用户名: 密码: 验证码:
基于SiO_2/TiO_2纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装技术的研究和应用是近年来十分受关注的研究领域,在纳米材料研究中越来越引起人们的重视。本文以表面活性剂为模板,醇盐为原料,大分子的明胶为稳定剂,利用自组装的方法在室温下制备了具有有序介观结构的空气-水界面无机氧化物纳米薄膜。采用了X射线衍射(XRD)、红外光谱(FT-IR)、拉曼光谱(Raman)、热重-差热分析(TG-DTA)、比表面及孔径分析仪(BET)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)等一系列分析手段,对这类薄膜样品的组成、结构、性质、形成机理等诸多方面进行了研究。随后将薄膜改性,研究改性后自组装产物的催化性能(包括光催化、化学催化)、表面增强拉曼性质、抗菌性质。全文主要研究内容如下:
     首先使用阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)为模板,在明胶的稳定作用下,以正硅酸乙酯(Si(OC2H5)4)为前驱体,在强碱性环境下自组装制备出无定形介孔状SiO2纳米薄膜。利用XRD、SEM、TEM、BET、Raman的表征结果对介孔结构的形成机理进行验证分析。考察了该薄膜的热性能,分析在不同温度下煅烧后样品的形貌和结构,着重讨论一次粒子聚合成二次粒子时的受热情况。
     用AgNO3溶液对无定形的SiO2薄膜改性,目的是将Ag粒子负载于SiO2氧化物颗粒上。首先利用自组装Si02颗粒作为微型反应器,生成树枝状纳米Ag颗粒,采用XRD,SEM,TEM、UV-vis的表征结果来分析这种多级结构树枝状纳米Ag颗粒的形成过程,提出了反应机理;并将树枝Ag颗粒作为拉曼基底,考察样品的表面增强拉曼性质。另外将自组装的SiO2颗粒在AgNO3溶液中浸泡5min后随即取出,再用Na2S2O3溶液浸泡,生成球状Ag-SiO2复合纳米颗粒,研究其对大肠杆菌的抗菌效果,阐述Ag-SiO2复合纳米颗粒的抗菌机理。
     用CTAB为模板,以钛酸四丁酯(Ti(OC4H9)4)为前驱体,自组装制备出无定形的层状TiO2纳米薄膜,对其结构进行表征。将其浸泡于AgNO3溶液中得到Ag-TiO2复合纳米颗粒,考察此复合型氧化物颗粒的抗菌性能。将煅烧后的复合纳米颗粒作为基底,考察其表面增强拉曼活性。同时将该样品作为光催化剂,以甲基橙为模拟污染物,衡量此光催化剂的催化性能及稳定性。再将此催化剂用于苯乙烯的催化氧化反应中,选取H202为氧化剂,目的产物为环氧苯乙烷,证实400℃温度下的煅烧后样品具有极好的化学催化性能,分析反应的各种影响因素(时间、温度、原料的摩尔比、溶剂),并考察此催化剂的稳定性。
     以阴离子表面活性剂十二烷基硫酸钠(SDS)为模板,以钛酸四丁酯(Ti(OC4H9)4)为前驱体,在强酸性环境中自组装制备了TiO2纳米薄膜。将薄膜浸泡于BaCl2溶液中,生成BaSO4-TiO2复合型氧化物颗粒。根据上一章热处理样品的结果,选择合适的煅烧温度将薄膜中的无定形TiO2转化为锐钛矿型。以此复合型氧化物为光催化剂考察其的光催化活性,并分析该光催化剂的重复使用情况。
     根据前面的实验方法,采用CTAB为模板制备无定形层状TiO2-SiO2二元复合氧化物纳米薄膜。将制备得到的薄膜进行热处理,以煅烧后的产物为光催化剂,甲基橙为模拟污染物,考察并与Ag-TiO2复合颗粒对比光催化活性和催化剂稳定性,发现后者的光催化活性稍高,但前者在重复使用中的稳定性较好。
The research and application of self-assembly technique are of great scientific and technological importance, the preparation of inorganic material-based films using self-assembly technique has attracted intense research interest over recent years. This paper presents a novel method based on self-assembly for the fabrication of a series of air-water interfacial oxide nanofilms with ordered structure, using surfactants as template and gelatin as stabilizers with organic metallic alkoxide precursors. X-ray diffraction (XRD), fourier-transform infrared spectra (FT-IR), N2 adsorption-desorption isotherms, Raman spectra, thermal gravity and differential thermal analysis (TG-DTA), scaning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectra (EDS) are use to characterize the morphologies, structures, compositions and self-assembly mechanisms of the self-assembled nanofilms. The catalytic properties, surface-enhanced Raman spectroscopy and antibacterial properties have been carefully investigated and discussed after modification of the nanofilms.The main contents are summarized as following:
     Mesoporous-like amorphous silicon oxide nanofilms are self-assembled with gelatin as stabilizer by using cetyltrimethylammonium bromide (CTAB) as template and TEOS as precursor. The interaction between surfactant headgroups (dimeric molecular bar) and mesoporous-like silicon oxide is approved to be the formation mechanism to form the nanostructure by XRD, SEM, BET, TEM and Raman. The thermal property of the silicon oxide nanofilms is also investigated. TEM is successfully applied to observe the microstructural changes of air-water interfacial SiO2 secondary particles and the transformation mechanism is investigated, which analyze the morphology and structure of the SiO2 nanoparticles after calcination at different temperatures. The SiO2 nanoparticles as a microreactor are soaked into silver nitrate (AgNO3) aqueous solution. Then the dendritic Ag nanoparticles can be prepared by a reaction of silver nitrate with template agent (CTAB) and AgBr decompose into elemental Ag nanoparticles under visible light irradiation in the SiO2 microreactor. The morphology and structure of as-prepared Ag nanodendrites are characterized by XRD, SEM, TEM and UV-vis, the correlated surface-enhanced Raman scattering (SERS) effect have been investigated when 2-Mercaptobenzothiazole (2-MBT) is used as a Raman probe. The results clearly show that the dendritic nanostructures can be obtained through oriented attachment of nanoparticles along a crystallographically special direction and the morphology of the dendrites is dependent on the reaction duration in the reaction process. After soaked in silver nitrate (AgNO3) aqueous solution for 5min, the SiO2 nanoparticles are soaked into sodium thiosulfate (NaS2O3) solution so that the sphereical Ag-SiO2 composite nanoparticles can be obtained by the same method. The composite nanoparticles are used to the antimicrobial experiments, the experiments indicate that the Ag-SiO2 composite nanoparticles have good anti-bacterial properties. The action mechanism has also been discussed.
