研究和物探、化探、重砂、遥感等解释成果,提取成矿信息,建立区域评价预测模型。做为此次潜力评价子课题的分支课题,“川西龙门山中段彭州式铜矿构造与成矿关系研究”证明了岛弧活动背景下龙门山铜多金属成矿带的存在。在该带内,以马松岭铜矿床为典型矿床,采用模型类比综合信息地质单元法,按照以成矿(预测)要素浓集的面积最小、含矿率最大的空间范围圈定原则,以地质信息为基础,结合地、物、化、遥信息综合。采用计算机与人工配合方法,利用成矿必要条件的综合信息地质单元叠加,圈定最小成矿地质单元,对预测工作区内相同地质背景下铜矿资源潜力进行评价。
Western margin of Yangtzi Block, as one of most important ore belt of ferrous and non-ferrous metal, tombarthite and noble metal etc, has distinct features of evolution and resource distribution, and has been the focus of geological and metallogenic study for a very long time, especially, Longmen Shan in western Sichuan with thrust-nappe structures composed of pre-Cambrian complex, Paleozoic and Triassic. In which, Pengguan Complex as the biggest pre-Cambrian complex, is very famous for the Masongling copper deposits. To guide the prospect of different type of deposits and resource assessment, we conduct the project of“The relationship between mineralization and structure in Pengzhou-type copper deposits in the central segment of Longmen Shan, Western Sichuan”, as one important sub-project of National Resources Assessment implemented by Ministry of Land and Resources, which could be helpful to the understanding of structure geology in the base of western margin of Yangtzi Block.
     After comprehensive collection and analysis of tectono-metallogenic theory of plate-terrane with respect to the zone studied, in combination with field investigation, the paper divides the formation and evolution of Longmenshan structure into four stages: oceanic basin and island arc development period, pro-arc terrane-accretionary tectonic period, passive margin development period and intracontinental subduction-nappe and slipping structure period. The tectonic belts generated include front Longmenshan belt, back Longmenshan belt, continental shelf nappe tectonic belt and basement nappe tectonic belt. Location of different terranes such as Pengguan terrane, Jiaoziding terrane and Datan terrane in the same Longmenshan tectonic belt is due to the accretion of terrane. Firstly, various terranes were covered by Yangzi stratum of Nanhua Period (NH)-Palaeozoic (Pz) Era. Secondly, the age of new Kangding terrane is 791+10Ma; the age of Jiaoziding terrane of Nanhua Period is 800-850Ma; the age of intrusion of granite of Jinning-Chengjiang Period is 792±11Ma and 793±11Ma respectively, which means the accretion of island arc occurred in Chengjiang Period. The formation of island arc is closely related to the subduction polarity of oceanic crust. The formation of island arc of Longmenshan is due to the eastward subduction of oceanic crust probably existing in the northwest or northwestward subduction of Longmenshan-An’ning oceanic crust in the southwest. There have been disputes about it all the time. In the Proterozoic Longmenshan belt, along the strike, there are ocean island-island arc, mature arc and rifting arc, showing that①these terranes are actually not the result of the same tectonic belt under the same tectonic setting;②in the ocean to the west of original Yangzi Block, there are pro-arc terranes of different types and development history;③they were gathered in one tectonic belt during the accretion into Yangzi Continent and formed the tectono-metallogenic belt in the western edge of the whole Yangzi Block. There are Jiaoziding Fe-Zn-Cu ore deposit, Caozigou Pb-Zn-Cu ore deposit and Masongling Cu-Zn ore deposit within the belt. The tectono-metallogenic mode of island arc has been established by comparison and analysis of Masongling Cu-Zn ore series, Tongmuliang Fe-Zn-Cu ore series and Caozigou Pb-Zn-Cu ore series.
     Island arc volcanic activity and Longmenshan nappe structure are important geological tectonic events within the zone studied. Masongling ore area terrane inevitably underwent combined transformation of mineralization under the tectonic setting of island arc and subsequent nappe structure. The chemical composition of volcanic rock within the ore area has been determined between tholeiite series and high-aluminium basalt series, belonging to the transition type by deep analysis of characteristics of rare earth of diabase-volcanic rock with the most outcrop in Masongling ore area, variable tuff-volcanic rock containing ore, volcanic rock in crack rock core area and research of combination features of ophiolite complex. The fact that ore-containing rock is of almost calc-alkaline series proves that imtermediate-basic rock is mainly of tholeiite series of island arc and that intermediate-acid rock is mainly of calc-alkaline series, which was formed under the mature island arc setting.
