用户名: 密码: 验证码:
氢氧化镍基能量储存与转换电极体系的探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氧化镍电极由于其在镍基碱性电池、电化学电容器、有机电合成、传感器及电致变色装置等领域的广泛应用,最近几十年来正日益引起人们的兴趣。Ni(OH)2/Ni00H电对因其电极电位高、电化学容量大及电化学可逆性优等特性被视为最重要的氧化/还原电对之一。从Ni(OH)2到NiOOH的转化(氢氧化镍的氧化)意味着氧化性能量在氢氧化镍中的储存。考虑到氢氧化镍电极的广泛应用,探索环境友好的简易的实现氧化性能量在氢氧化镍中储存的方法无疑具有重要意义。本论文主要探究了实现氧化性能量在氢氧化镍中储存的几种方法。
     第三章中,以硝酸镍为主盐采用尿素均相沉淀法制备了钴取代氢氧化镍样品,并对其结构和电化学性能进行了表征与测试。X射线衍射和红外光谱结果表明,所制备的不同含钴量的样品均为典型α相,样品的结晶度随钴含量的增加而降低。电化学测试结果表明,随着样品中含钴量的增加,氢氧化镍电极的可逆性逐渐提高,其放电容量逐渐增大。随着电化学循环的进行,含钴样品的放电容量逐渐增加。含钴24.4%样品在260次循环后其放电容量达到415mAh·g-1(以纯氢氧化镍计)。钴的掺杂降低了氢氧化镍的氧化电位,同时提高了其析氧电位,这可能是导致氢氧化镍电极性能改进的原因之一。
     第四章中,研究了电解液组成和氢氧化镍层表面结构对二氧化钛的氧化性能量储存的影响。具有较高OH-含量的电解液有利于紫外光辐射下二氧化钛产生的氧化性能量在氢氧化镍中的储存。考察了阴极沉积电流对氢氧化镍层表面结构的影响,在1.0mA·cm-2的阴极沉积电流下获得了纳米多孔结构的TiO2-Ni(OH)2双层电极。多孔结构有利于电解液在电极内部的渗透,从而增加电化学反应的有效面积;纳米结构的颗粒可以提供高比表面积、快速的氧化还原反应和较短的固相扩散路径。上述两个因素是所制备的纳米多孔结构的TiO2-Ni(OH)2双层电极具有较好的氧化性能量储存性能的主要原因。
     第五章中,研究了在一个由纳米多孔结构的TiO2-Ni(OH)2双层光阳极和氧还原铂电极组成的光化学池中紫外光辐射下二氧化钛产生的氧化性能量在氢氧化镍中的储存。光阳极与铂阴极的短接,可以促进光生电子和空穴的分离,因此能够显著地改善TiO2-Ni(OH)2双层光阳极的氧化性能量储存性能。采用溶胶-凝胶法制备出了纳米结构的二氧化钛薄膜,以该薄膜为基体应用阴极电沉积法得到了纳米多孔结构的氢氧化镍膜;所制备的纳米多孔结构的TiO2-Ni(OH)2双膜电极显示了明显改进的光致氧化性能量储存性能。
     第六章中,采用阴极电沉积方法得到的a-Ni(OH)2膜电极作为阳极,氧还原电极作为阴极,构成Ni(OH)2-O2耦合储能体系,成功地实现了Ni(OH)2到NiOOH的转变,即氧化性能量的储存。铂电极在具有较高氧含量和较低pH值的电解液中电位较高,说明此时氧的氧化能力较强;在含有上述氧还原铂阴极的耦合储能体系中能够明显增强氢氧化镍膜电极的氧化性能量储存性能。氧化-放电循环测试结果表明,在含有由空气电极和pH=2的1.0 mol-L-1 Na2SO4溶液组成的氧还原电极的耦合储能体系中使用镍基体的氢氧化镍膜电极显示较高的循环稳定性和较好的倍率放电性能。研究还表明利用过氧化氢等其它绿色氧化剂也可实现氧化性能量在氢氧化镍中的储存。从氧化性能量储存和氢氧化镍两个角度来看,目前工作均具有重要意义。
Nickel hydroxide/nickel oxyhydroxide electrodes have aroused increasing attention in decades because of their extensive applications in various fields, for example, nickel-based alkaline batteries, electrochemical capacitors, electrocatalysis in organic synthesis, sensors, and electrochromic devices. Ni(OH)2/NiOOH has been identified as one of the most important redox couples due to its distinctive electrochemical properties such as high electrode potential, large electrochemical capacity and excellent electrochemical reversibility. The transition from Ni(OH)2 to NiOOH (oxidation of Ni(OH)2) implies the oxidative energy storage in nickel hydroxide. The searching on environmentally friendly and facile methods for the oxidative energy storage in nickel hydroxide undoubtedly has considerable significance. In this dissertation various techniques for oxidative energy storage in Ni(OH)2 electrodes were investigated.