     By CTAB as template, gelatin as stabilizer and Ti(OC4H9)4 as precursor, Titanium oxide nanofilms composed of lamellar structure have been self-assembled. The TiO2 nanofilms are soaked into silver nitrate (AgNO3) aqueous solution. Then the Ag-TiO2 composite nanoparticles can be prepared by a reaction of silver nitrate and sodium thiosulfate with template agent (CTAB), the Ag-TiO2 particles are used to the antimicrobial tests and the experiments indicate that the Ag-TiO2 nanoparticles have good anti-bacterial properties. The structure of composite nanoparticles may be strengthened after heated treatment. We investigate the SERS effect on the surfaces of the composite nanoparticles. Methyl orange is used as the degradable agent in photocatalytic experiment by using the Ag-TiO2 particles as a photocalalyst. The Ag-TiO2 nanoparticles can be applied to improve catalytic activity of the epoxidation of styrene oxides. Styrene oxide is the main product of catalytic reaction with H2O2 as the oxidant by using Ag-TiO2 nanoparticles as catalysts. High catalytic activitity of styrene oxide can be obtainable. The reaction temperature, reaction time, the molar ratio of H2O2/styrene and solvent affect greatly the catalytic epoxidation of styrene and the stability of the catalyst has been analysed.
     By anionic surfactant sodium dodecyl sulfate (SDS) as template, the self-assembled TiO2 nanofilms are prepared under acidic conditions. The TiO2 nanofilms are soaked into barium chloride (BaCl2) aqueous solution. Then the BaSO4-TiO2 nanocomposite particles can be prepared by a reaction of BaCl2 with template agent (SDS). According to the heat treatment conditions, the amorphous TiCl2 nanofilms transform into anatase TiO2 after calcination at 400℃. The photocatalytic activities are described, and the catalyst has been proved to the instability in repeated using.
     TiO2-SiO2 binary nanofilms are self-assembled with cetyltrimethylammonium bromide as template. The nanofilms are composed of lamellar particles. Contrasted by Ag-TiO2 catalysts, TiO2-SiO2 has a little lower activity, but has characteristics of higher stability.
引文
[1]Alivisatos A P. Semiconductor clusters, nanocrystals and quantum dots. Science,1996, 271:933-937
    [2]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [3]Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science,2000,287: 1011-1013
    [4]司令伟,翟玉春.纳米组装体系及其研究进展.材料导报.2005,19:89-93
    [5]陈敬中,刘建洪.纳米材料科学导论.北京:高等教育出版社,2006
    [6]Service R F. Chemistry-nanocrystals may give boost to data storage. Science,2000,287: 1902-1903
    [7]张金中.自组装纳米结构,北京:化学工业出版社,2005
    [8]汪信,刘孝恒.纳米材料化学.北京:化学工业出版社,2006
    [9]Paul S, Pearson C, Molloy A, et al. Langmuir-Blodgett film deposition of metallic nanaparticles and their application to electronic memory structures. Nano Lett.,2003,3: 533-536
    [10]刘焕彬,陈小泉.纳米科学与技术导论.北京:化学工业出版社,2006
    [11]Ray B, Avar A, Walt A. Carbon nanotubes the route toward applications. Science,2002, 297:787-792
    [12]Catherine M. Nanocubes and nanoboxes. Science,2002,298:2139-2141
    [13]Wang J F, Gudkxn M S, Duan X F, et al. Highly polarized photoluminescence and photodetection esom single indium phosphide nanowires. Science,2001,293:1455-1457
    [14]Hansen P L, Wagner J B, Helveg S, et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science,2002,295:2053-2055
    [15]Zhang Z, Lee S H, Vittal J J, Chin W S. A simple way to prepare PbS nanocrystals with morphology tuning at room temperature. J. Phys. Chem. B,2006,110:6649-6654
    [16]Park H, Park J, Lim A K, Anderson E H, Alivisatos A P, Mceuen P L. Nanomechanical oscillations in a single-C-60 transistor. Nature,2000,407:57-60
    [17]朱静等.纳米材料与器件.北京:清华大学出版社,2003
    [18]Stura E, Nicolini C. New nanomaterials for light weight lithium batteries. Analytica Chimica Acta.,2006,568:57-64
    [19]Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev.,2004,104:1283-1315
    [20]阎子峰.纳米催化技术.北京:化学工业出版社,2006
    [21]Zhang W J, Li M K S, Wang R J, et al. Preparation of Stable Exfoliated Pt-Clay Nanocatalyst. Langmuir,2009,25:8226-8234
    [22]Petit C, Lixon P, Pileni M P. In situ synthesis of silver nanocluster in aotreverse micelles. J. Phys. Chem.,1993,97:12974-12983
    [23]Atkins M, Couves J, Hague M, et al. On the role of Cs, Cl and subsurface O in promoting selectivity in Ag/α-Al2O3 catalysed oxidation of ethene to ethene epoxide. J. Catal.,2005,235: 103-113
    [24]Wasilke J C, Obrey S J, Baker R T, et al. Concurrent tandem catalysis. Chem. Rev.,2005, 105:1001-1020
    [25]Mallat T, Orglmeister E, Baiker A. Asymmetric catalysis at chiral metal surfaces. Chem. Rev.,2007,107:4863-4890
    [26]Liu R X, Yu Y C, Yoshida K, et al. Physically and chemically mixed TiO2-supported Pd and Au catalysts:unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2. J. Catal.,2010,269:191-200
    [27]Stankovic M, Gabrovska M, Krstic J, et al. Effect of silver modification on structure and catalytic performance of Ni-Mg/diatomite catalysts for edible oil hydrogenation. J. Mol.