     Comprehensive analysis of deformation features of fault structure and fold structure in Malingsong ore area are conducted from macroscopic and microscopic view by conducting tectonic measurement at a rate of 1:50,000 and identification of tectonic chip. There are a total of 27 ore bodies in Malingsong ore area, most of which are lenticular, stratoid and phacoidal. Affected by tectonization, along the strike and trend, there are expansion, contraction, reoccurrence of pinch-out and recombination of lamination, showing the control over mineralization and distribution by tectonization. According to various structural features of stratum deformation, the structure within the zone is classified as NNW echelon structure and EN thrust-nappe structure. On the whole, the echelon structure is complex fold group composed of green schist of Proterozoic Huangshuihe Group; locally, fault and fold structures of various levels in the echelon structure are large-scale ductile shear system composed of metamorphic rock of Huangshuihe Group. Preliminary research indicates that there is occurrence of ductile shear around copper body in Masongling ore area. However, the ductile shear system is not necessarily related to mineralization. The relatively new formation age of EN thrust-nappe structure reflects the enormous extrusion stress in north, east, south and west directions since Triassic period, characterized by exotic block and imbricate fault. According to the plane distribution pattern, exposure features of structure and dynamics, NNW echelon structure and EN thrust-nappe structure are classified as two complex types-containment and connection. Namely, the echelon structure is contained in EN thrust-nappe structure. The two are reversely connected in the southern part of the zone studied. Pengguan, Datan and Jiaoziding terranes in the zone are of NNW-NNE direction, while the structure in Masongling area is of SN direction. Based on the distribution of ultrabasic rock in SN direction and in combination with features of ophiolite complex of NNW direction occurring in red rock belt, it can be estimated that the structure in the early stage is resulted from NNE and NNW counterclockwise rotation in a low angle; the tectonic stress is NNE-SN in the early period, right+thrust; left+thrust in the later period.
     National Resources Assessment implemented by Ministry of Land and Resources, is guided by the metallogenic theory to build the assessment and prospect modern in region, based on most of structural geology, geophysical, geochemical and remote-sensing information, etc. The project of“The relationship between mineralization and structure in Pengzhou-type copper deposits in the central segment of Longmen Shan, Western Sichuan”as a sub-project, has proved the metallogenic modern and process of Penzhou-type copper deposits in Longmen Shan under the tectonic setting of island arc. According to the analogy of different geologic unit and the principle ofore-forming elements in least space, we used a typical example of Masongling copper deposits to show how to assess the different geological, geophysical, geochemical and remote-sensing information, to prospect potential copper deposits in the ore belt.
引文
[1]刘肇昌,李凡友,钟康惠等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社,1996
    [2]黎功举,吴健民,刘肇昌等.扬子地台西缘及其邻区铜多金属矿产勘查与成矿系列、分布规律的研究[M].中国有色金属总公司西南地质勘查局,1995
    [3]张沛,周祖翼,许长海,张青林.川西龙门山彭灌杂岩地球化学特征:岩石成因与构造意义[J].大地构造与成矿学.2008,32(1):105-116
    [4]施泽进,罗蛰潭等.四川地区断层空间分布的多重分形特征[J].现代地质.1995,4
    [5]沈渭洲,凌洪飞,徐士进等.扬子板块西缘北段新元古代花岗岩类的地球化学特征和成因[J].地质论评.2000,46(5):512-519
    [6]刘树根,王国芝,曹俊兴等.扬子西缘龙门—川滇构造系统及成藏效应研究阶段成果报告[R].成都:成都理工大学.2010,17~80
    [7]孙传敏.川西元古代蛇绿岩与扬子板块西缘元古代造山带[J].成都理工学院学报.1994,21(4):11~15
    [8]沈渭洲,高剑峰,徐士进等.四川石棉蛇绿岩的地球化学特征及其构造意义[J].地质论评.2003,49(1):17~27
    [9]施泽进,罗蛰潭等.1996.突变理论在断层活动机理分析中的应用[J].西安工程学学报.1996,1
    [10]匡学文,吴春明.四川彭县铜矿岩石地球化学特征及成矿环境探讨[J].四川地质学报.1996,16(4):331~349
    [11]陈笃宗.龙门山地区(北、中段)前震旦系火山成矿系列及矿床成因探讨[J].四川地质学报.1995,15(2):113~122
    [12]罗志立.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报.1991,18(1):1~7
    [13]黄汲清等.中国大地构造及其演化[M].北京:科学出版社,1980
    [14]林茂炳,吴山.龙门山推覆构造变形特征[J].成都地质学院学报.1991,18(1):46~54
    [15]马永旺,王国芝,胡新伟.“彭灌杂岩”推覆体的构造变形特征[J].四川地质学报.1996,16(2):110~114
    [16]刘肇昌.板块构造学.四川科技出版社,1985.