     In the third chapter, the Co-substituted Ni(OH)2 samples were prepared by homogeneous precipitation from nickel nitrate solution in the presence of urea, and their structures and electrochemical performance were investigated. The results of XRD and IR indicated that the Ni(OH)2 samples with various Co contents are typical a-phase, and the crystallinity of the samples decreases with the increase in the cobalt content. The results of electrochemical experiments showed that as the cobalt content increases, the discharge capacity and electrochemical reversibility of the Co-substituted Ni(OH)2 samples are obviously improved. The discharge capacity of the Co-containing samples gradually increases with the electrochemical-cycling. The discharge capacity of the sample with 24.4% Co reached 415mAh per gram of pure Ni(OH)2 at the 260th cycle. It was also found that the doping of Co increases the oxygen evolution potential and decreases the oxidation potential of Ni(OH)2, which may be partly responsible for the improvement on the electrochemical performance of the Co-substituted Ni(OH)2 samples.
     In the fourth chapter, the effects of electrolyte composition and surface structure in Ni(OH)2 layer on storage of the oxidative energy of TiO2 have been clarified. The electrolytes with relatively high OH- content facilitate the oxidative energy storage of an UV-irradiated TiO2 photocatalyst in Ni(OH)2. The effects of cathodic deposition current density on the surface structure in Ni(OH)2 layer have been investigated. A porous nanostructured TiO2-Ni(OH)2 bilayer may be obtained by the cathodic electrodeposition at 1.0 mA cm-2. The porous structure may provide easy access of the surfaces to liquid electrolyte, leading to an increase in effective surface area for electrochemical reactions. The nanostructured particles may provide high-specific surface area, fast redox reactions, and shortened diffusion path in solid phase. The two factors are responsible for the enhanced oxidative energy storage of the obtained porous nanostructured TiO2-Ni(OH)2 bilayer.
     In the fifth chapter, the oxidative energy storage of an UV-irradiated TiO2 photocatalyst in Ni(OH)2 by a photochemical cell comprising a porous nanostructured TiO2-Ni(OH)2 bilayer photoanode and a Pt foil O2-ruducing cathode was investigated. The oxidative energy storage of the TiO2-Ni(OH)2 bilayer electrode is greatly enhanced when the photoanode is galvanically connected to the platinum cathode, resulting from the effective electron-hole separation. A nanostructured TiO2 film was prepared on ITO by a sol-gel method, and a porous nanostructured Ni(OH)2 layer was further obtained by a cathodic electrodeposition. The as-prepared porous nanostructured TiO2-Ni(OH)2 dilayer shows obviously improved UV-induced oxidative energy storage performance.
     In the sixth chapter, the oxidative energy storage in the Ni(OH)2 film electrodes, which was evaluated by means of galvanostatic discharge tests, has been successfully achieved by a designed novel system comprising a nickel hydroxide film electrode and a platinum O2-reducing cathode. It was found that the oxidative energy storage in the Ni(OH)2 film electrodes can be obviously enhanced in the coupling system containing the cathode electrolytes with higher oxygen content or lower pH value, resulting from improvement in the oxidative ability of oxygen as indicated by increase in the open-circuit potentials of the platinum electrode. The results of the oxidation-discharge cycle tests showed that the nickel hydroxide film electrode on nickel foil substrate in the galvanic couple system with air cathode using 1.0 M Na2SO4 (pH=2) as cathode electrolyte presents higher cycling stability and better rate discharge capability. It was further demonstrated that the oxidative energy storage in Ni(OH)2 can also be realized by utilizing other green oxidative agents (e.g. H2O2). From the views of both the oxidative energy storage and the oxidation of Ni(OH)2, it is reasonable to conclude that this work is of considerable importance.