    Catal. A:Chem.,2009,297:54-62
    [28]Malyala R V, Rode C V, Arai M, et al. Activity, selectivity and stability of Ni and bimetallic Ni-Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its substituted derivatives. Appl. Catal. A.,2000,193:71-86
    [29]Chen J X, Ci D H, Wang R J, et al. Hydrodechlorination of chlorobenzene over NiB/SiO2 and NiP/SiO2 amorphous catalysts after being partially crystallized:A consideration of electronic and geometrical factors. Appl. Surf. Sci.,2008,255:3300-3309
    [30]Liu R X, Zhao F Y, Fujita S I, et al. Selective hydrogenation of citral with transition metal complexes in supercritical carbon dioxide. Appl. Catal. A.,2007,316:127-133
    [31]刘春艳.纳米光催化及光催化环境净化材料.北京:化学工业出版社,2007
    [32]Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem. Rev.,1993,93:341-357
    [33]Hoffmann M R, Martin S T, Bahnemann D W. Environmental application of semiconductor photocatalysis. Chem. Rev.,1995,95:69-96
    [34]Jiang Y, Zhang P, Liu Z W, et al. The preparation of porous nano-TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism. Mater. Chem. Phys.,2006, 99:498-504
    [35]程光熙.拉曼-布里渊散射.北京:科学出版社,2003
    [36]Jespersen K K, Cremer D, Poppinger D, et al. Molecular orbital theory of the electronic structure of molecules.39. Highly unusual structures of electron-deficient carbon compounds. J. Am. Chem. Soc.,1979,101:4843-4851
    [37]Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem.,1977,84:1-20
    [38]Mo Y J, Lei J, Li X Y, et al. Surface enhanced Raman scattering of rhodamine 6G and dye 1555 adsorbed on roughened copper surfaces. Solid State Communications,1988,66: 127-131
    [39]裴宁,莫育俊,刘长春等.用天线共振子模型研究银镜的紫外可见吸收光谱.光散射学报,1999,11:183-186
    [40]Moskovits M. Surface-enhanced spectroscopy. Rev. Phys.,1985,57:783-826
    [41]Campion A, Kambhampati P. Surface enhanced Raman scattering. Chem. Soc. Rev., 1998,27:241-250
    [42]Otto A, Grabhorn H, Akemann W. Surface-enhanced Raman scatting. J. Phys. Condensed Matter,1992,4:1143-1212
    [43]Jensen L, Aikens C M, Schatz G C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev.,2008,37:1061-1073
    [44]Lombardi J R, Birke R L, Lu T, et al. Charge-transfer theory of surface-enhanced Raman spectroscopy:Herzbrg-Teller contributions. J. Chem. Phys,,1986,84:4174-4180
    [45]Ray P C. Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing. Chem. Rev.,2010, 110:5332-5365
    [46]Hallmark V M, Campion A. Unenhanced Raman spectroscopy of benzene adsorbed on single crystal silver surfaces evidence for surface selection rules. Chem. Phys. Lett.,1984, 110:561-564
    [47]Adrian F J. Charge transfer effects in surface-enhanced Raman scattering. J. Chem. Phys., 1982,77:5302-5314
    [48]Lombardi J R, Birke R L. Aunified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C,2008,112:5605-5617
    [49]Tran T H, Nguyen T D. Controlled growth of uniform noble metal nanocrystals: Aqueous-based synthesis and some applications in biomedicine. Colloid Surfaces B,2011, 88:1-22
    [50]Hu X G, Cheng W L, Wang T, et al. Fabrication, Characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films. J. Phys. Chem. B, 2005,109:19385-19389
    [51]Li X L, Xu W Q, Zhang J H, et al. Self-assembled metal colloid films:Two Approaches for Preparing New SERS Active Substrates. Langmuir,2004,20:1298-1304
    [52]Liu G L, Lu Y, Kim J, et al. Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv. Mater.,2005,17:2683-2688
    [53]Schmidt J P, Cross S E, Buratto S K. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays. J. Chem. Phys.,2004,121:10657-10659
    [54]Wang H, Levin C S, Halas N J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J. Am. Chem. Soc.,2005,127: 14992-14993
    [55]Kikuchi Y, Sunada K, Iyoda T, et al. Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect. J. Photoch. Photobio. A: Chem,.1997,106:51-56
    [56]Cai Q, Luo Z S, Pang W Q, et al. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater.,2001,13:258-263
    [57]Buining P A, Liz-Marzan L M, Philipse A P. A simple preparation of small, smooth silica spheres in a seed alcosol for stober synthesis. J. Colloid. Interf. Sci.,1996,179:318-321
    [58]孙剑,乔学亮,陈建国等.无机抗菌剂的研究进展.材料导报,2007,21(S1):344-348
    [59]Minero C. Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal. Today,1999,54:205-216
    [60]卢晓东,王庆昭,吴进喜等.新型纳米抗菌材料的研究进展.化工文摘,2008,4:53-55
    [61]Pyatenko A, Yamaguchi M, Suzuki M, et al. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem. C,2007,111:7910-7917
    [62]Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology,2005,16:2346-2353
    [63]Kong H, Jang J. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules,2008,9:2677-2681.