    [17]李佐臣.扬子地块西北缘轿子顶变质核杂岩构造特征及其地质意义[D].陕西:长安大学硕士论文.2006
    [18]龙学明.龙门山中北段地史发展的若干问题[J].成都地质学院学报.1991,18(1):8~15
    [19]吴山.龙门山彭灌杂岩体中韧性剪切带的发现及其构造意义[J].矿物岩石.1993,13(2):71~77
    [20]王登红.块状硫化物矿床的地球化学找矿标志[J].地质科技情报.1994,13(2):81~85
    [21]吴健民,黄永平,刘肇昌.扬子地台西缘海相火山岩建造及其控矿特征[J].矿床地质.1998,17(4):321~329
    [22]毛洪江,粱鲸.四川大宝山铜矿区矿床地质特征及找矿方向[J].沉积与特提斯地质.2008,28(4):82~87
    [23]刘肇昌,李凡友,钟康惠.扬子地台西缘及邻区裂谷(陷)构造与金属成矿[J].有色金属矿产与勘查.1995,4(2)70~76
    [24]陈智梁,陈世瑜.1987.扬子地块西缘地质构造演化[M]重庆:重庆出版社.23~53
    [25]殷继成,何廷贵,李世麟,蔡学林,温春齐等.1993.四川盆地周边及邻区震旦亚代地质演化与成矿作用[M].成都:成都科技大学出版社.83~173
    [26]龚茂清,赵汇一,杨照明等.四川省彭州市马松岭外围补充勘探报告[R].彭州606队,1977.
    [27]Metcalfe I.Permian tectonic framework and palaeogeography of SE Asia[J].Journal of Asian Earth Sciences.2002,20(6):551~566.
    [28]Irvine T N.A Chemical classification of volcanic rocks based on the total alkalisillica diagram[J].J Petro.1986,3(8):745~751.
    [29]K.H.乌尔夫.1986.层控矿床和层状矿床[M].刘锦新<译>.北京:地质出版社.192~200
    [30]刘晓东,周涛发.块状硫化物矿床地球化学特征与形成机理[J].合肥工业大学学报(自然科学版)1999,22(4):43-46
    [31]顾连兴,郑索绢.块状硫化物矿床地球化学特征与形成机理[J].地质科技情报1989,(2)
    [32]殷继成,刘宝珺,李世麟.1980.中国西南地台区震旦系及沉积环境[A].见:第二十六届国际地质大会筹备办公室.国际交流地质学术论文集[C].前寒武纪地质.北京:地质出版社.1979,65~71。
    [33]赵伦山,张本仁.地球化学[M].北京:地质出版社,1988
    [34]姜福芝,王玉往.海相火山岩与金属矿床[M].北京:冶金工业出版社,2005
    [35]陈智梁,陈世瑜.扬子地块西缘地质构造演化[M].重庆:重庆出版社,1987
    [36]林茂炳,苟宗海,吴山.龙门山地质考察指南[M].成都:成都科技大学出版社,1997
    [37]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993
    [38]刘树根,李智武,曹俊兴,刘顺,邓宾.龙门山陆内复合造山带的四维结构构造特征[J].地质科学,2009,44(4):1151-1179
    [39]刘肇昌,代真勇.四川彭县推覆构造的特征与形成[J].地球科学-武汉地质学院学报,1986,11(1):13-20.
    [40]杨钻云,邱仁轩,秦术凯,仲世新,张羽洋.川西龙门山地区元古代VMS铜矿床:硫化物微量元素和硫同位素证据[J].地质科技情报,2009,28(4):59-64.
    [41]殷继成,何廷贵,李世麟,蔡学林,温春齐,袁海华,叶祥华.四川盆地周边及邻区震旦亚代地质演化与成矿作用[M].成都:成都科技大学出版社,1993
    [42]郑建京,苏龙,刘兴旺,杨鑫,孙国强,张顺存,刘玉虎.压(扭)性动力学环境下动力机制转换与板内沉降拗陷形成[J].大地构造与成矿学,2009,33(1):105-111.