引文
[1]雷永泉,万群,石永康,新能源材料。天津:天津大学出版社,2000.
    [2]吕鸣祥等,化学电源,天津大学出版社.
    [3]张有新,王文生.粘结式镍镉蓄电池的研制.电池,1992,22(6):260
    [4]任学佑,MH/Ni电池的发展现状,电池,2002,32(5):301
    [5]古列维奇等著,彭瑞伍译,半导体光电化学,科学出版社.
    [6]Hoffmann, M. R., Martin, S. T., Choi, W. Y. Environmental applications of semiconductor photocatalysis. Chem. Rev.,1995,95:69-96
    [7]R.R.Hautala,J.Little,E.Sweet.The use of functionalized polymers as photosensitizers in an energy storage reaction.Solar Energy,1977,19:503-512.
    [8]R.G.Salmon,M.F.Salomon,Kachinski,Rhodium(I)catalysis of vinylcyclopropane epimerization and ring cleavage rearrangements. J.Am.Chem.Soc.,1977,99:1043-1052.
    [9]姜月顺,杨文胜.化学中的电子过程,2004,P57,科学出版社,
    [10]U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weisso" rtel. J. Salbcck, H. Spreitzer, Gra'tzel. Solid-state dyc-scnsitized mesoporous TiO2 solar cells with high photon-to-electron conversionefficiencies. Nature,1998,395:583-591.
    [11]H. Bode, K. Dehmelt, J. Witte. Zur kenntnis der nickelhydroxidelektrode-Ⅰ. Uber das nickel (Ⅱ)-hydroxidhydrat. Electrochimica Acta,1966,11:1079-1087
    [12]H. Gomez Meier, J.R. Vilche, A.J. Arvia, The influence of temperature on the current peak multiplicity related to the nickel hydroxide electrode. J. Appl. Electrochem.,1980, 10:611-621
    [13]刘敏,韩恩山等.氢氧化镍的制备及其电化学行为研究进展,电源技术,2002,26(3):172-175
    [14]刘寿长,王文祥,张元珍.制备条件对正极材料Ni(OH)2活性和堆积密度的影响,电源技术,1994,183(3):18-23
    [15]贺万宁,覃事彪,李宗雄,高密度球形Ni(OH)2工艺开发研究,电源技术,1995,19(5)1
    [16]魏莹,夏熙,Ni(OH)2电极应用性研究近况,电池,1998,28(5):223-227
    [17]R. Acharya, T. Subbaiah, S.Anand, R.P.Das, Effect of precipitating agents on the physicochemical and electrolytic characteristics of nickel hydroxide. Materials Letters, 2003,57:3089-3095
    [18]R. Acharya, T. Subbaiah, S.Anand, R.P.Das, Effect of preparation parameters on electrolytic behaviour of turbostratic nickel hydroxide. Materials Chemistry and Physics,2003, 81:45-49
    [19]European patent 0,524,284 A2
    [20]US Patent,5281494.
    [21]ETTEL V A,英可公司特殊粉末产品—镉镍电池的新材料.中国第22届化学与物理电源学术年会报告
    [22]孙杨,田彦文,瞿秀静等,高容量高密度氢氧化亚镍的制备,化工冶釜,1997,18(4)303-305
    [23]European Patent,0575091A
    [24]唐致远,赵铭,烧结式镍基板电化学浸渍的研究,电池,2000,30(2)49-52,
    [25]M.S. Kim, K.B. Kim, A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal Microbalance. J. Electrochem. Soc,1998,145(2):507-511
    [26]Yunshi Zhang, Xiaoyan Cao, Huatang Yuan, Wenhu Zhang, Zuoxiang Zhou, Oxygen evolution reaction on Ni hydroxide film electrode containing various content of Co. International Journal of Hydrogen Energy,1999,24:529-536.