    [64]Thiel J, Pakstis L, Buzby S, et al. Antibacterial properties of silver-doped Titania. Small, 2007,3:799-800
    [65]Kim F, Kwan S, Akana J, et al. Langmuir-blodgett nanorod assembly. J. Am. Chem. Soc., 2001,123:4360-4361
    [66]江鹏,解思深,姚建年等.金纳米粒子有序膜结构的原子力显微研究.电子显微学报,2001,20:589-593
    [67]Patil V, Mayya K S, Pradhan S D, et al. Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on siliver colloidal particle. J. Am. Chem. Soc.,1997,119:9281-9282
    [68]Boal A K, Rotello V M. Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. J. Am. Chem. Soc.,2000,122:734-735
    [69]Li D, Liitt M, Fitzsimmons M R. Preparation, characterization and properties of mixed organic and polymeric self-assembled multilayers. J. Am. Chem. Soc.,1998,120:797-804.
    [70]Bowden N B, Weck M, Choi I S, et al. Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res.,2001,34:231-238
    [71]Vriezema D M, Aragones M C, Elemans J A A W, et al. Self-assembled nanoreactors. Chem. Rev.,2005,105:1445-1490
    [72]Tao F, Bernasek S L. Understanding odd-even effects in organic self-assembled monolayers. Chem. Rev.,2007,107:1408-1453
    [73]Chiou N R, Lee L J, Epstein A J. Self-assembled polyaniline nanofibers/nanotubes. Chem. Mater.,2007,19:3589-3591
    [74]Kirillov A M, Karabach Y Y, Haukka M, et al. Self-assembled copper(II) coordination polymers derived from aminopolyalcohols and benzenepolycarboxylates:structural and magnetic properties. Inorg. Chem.,2008,47:162-175
    [75]Krafft M P, Riess J G. Chemistry, physical chemistry, and uses of molecular fluorocarbon-hydrocarbon diblocks, triblocks, and related compounds □ unique "apolar" components for self-assembled colloid and interface engineering. Chem. Rev.,2009, 109:1714-1792
    [76]Aldaye F A, Sleiman H F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed.,2006,45:2204-2209
    [77]Shi L, Yin H W, Zhang R Y, et al. Macroporous oxide structures with short-range order and bright structural coloration:a replication from parrot feather barbs. J. Mater. Chem.,2010, 20:90-93
    [78]Li X M, Dong K, Tang L B, et al. The fabrication of Ag nanoflake arrays via self-assembly on the surface of an anodic aluminum oxide template. Appl. Surf. Sci.,2010, 256:2856-2858
    [79]Wang D P, Sun D B, Yu H Y, et al. Preparation of one-dimensional nickel nanowires by self-assembly process. Mater. Chem. Phys.,2009,113:227-232
    [80]Song Y J, Garcia R M, Dorin R M,et al. Synthesis of platinum nanowire networks using a soft template. Nano Lett.,2007,7:3650-3655
    [81]Cheng S, Yan D, Chen J T, et al. Soft-template synthesis and characterization of ZnO2 and ZnO hollow spheres. J. Phys. Chem. C,2009,113:13630-13635
    [82]Yen M Y, Chiu C W, Chen F R, et al. Convergent electron beam induced growth of copper nanostructures:Evidence of the importance of a soft template. Langmuir,2004,20: 279-281
    [83]Kjeld J. C. van Bommel, Arianna Friggeri, Seiji Shinkai. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed.,2003,42:980-999
    [84]Shi X X, Pan L L, Chen S P, et al. Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method. Langmuir,2009, 25:5940-5948
    [85]Ford P C, Stucky G D. Bromine mediated partial oxidation of ethane over nanostructured zirconia supported metal oxide/bromide. Microporous and Mesoporous Materials,2005,79: 205-214
    [86]Alan K S, Hu S, Stucky G D, et al. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochemistry Communications,2009,11: 1150-1153
    [87]Peng B, Chen M, Zhou S X, et al. Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J. Colloid. Interf. Sci.,2008,321:67-73
    [88]Guo R, Liu W Y. The influence of malachite green on the interfacial electric properties of SDS/n-C5H11OH/H2O system. Colloid. Surf. A,2004,248:93-100
    [89]Choi J, Wang N S, Reipa V. Conjugation of the photoluminescent silicon nanoparticles to streptavidin. Bioconjugate Chem.,2008,19:680-685
    [90]Yu S M, Mecking S. Variable crystallinity polyethylene nanoparticles. Macromolecules, 2009,42:3669-3673
    [91]Cheng G. S, Zhang L. D, Zhu Y. Large-scale synthesis of single crystalline gallium nitride nanowires. Appl. Phys. Lett.,1999,75:2455-2457
    [92]Li J R, Yin N N, Liu G Y. Hierarchical Micro- and Nanoscale Structures on Surfaces Produced Using a One-Step Pattern Transfer Process. J. Phys. Chem. Lett.,2011,2:289-294
    [93]Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature,1994,368:317-321
    [94]汪信,郝青丽,张莉莉.软化学方法导论.北京:科学出版社,2007
    [95]Decher G, Hong J D,Bunsenges B. Buildup of ultrathin multilayer films by a self-assembly process:Ⅱ. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Phys. Chem.,1991,95:1430-1434
    [96]Hao Q L. Development of conductometric polymer sensor for gaseous hydrogen chloride. Ph. D. Dissertation, Germany, University of Regensburg,2003