    [43]邹付戈,尹宏伟.四川龙门山地区反转构造样式分析及其成因机制探讨[J].大地构造与成矿学,2009,33(3):321-333.
    [44]杨钻云,刘肇昌,钟康惠等.川西龙门中段彭州式铜矿区构造体系及与成矿的关系[J].大地构造与成矿学,2010,34(2)224-232
    [45]林茂炳.对龙门山南段宝兴-地区芦山地区构造格局的探讨[J].成都地质学院学报,1992,19(3)33-40
    [46]杜利林,耿元生,杨崇辉等.扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄[J].地质学报,2005,79(6)805-813
    [47]郭斌.龙门山造山带构造特征及演化过程研究[D].北京:中国地质大学硕士论文,2006
    [48]Hendrix MS,Dum Itru T A,Graham S A.Late Oligocene-early Miocene unroofing in the Chinese Tianshan:an early effect of the India–Asian collision[J].Geology,1994,22:487-490
    [49]Burchfiel,B.C.et al.,1995,Tectonics of the Longmenshan and Adjacent Regions,Central China International Geology Review.37:661~720
    [50]Chen.S.F,and C.J.L Wilson,1996,Emplacement of the longmen Shan thrust-Nappe Belt along the eastem margin of the Tibetan plateau,J.Struct.Geol.18(4):410~430
    [51]李勇,曾允孚.龙门山逆冲推覆作用的地层标识[J].成都理工学院学报,1995,22(2)
    [52]刘树根等.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995,69(3)
    [53]Knoner.元古代活动带与板块构造说、大陆壳演化.陕西科技出版社,1985.
    [54]藤吉文.康滇构造带岩石圈物理与动力学[M].科学出版社,1994.
    [55]刘肇昌等.四川彭县推格构造的特征与形成[J].地球化学,1986,11(1)
    [56]刘肇昌.扬子板块西缘地体-板块构造与金属矿床[M].地质出版社,1993.第五届全国矿床会议文集
    [57]张洪洲等.四川攀西康定群混合杂岩的成因[J].长春地质学院学报,1988.18(4)
    [58]曹树恒等.应用航磁异常探讨四川盆地基底性质及四川省区域构造特征[J].四川地质学报,1988.8(2)
    [59]潘桂堂等.青藏高原新生代构造演化[M].地质出版社,1990.
    [60]黎功举等.地壳演化与成矿作用-以川滇洼系“四层楼”铜矿床系列为例[J].矿床地质,1991(3)
    [61]蔡学林等.中国南部前寒武纪构造演化探讨.地质出版社,1986.国际前寒武纪地壳演化讨论会论文集(1)
    [62]刘朝基等.康滇地区基性-超基性岩[M].重庆出版社,1988
    [63]冯本智.论扬子准地台西缘前震旦纪基底及成矿作用[J].地质学报, 1989,63(4)
    [64]四川省地矿局.四川省区域地质志[M].地质出版社,1991.
    [65]华仁民.中国中元古代裂谷作用及其对层控铜矿床的控制[J].大地构造与成矿学,1989(6)
    [66]沈传波,梅廉夫,徐振平,汤济广.四川盆地复合盆山体系的结构构造和演化[J].大地构造与成矿学,2007,31(3):288-299.
    [67]宋春彦,刘顺,何利.龙门山南段构造变形及应力序列[J].大地构造与成矿学,2009,33(3):334-342.
    [68]Lister G.S.Detachment faulting and the evolution of passive continental margins.Geology,1986,14(3):245~250
    [69]Hoffman P.F.Dewey J.F.,and Burke K.Aulacogens and their genetic relation to geosynclines,with a Proterozoic example from Great Stave Lake,Canada.Modern and Ancient Geosynclinal Sedimentation(eds.R.H.Dott and R.H.Shaver),1974,19:39~54
    [70]Voggenreiter W.,Hotzl H.and Mechie J.Low-angle detachment origin for the Red sea rift system?.tectonophysics,1988,150(1~2):53~73
    [70]Dickinson W.R.Plate tectonics and sedimentation.Tectonics and Sedimentation(ed.D.W.Dickinson),1974,22:527
    [71]Astini R.A.and others.The Early Paleozoic evolution of the Argentine Precordillera as a laurentian rirted,drifted,and collided terrane:A geodynamic model.GSA Bulletin,1995,107(3):253~270
    [72]Drury S.A,and others.Structures related to Red Sea evolution in northern Eritrea.Tectonics,1994,13(6):1371~1378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700