    [27]Ding yunchang, Yuan jiongliang, Chang zhaorong, J.P.S.,1997,69:47-54
    [28]N.R.S. Farley, S.J. Gurman, A.R. Hillman, Dynamic EXAFS study of discharging nickel hydroxide electrode with non-integer Ni valency. Electrochimica Acta,2001,46 3119-3127
    [29]张秀英,胡志国,赵春霞,离子交换树脂法制备氢氧化镍和氧化镍超细微粒,功能村料,2000,31(1)109-110
    [30]Faure C., Delmas C., Fouassier M., Willmann P., Preparation and characterization of cobalt-substituted α-nickel hydroxide stable in KOH medium Part Ⅱ. α-Hydroxide with a turbostratic structure. J. Power Sources,1991,35:263-268
    [31]Faure C., Delmas C., Willmann P., Electrochemical behavior of α-cobalted nickel hydroxide electrodes. J. Power Sources,1991,36:497-503
    [32]Demourgues-Guerlou L., Delmas C., Structure and properties of precipitated nickel-iron hydroxides. J. Power Sources,1993,45:281-289
    [33]L. Demourgues-Guerlou, C. Denage C. Delmas, New manganese-substituted nickel hydroxides:Part 1. Crystal chemistry and physical characterization. J. Power Sources, 1994,52:269-271
    [34]L. Demourgues-Guerlou, C. Delmas, Effect of Iron on the Electrochemical Properties of the Nickel Hydroxide Electrode. J. Electrochem. Soc.1994,141:713-724.
    [35]杨玉光,电化学浸渍镍电极的试验研究,[J]江南航天群技,1998,(2)44-51
    [36]S. C. Streinz, A P. Hartman, S. Motupally, and J. W. Weidner, The Effect of Current and Nickel Nitrate Concentration on the Deposition of Nickel Hydroxide Films J. Electrochem. Soc.1995,142:1084-1095
    [37]S. C. Christopher, M. Sathya, J.W. Weidner, The Effect of Temperature and Ethanol on the Deposition of Nickel Hydroxide Films J. Electrochem. Soc.1995,142:4051
    [38]T.Subbaiah, S. C. Mallick,K. G. Mishra,K. Sanjay.R. P Das, Electrochemical precipitation of nickel hydroxide, J. Power Sources.,2002,112:562-569
    [39]R. S. Jayashree, P. V. Kamam, Nickel hydroxide clectrodeposition from nickel nitrate solutions:mechanistic studies, J. Power Sources,2001,93:273-278
    [40]G. S. Nagarajan, C.H.Ho, J.W.Van Zee, A Mathematical Model for Predicting Nonuniform Electrochemical Impregnation of Nickel Hydroxide. J. Electrochem. Soc.1997,144(2): 503-510
    [41]杨长春,李祥杰,陈鹏磊,李大平,电解法制备球氢氧化镍工艺研究,电源技术,2000,24(5):288-291
    [42]杨文静,黎学明,牛丽丹,付银辉,γ-NiOOH的制备及在碱锰电池中的应用,2009,电池,39(5):269-271
    [43]P.A.克里斯蒂安,T.梅兹尼.使用臭氧制备轻基氧化镍[P].中国专利:申请号03807274.2,2005
    [44]王冠,电解法制备氢氧化镍和羟基氧化镍,郑州大学硕士论文,2003
    [45]夏曦,龚玉良,纳米β-NiOOH的固相合成及其性能,电池,2002,32(1):6-9
    [45]PuaA. Christina, Norton,MA. Alkaline battery including Nikcel oxyhydroxide cathode zinc anode, [P]US20040043292Al,2002
    [46].Muarta JNuihci Methed for Producing Nikcel oxyhydroxide, [P]JP2001-146431,2001
    [47].Usui Takeshi, Imaizumi JuNichi, Shimakawa Mmaoru. Nickel oxyhydroxide and manufacturing method thereof. [P]JP2002-179427,2002
    [48]Takahashi Akio, Yamamoto Kenta, Honda Kazuyoshi et al. Alkaline zinc battery [P] JP2003-123747,2003
    [49]夏熙,潘仁,β-NiOOH的制备及充放电性能,应用化学,2001,18(1):76-78.