    [97]Hao Q L, Wang X, Lu L D, et al. Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride. Macro.,2005,26:1099-1103
    [98]Losic D, Short K, Shapter J G, et al. Atomic force microscopy imaging of glucose oxidase using chemically modified tips. Austra. J. Chem.,2003,56:1039-1043
    [99]Anzai J, Hoshi T, Nakamura N. Construction of multilayer thin films containing avidin by a layer-by-layer deposition of avidin and poly(anion). Langmuir,2000,16:6306-6311
    [100]Li Y M, Chen Z C, Jiang X M, et al. Layer-by -layer assembly of low molecular weigh dye/evzyme composite thin films for biosensor. Chem. Lett.,2004,33:564-565
    [101]Kuzmenko I, Rapaport H, Kjaer K, et al. Design and characterization of crystalline thin film architectures at the air-liquid interface:simplicity to complexity. Chem. Rev.,2001,101: 1659-1696
    [102]Tang P Q, Hao J C. Formation mechanism and morphology modulation of honeycomb hybrid films made of polyoxometalates/surfactants at the air/water interface. J. Colloid. Interf. Sci.,2009,333:1-5
    [103]Henderson M J, King D, White J W. Time-dependent changes in the formation of Titania-based films at the air-water interface. Langmuir,2004,20:2305-2308
    [104]Soler-Illia G, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials:From microporous and mesoporous oxides to nanonetworks and Hierarchical Structures. Chem. Rev.,2002,102:4093-4138
    [105]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,279:548-552
    [106]Alberius P C A, Frindell K L, Hayward R C, et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater.,2002,14: 3284-3294
    [107]Lee H I, Kim J M, Stucky G D. Periodic mesoporous organosilica with a hexagonally pillared lamellar structure. J. Am. Chem. Soc.,2009,131:14249-14251
    [108]Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructured materials for optical applications. Chem. Mater.,2001,13:3140-3150
    [109]Tang J, Fan Y B, Hu J, et al. Fabrication of ordered lamellar polyacrylamide/P123 composite membranes via solvent-evaporation-induced self-assembly. J. Colloid. Interf. Sci., 2009,331:191-195
    [110]Ryoo R, Park I S, Jun S, et al. Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants. J. Am. Chem. Soc.,2001,123:1650-1657
    [111]Brennan T, Hughes A V,. Roser S J, et al. Concentration-dependent formation mechanisms in mesophase silica surfactant films. Langmuir,2002,18:9838-9844
    [112]Henderson M J, Perriman A W, Robson-Marsden H, et al. Protein-poly(silicic) acid interactions at the air/solution interface. J. Phys. Chem. B,2005,109:20878-20886
    [113]McGillivray D J, Mata J P, White J W, et al. Nano- and microstructure of air/oil/water interfaces. Langmuir,2009,25:4065-4069
    [114]Tang P Q, Hao J C. Photoluminescent honeycomb films templated by microwater droplets. Langmuir,2010,26:3843-3847
    [115]Zhai X D, Zhang L, Liu M H. Supramolecular assemblies between a new series of gemini-type amphiphiles and TPPS at the air/water interface:aggregation, chirality, and spacer effect. J. Phys. Chem. B,2004,108:7180-7185
    [116]Gao P, Liu M H. Compression induced helical nanotubes in a spreading film of a bolaamphiphile at the air/water interface. Langmuir,2006,22:6727-6729
    [117]Jiao T F, Liu M H. Supramolecular assemblies and molecular recognition of amphiphilic schiff bases with barbituric acid in organized molecular films. J. Phys. Chem. B, 2005,109:2532-2539
    [118]刘孝恒, John White,汪信.TiO2薄膜空气-水界面自组装的研究.无机化学学报.2005,21:1490-1494
    [119]Kan C, Liu X H, Wang X, et al. Effects of different anionic surfactant templates (H+A-, Na+A-) on titanium self-assembly:In the air-water interfacial films. Colloid. Surf. A,2007, 311:93-98
    [120]刘孝恒,John White,王恒志等.明胶稳定TiO2空气-水界面薄膜的研究.常熟理工学院学报,2006,20:35-38
    [121]Wang H L, Liu X H, Wang X, et al. Air-water interfacial titania film self-assembled by CTAB in the presence of gelatin. Materials and Science Engineering A,2006,435-436: 193-197
    [122]Liu X H, Kan C, Wang X, et al. Self-assembled nanodisks with targetlike multirings aggregated at the air-water interface. J. Am. Chem. Soc.,2006,128:430-431
    [123]Di Renzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica. Micropor. Mater,1997,10:283-286.
    [124]Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of alkyltrimethylammoniumkanemite complexes and their conversion tomicroporous materials. Bulletion of the chemical society of Japan,1990,63:988-992.
    [125]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359: 710-712.
    [126]高传博.阴离子表面活性剂导向法合成介孔材料及其机理研究.上海交通大学,硕士学位论文,2007.
    [127]Corma A, Fornes V, Navarro M T, et al. Acidity and stability of MCM-41 crystalline aluminosilicates. J. Catal.,1994,148:569-574.
    [128]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves. Science,1995,267:865-867.
    [129]Rao Y X, Kang J J, Trudeau M, et al. Investigation of the catalytic activities of sulfated mesoporous Ti, Nb, and Ta oxides in 1-hexene isomerization. J, Catal.,2009,266:1-8
    [130]MaliK A, Duncan M, Bruce P G. Mesostructured iron and manganese oxides. J. Mater. Chem.,2003,13:1232-1261
    [131]Tian Z R, Tong W, Wang J Y, et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science,1997,276:926-930
    [132]Colfen H, Manns S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed.,2003,42:2350-2365
    [133]Colfen H, Antonietti M. Mesocrystals:inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed.,2005,44:5576-5590
    [134]Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania. Acta.,1999,63:1549-1557
    [135]Penn R L, Oskam G, Strathmann T J, et al. Epitaxial assembly in aged colloids. J. Phys. Chem. B,2001,105:2177-2182
    [136]Huang F, Zhang H Z, Banfield J F. Two-Stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett.,2003,3:373-378
    [137]Alivisatos A P. Biomineralization-naturally aligned nanocrystals. Science,2000,289: 736-737
    [138]Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO:from nanodots to nanorods. Angew. Chem. Int. Ed.,2002,41:1188-1191
    [139]Zitoun D, Pinna N, Frolet N, et al. Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc.,2005,127:15034-15035
    [140]刘粤惠,刘平安.X-射线衍射分析原理与应用.第一版.北京:化学工业出版社,2003
    [141]Ray J C, Panda A B, Pramanik P. Chemical synthesis of nanocrystals of tantalum ion-doped tetragonal zirconia. Mater. Lett.,2002,53:145-150
    [142]Chang S M, Doong R. The effect of chemical states of dopants on the microstructures and band gaps of metal-doped ZrO2 thin films at different temperatures. J. Phys. Chem. B. 2004,108:18098-18103
    [143]Pang G H, Chen S G, Zhu Y C, et al. Preparation and characterization of monodispersed YSZ nanocrystals. J. Phys. Chem. B,2001,105:4647-4652.
    [144]Xiao F S, Han Y, Yu Y, et al. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. J. Am. Chem. Soc.,2002,124:888-889
    [145]张学骜,刘长利,钱斯文等.有序介孔二氧化硅薄膜制备及其组装化学.化学进展.2006.18:1322-1323
    [146]Voloshin Y, Lawal A. Kinetics of hydrogen peroxide reduction by hydrogen in a microreator. Appl. Catal. A:Gen.,2009,353:9-16
    [147]Capek L, Adam J, Grygar T, et al. Oxidative dehydrogenation of ethane over vanadium supported on mesoporous materials of M41S family. Appl. Catal. A:Gen.,2008,342:99-106
    [148]Luechinger M, Pirngruber G D, Lindlar B, et al. The effect of the hydrophobicity of aromatic swelling agents on pore size and shape of mesoporous silicas. Micropor. Mesopor. Mat.,2005,79:41-52
    [149]Anunziata O A, Gomez Costa M B, Sanchez R D. Preparation and characterization of polyaniline-containing Na-AlMCM-41 as composite material with semiconductor behavior. J. Colloid. Interf. Sci.,2005,292:509-516
    [150]Suzuki K, Ikari K, Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J. Am. Chem. Soc.,2004,126:462-463.
    [151]Henderson M J, King D, White J W. The growth of self-assembled titania-based films at the air-water interface. Aust. J. Chem.,2003,56:933-939
    [152]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure. Appl. Chem.,1985,57:603-619.
    [153]刘丰祎,符连社,林君等.新型无机-有机杂化中孔发光材料(Phen)2Eu/MCM-41的合成与表征.应用化学,2001,18:380-383
    [154]Leontidis E, Kyprianidou-Leodidou T, Caseri W, et al. From colloidal aggregates to layered nanosized structures in polymer-surfactant systems.1. basic phenomena. J. Phys. Chem. B,2001,105:4133-4144
    [155]Whitesides T H, Miller D D. Interaction between photographic gelatin and sodium dodecyl sulfate. Langmuir,1994,10:2899-2909
    [156]Cooke D J, Dong C C, Thomas R K. Interaction between gelatin and sodium dodecyl sulfate at the air/water interface:A neutron reflection study. Langmuir,2000,16:6546-6554
    [157]Saxena A, Antony T, Bohidar H B. Dynamic light scattering study of gelatin-surfactant interactions. J. Phys. Chem. B,1998,102:5063-5068
    [158]Zhou H, Chen Y, Fan H J, et al. The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapor permeation. J. Membrane Sci.,2008,318:71-78
    [159]Zhang K, Wu W, Meng H,et al. Pickering emulsion polymerization:Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technol., 2009,190:393-400
    [160]Cai Y B, Ke H Z, Dong J, et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Appl. Energ.,2011,88:2106-2112
    [161]Goel V, Pietrasik J, Matyjaszewski K, et al. Linear viscoelasticity of spherical SiO2 nanoparticle-tethered poly(butyl acrylate) hybrids. Ind. Eng. Chem. Res.,2010,49: 11985-11990
    [162]Schmid G, Hornyak G L. Metal clusters-new perspectives in future nanoelectronics. Currt. opin. Solid State Mater. Sci.,1997,2:204-212
    [163]Liu B, Chen W Z, Jin S W. Synthesis, structural characterization, and luminescence of new silver aggregates containing short Ag-Ag contacts stabilized by functionalized bis(N-heterocyclic carbene) ligands. Organometallics,2007,26:3660-3667
    [164]Guerrini L, Garcia-Ramos J V, Domingo C. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal. Chem.,2009,81:953-960