    [50]Shimakawa Mmaoru, Usui Takeshi, Genda Giihci et al. Method of manufacturing Nickel oxyhydroxide [P] JP2003-146663, A.2003
    [51]Naoto Tbrata, Kashihara-shi. Process for producing a positive electrode active material of a nonaqueous secondary battery and a nonaqueous secondary using the active material [P] US 2002/0009643A1,2002
    [52].Ishida Shintoar, Myonaka Sakiko, Sufimoto akiko et al. Nickel hydroxide for production of Nickel oxyhydroxide[P] JP11-246226,1999
    [53].ShiNishi Ueki, Tokyo;Yoshior Harada, Tokyo; MitsuhiorNakmaura, Tokyo et al.Alkaline Primary batteyr [P] Us20040115531Al,2004
    [54]张清顺,常海涛,薛祥峰等,羟基氧化镍的制备方法[P]03148203.1中国专利,2003
    [55]周震涛,刘澧浦,纳米级经基氧化镍及其制备方法[P]03113883.7中国专利,2003
    [56]Yamamoto Kenta. Beta type Nickel oxyhydroxide and its manufacturing method, positive electrode active material and Nickel-zinc cell [P]JP2001-325954,2001-11-22
    [57]夏曦,潘仁,郭再萍,β-NiOOH的研究(1I)电极充放电机理.[J]电源技术,2001,25(3):203-205
    [58]高飞,沈正浩,阎登明β-NiOOH的制备和性能,[J]电源技术,2004,28(11):704-706
    [59]Morikwaa ShiNihcior, Hayashi Naoteur, Honda Kazuyoshi et al. βtype Nickel oxyhydroxide, manufacturing method there of, positive electrode active material positive electrode for battery, and mickel zinc battery [P]JP2002-289187,2002
    [60]田吉平,马柱坚,郭少斌等.碱性电池的一种正极材料及其制备方法[P]中国专利02134736.0,2002
    [61]Shimakawa Mmaour, Usui Takeshi, HomnaHideo et al. Manufacturing method of Nickel oxyhydroxide by electrolytic oxidation [P]JP2003-346795,2003
    [62]DeePika B. Sinhg, GaineNsille, Fla gmama NiOOH Nickel electrodes [P]US6020088,2000
    [63].张清顺,常海涛,薛样峰等.羟基氧化镍的电化学合成方法[P]中国专利03153572.0,2004
    [64]阎登明,沈正浩.充电态p相羟基氧化镍的制备方法[P]中国专利03113186.7,2003
    [64]黄振华,陈延扬,阜康冶炼厂高冰镍精炼工艺的研究与生产实践,新疆有色金属,1997,3:25-32
    [65]吴芳芳,王建明,陈惠,张鉴清.不同相结构NiOOH的制备及其物理化学性能,电源技术,2004,28(11):700-703
    [66]刘淑梅,徐保伯,手机电池性能及其检测,电池,30(5),214-216(2000)
    [67]H. Yanyam, K. Kuroki, K. HiraKawa, H. Tomokiyo, Japan, J. Appl. Phys.1984,23, 1619-1623
    [68]闫德意,王丽娟等,热处理对AB2型合金MH—Ni电池寿命的影响,电源技术,1998,22(5),192
    [69]N. Furukawa, Development and commercialization of nickel-metal hydride secondary batteries.J. Power Sources.1994,51 (12),45-59
    [70]谢德明,王建明,张鉴清等,中国MH/Ni电池产业化发展,电池,2000,30(5),225-227
    [71]曹锡章,张畹蕙,杜尧国.无机化学[M].北京:高等教育出版社,1984.