    [165]Yip J H K, Wu J G, Wong K Y, et al. Syntheses, structures, and electrochemistry of polynuclear CuⅠ, AgⅠ, and PtⅡ complexes bearing ferrocenyl group. Organometallics,2002,21: 1612-1621
    [166]Bosko M L, Miller J B, Lombardo E A, et al. Surface characterization of Pd-Ag composite membranes after annealing at various temperatures. J. Membrane Sci.,2011,369: 267-276
    [167]Liu R M, Si M Z, Kang Y P,et al. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic, self-assembly. J. Colloid. Interf. Sci.,2010,343:52-57
    [168]Kundu S, Liang H. Photo-induced formation of semi-conducting Au-Ag aggregated branched nanoalloys on DNA template. Colloid. Surface. A,2011,377:87-96
    [169]Suh D, Kim D W, Liu P, et al. Effects of Ag content on fracture resistance of Sn-Ag-Cu lead-free solders under high-strain rate conditions. Mater. Sci. Engineering:A,2007,460-461: 595-603
    [170]Fukuoka A, Araki H, Kimura J, et al. Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J. Mater Chem.,2004,14: 752-756
    [171]Nikolov P, Genov K, Konova P, et al. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature. J. Hazard. Mater.,2010,184:16-19
    [172]Tura C J, Coombs N, Dag O. One-pot synthesis of CdS nanoparticles in the channels of mesosructured silica films and monoliths. Chem. Mater.,2005,17:573-579
    [173]Marler B, Oberhagemann U, Vortmann S, et al. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41. Microporous Materials,1996,6:375-383
    [174]Lim M H, Stein A. Comparative studies of grafting and direct syntheses of inorganic-organic hvbrid mesoporous materials. Chem. Mater.,1999,11:3285-3295
    [175]Ausavasukhi A, Suwannaran S, Limtrakul J, et al. Reversible interconversion behavior of Ag species in AgHZSM-5:XRD,1H MAS NMR, TPR, TPHE, and catalytic studies. Appl. Catal. A:General,2008,345:89-96
    [176]魏丽丽,徐盛明,徐刚等.表面活性剂对超细银粉分散性能的影响.中国有色金属学报,2009,19:595-600
    [177]Sun S M, Wang W Z, Zhang L, et al. Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst. Catal. Commun.,2009,11:290-293
    [178]Mahendia S, Tomar A K, Kumar S. Nano-Ag doping induced changes in optical and electrical behaviour of PVA films. Materials Science and Engineering:B,2011,176:530-534
    [179]Lu L H, Kobayashi A, Kikkawa Y, et al. Oriented attachment-based assembly of dendritic silver nanostructures at room temperature. J. Phys. Chem. B,2006,110: 23234-23241
    [180]Futamata M, Yu Y Y, Yanatori T, et al. Closely adjacent Ag nanoparticles formed by cationic dyes in dolution generating enormous SERS enhancement. J. Phys. Chem. C,2010, 114:7502-7508
    [181]Rashid M H, Mandal T K. Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C,2007,111:16750-16760
    [182]Wang Q Q, Xu G, Han G R. Synthesis and characterization of large-scale hierarchical dendrites of single-crystal CdS. Crystal Growth Des.,2006,6:1776-1780
    [183]Lu L, Kobayashi A, Tawa K, et al. Silver nanoplates with special shapes:controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chem. Mater.,2006,18:4894-4901
    [184]Liu Y J, Zhang Z Y, Zhao Q, et al. Surface-enhanced Raman scattering from an Ag nanorod array substrate:The site dependent enhancement and layer absorbance effect. J. Phys. Chem. C,2009,113:9664-9669
    [185]Vlckova B, Gu X J, Moskovits M. SERS excitation profiles of phthalazine adsorbed on single colloidal silver aggregates as a function of cluster size. J. Phys. Chem. B,1997,101: 1588-1593
    [186]Zhang J T, Li X L, Sun X M, et al.. Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B,2005,109:12544-12548
    [187]Jiang J, Bosnick K, Maillard M, et al. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B,2003,107:9964-9972
    [188]Cai W B, Ren B, Li X Q, et al. SERS substrates fabricated by island lithography:the silver/pyridine system. J. Phys. Chem. B,2003,107:13015-13021
    [189]He Y, Shi G. Surface Plasmon resonances of silver triangle nanoplates:Graphic assignments of resonance modes and linear fitting of resonance peaks. J. Phys. Chem. B,2005, 109:17503-17511
    [190]Zeng J, Jia H, An J, et al. Preparation and SERS study of triangular silver nanoparticles self-assembled films. J. Raman. Spectrosc.,2008,39:1673-1678
    [191]Gregorio F D, Bisson L, Armaroli T, et al. Characterization of well faceted palladium nanoparticles supported on alumina by transmission electron microscopy and FT-IR spectroscopy of CO adsorption. Appl. Catal. A:Gen.,2009,352:50-60
    [192]Benoit Braconnier, Carlos A. Paez, Stephanie Lambert, eta al. Ag- and SiO2-doped porous TiO2 with enhanced thermal stability. Micropor. Mesopor. Mat.,2009,122:247-254
    [193]Hoffmann M R, Martin S T. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95:69-96
    [194]Mayer, A M S, Rodriguez A D, Berlinck R G S, et al. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Phys. C, 2011,153:191-222
    [195]Sun H Q, Bai Y, Jin W Q, et al. Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. Sol. Energ. Mat. Sol. C.,2008,92:76-83
    [196]Bhattacharyya S, Gedanken A. Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous Zinc oxide nanocomposites and nanorods. J. Phys. Chem. C,2008,112: 659-665
    [197]Madarasz J, Okuya M, Varga P P, et al. TG/DTA-EGA-MS studies on titania precursors with low content of organics for porous thin films of TiO2. J. Anal. Appl. Pyrol.,2007,79: 479-483
    [198]Raveendran P, Fu J, Wallen S L. Completely "Green" synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc.,2003,125:13940-13941
    [199]Water G A, Bergwerff J A, Nijhuis T A, et al. UV-Vis microspectroscopy:probing the initial stages of supported metal oxide catalyst preparation. J. Am. Chem. Soc.,2005,127: 5024-5025
    [200]Yang X G, Gao S, Xi Z W. Reaction-controlled phase transfer catalysis for styrene epoxidation to styrene oxide with aqueous hydrogen peroxide. Org. Process. Res. Dev.,2005, 9:294-295
    [201]Carlson G P, Turner M, Mantick N A. Effects of styrene and styrene oxide on glutathione-related antioxidant enzymes. Toxicology,2006,227:217-226
    [202]Zhan W, Guo Y, Wang Y, et al. Study of higher selectivity to styrene oxide in the epoxidation of styrene with hydrogen peroxide over La-doped MCM-48 catalyst. J. Phys. Chem. C,2009,113:7181-7182
    [203]Zhuang J, Yang G, Ma D, et al. In suit magnetic resonance investigation of styrene oxidation over TS-1 zeolites. Angew. Chem. Int. Ed.,2004,43:6377-6380
    [204]Purcar V, Donescu D, Petcu C, et al. Efficient preparation of silver nanoparticles supported on hybrid films and their activity in the oxidation of styrene under microwave irradiation. Appl. Catal. A:Gen.,2009,363:122-128
    [205]Brook L A, Evans P, Foster H A, et al. Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J. Photochem. Photobiol. A:Chem., 2007,187:53-63
    [206]Kuznetsova I N, Blaskov V, Znaidi L. Study on the influence of heattreatment on the crystallographic phases of nanostructured TiO2 films. Materials and Science Engineering:B, 2007,137:31-39
    [207]Yu D, Yam V W W. Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc.,2004,126:13200-13201
    [208]Kubacka A, Colon G, Fernandez-Garcia M. Cationic (V, Mo, Nb, W) doping of TiO2-anatase:A real alternative for visible light-driven photocatalysts. Catal. Today,2009, 143:286-292
    [209]Xin B F, Jing L Q, Ren Z Y, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. B,2005,109:2805-2809
    [210]Wang X Q, He T J, Wen H, et al. Surface-enhanced Raman scattering from citrate, azobenzene, pyridine and cyanine dyes adsorbed on Ag2O colloids. Spectrochim. Acta A, 1997,53:1411-1417
    [211]Wu D Y, Liu X M, Duan S, et al. Chemical enhancement in SERS spectra:A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J. Phys. Chem. C,2008,112:4195-4204
    [212]Lopez-Ramirez M R, Guerrini L, Garcia-Ramos J V, et al. Vibrational analysis of herbicide diquat:A normal Raman and SERS study on Ag nanoparticles. Vib. Spectrosc., 2008,48:58-64
    [213]Jia H Y, Zeng J B, Song W, et al. Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering. Thin Solid Films.,2006,496:281-287
    [214]Francisco M S P, Mastelaro V R. Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system:Raman spectroscopy, X-ray diffraction, and textural studies. Chem. Mater.,2002,14:2514-2518.
    [215]Chen Y H, Huang E, Yua S C. High-pressure Raman study on the BaSO4-SrSO4 series. Solid State Communications,2009,149:2050-2052
    [216]Son H S, Lee S J, Cho I H, et al. Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere,2004,57:309-317
    [217]Jia H S, Hou W S, Wei L Q, et al. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent. Mater.,2008,24:244-249
    [218]Mohamed R M, Mkhalid I A. Characterization and catalytic properties of nano-sized Ag metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods. J. Alloy. Compounds,2010,501:301-306
    [219]Kogure T, Umezawa T. Formation of TiO2(B) nanocrystallites in sol-gel-derived SiO2-TiO2 film. J. Am. Ceram. Soc.,1999,82:3248-3250
    [220]Matsuda A, Kobayashi K, Kogure T, et al. Characterization of ramiform precipitates formed on SiO2-TiO2 gel coatings by electric field hot water treatment. Journal of Non-Crystalline Solids,2008,354:1263-1266
    [221]Serrano D P, Grieken R V, Melero J A, et al. Liquid phase rearrangement of long straight-chain epoxides over amorphous, mesostructured and zeolitic catalysts. Appl. Catal. A: Gen.,2004,269:137-146
    [222]Dedeoglu B, Catak S, Houk K N, et al. A theoretical study of the mechanism of the desymmetrization of cyclic meso-anhydrides by chiral amino alcohols. Chem. Cat. Chem., 2010,2:1122-1129
    [223]Sebastian V, Motuzas J, Dirrix R W J, et al. Synthesis of capillary titanosilicalite TS-1 cemamic memberanes by MW-assisted hydrothermal heating for pervaporation application. Sep. Purif. Technol.,2010,75:249-256
    [224]Zou J, Gao J C. H2O2-sensitized TiO2/SiO2 composites with high photocatalytic activity under visible irradiation. J. Hazard. Mater.,2011,185:710-716
    [225]Yao J K, Xu C, Ma J Y, et al. Effects of deposition rates on laser damage threshold of TiO2/SiO2 high reflectors. Applied Surface Science,2009,255:4733-4737
    [226]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J. Photoch. Photobio. C,2000,1:1-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700