    [72]陈杰,朱振才,王汝笠,等.W03薄膜的电致变色特性研究.光学学报.1996,16(10):1475-1478.
    [73]Platt J. R. Electrochromism, a possible change of color producible in dyes by an electric field. J Chem Phys.1961,34(3):862-864.
    [74]Deb S. K. Electrochromism in tungsten oxide(WO3)film. Appl. Opt.1969,58(3):190-198.
    [75]Schoot C.J., Ponjee J.J., Van Dam H.T., et al. New electrochromic memory display. Appl. Phys. Lett.1973,23(2):64-65.
    [76]Lampert Carl M. Electrochromic materials and devices for energy efficient windows. Solar Energy Materials.1984,11(1-2):1-27.
    [77]张征林,王怡红,王宏,等.电致变色材料及应用.电子元件与材料.1999,18(01):32-37.
    [78]饶峰,汪建勋,韩高荣.电子束蒸发制备氧化钨、氧化镍薄膜的电致变色性能.材料科学与工程学报.2004.22(05):683-687.
    [79]Aegerter M. A., Avellaneda C.0., Pawlicka A., et al. Electrochromism in materials prepared by the sol-gel process. Journal of Sol-Gel Science and Technology.1997,8(1-3): 689-696.
    [80]M. Kitao, K. Izaw a, S. Yamada. Electrochromic properties of nickel oxide films prepared by introduction of hydrogen into sputtering atmosphere. Solar Energy Materials and Solar Cells, 1995,39:115
    [81]Zhenrui Yu, J inhuiDu, Changan L i. Structural and Electrochromic properties of electrodepo sited hydrous nickel oxide thin films, P roc. S P IE,1998,3560:to be published.
    [82]D. A. W ruck, M. Rubin. Structure and electronic properties of electrochromic NiO films. J. E lectrochem. Soc.,1993,140:1097
    [83]W. Est rada,A. M. A ndersson, C. G. Granqvist et al. Electrochromic dc sputtered nickel oxide based films:Optical structural, and electrochemical characterization. Eds:F.A. Ponce,M. Cardona. Springer Proc. In Physics,1992,62:Surface Science.
    [84]Srengon J SEM, Granqvist CG, Electrochromic hydrated nickel oxide coatings for energy efficient windows:Optical properties and coloration mechanism. Appl Phys Lett,1986, 49(23):1566-1568
    [85]Yu PC, Nazri, LBrupert C M. Pc SPIE,1988,653,16
    [86]Mao,Devidts B white R E et al. J Eleetrochem Soc,1994,141:154
    [87]Weidner J W, Timmerman P. Effect of Proton Diffusion, Electron Conductivity, and Charge-Transfer Resistance on Nickel Hydroxide Discharge Curves. J Ehetrochem So., 1994,141:346
    [88]Busing WR. J Chem Phys,1957,426:563
    [89]NemetzA, TcmminkA, Banke K et at. Investigations and modelling of e-beam evaporated NiO(OH)x films. Sol Energy Mater Sol Cells,1992,25:93-103
    [90]樊美公.光致变色与光子器件.化学进展.1994,6(3):209-21
    [91]Porter, G. Die Blitzlichtp hotolyse and Einige Threr Anwendungen. Angew Chem.1968, 80,882-891.
    [92]Norish, R.G.W.Porter,G. Chemical Reactions Predueed By Very High Light Intensities. Nature,1949,164,658-660
    [93]王建营,冯长根.光致变色现象及其在国防上的应用.国防科技.2005,3:22-25.
    [94]R. Kostecki, T. Richardson, F. McLarnon, Photochemical and Photoclectrochemical Behavior of a Novel TiO2/Ni(OH)2 Electrode. J. Electrochem. Soc.1998,145:2380.
    [95]Y. Takahashi, T. Tatsuma, Oxidative Energy Storage Ability of a TiO2-Ni(OH)2 Bilayer Photocatalyst. Langmuir,2005,21:12357.
    [96]Y. Takahashi, T. Tatsuma, Remote energy storage in Ni(OH)2 with TiO2 photocatalyst. Phys. Chem. Chem. Phys.,2006),8 2716.
    [97]Kirankumar, T., Mary, W. Field evaluation of a photocatalytic oxidation technology. Water Sci.Technol.,1998,38:117-125
    [98]Bickley, R. L., Williams, G. C. Relative proportions of rutile and pseudo-brookite phases in the Fe (Ⅲ)-TiO2 system at elevated temperature. Mater. Chem. Phys.,1997,51:47-53
    [99]陶跃武,赵梦月,陈士夫,梁新.空气中有害物质的光催化去除.催化学报,1997,18:345-347
    [100]Agrios, G. A., Pichat, P. State of the art and perspectives on materials and applications of photocatalysis over TiO2. J. Appl. Electrochem.,2005,35:655-663
    [101]林明,范以宁,刘浏,许波连,胡征,陈懿.高能机械球磨法制备V205-TiO2超细微粒催化剂.催化学报,2001,22:585.
    [102]杨合,薛向欣,赵娜,左良.半导体多相光催化研究进展及应用技术明.材料与冶金学报,2003,2:16.
    [103]杨海垄.气相氢氧焰水解法生产超微细二氧化钛.中国粉体技术,2000,2:30.
    [104]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [105]宋桂明,周玉,白后善.纳米陶瓷粉体的制备技术及产业化.矿冶,2001,10(2):55-60,
    [106]Mattcazzi P., Wolf F.. Mechanomaking of nanostructured hypcrcutectic white irons:powder farication. Materials Science and Technology,1999,15(7):779-790
    [107]Mateazzi P., Le G.C.,Bauer G.E.. Mechanosynthesis of carbides and silicides. Mater. Sci. Monogr,1991.a 66 B:793-802
    [108]Calka A., Nikolov J.I.. Direct synthesis of AIN and AI-AIN composites by room temperature magneto ball. Miling:the effect of milling condition on formation of nanostructures. Nanostruct. Mater.,1995,6(1-4):409-12
    [109]Wexler D., Calka A., Mosbah A.Y.. Microstructure and properties of Ti-TiN in-situ composites prepared by reactive ball milling of Ti in a mmonia followed by hot pressing. Materials Science Forum,2000:343-346
    [110]高恩勤,张莉,杨迈之.水热法合成纳米TiO2及其在Gratzel电池中的应用.物理化学学报,2001,17(2):177-180
    [111]段学臣,高桂兰,吴湘伟.纳米二氧化钛粉末的研制.稀有金属与硬质合金,2002,30(4):17-20
    [112]牛新书,许亚杰,张学治.微乳液法制备纳米二氧化钛及其光催化活性.功能材群,2003,34(5):548-549
    [113]李晓娥,陈秀娟,张淼.醇盐水解制备纳米级二氧化钛.稀有金属材料与工程,1995,24(5):65-70
    [114]祖庸,李晓娥,卫志贤.超细TiO2的合成研究.西北大学学报(自然科学),1998,28(1):51-56
    [115]M. Keshmiri, M. Mohseni, T. Troczynski, Development of novel TiO2 sol-gel-derived composite and its photocatalytic activities for trichloroethylene oxidation, Appl.Catal. B-Environ,2004,53:209.
    [116]C.Su, B.Y.Hong, C.M.Tseng, Sol-gel preparation and photocatalysis of titanium dioxide, Catal.Today,2004,96:119.
    [117]S.C.Pillai, E Periyat, R.George, D.E.McCormack, M.K.Seery, H.Haydea, J.Colreavy, D. Corr, S.J.Hindcr, Synthesis of high-temperature stable anatase TiO2 photocatalyst, J.Phys.Chem.C, 2007,111:1605.
    [118]M.S.Lee, G D.Lee, C.S.Ju, S.S.Hong, Preparations of nanosized TiO2 in reverse microemulsion and their photocatalytic activity, Sol.Energy Mater.Sol. Cells,2005,88:389.
    [119]吴振华,离子参数对物理气相沉积薄膜微结构的影响,电工电能新技术,1994,4:10.
    [120]柳襄怀,杨根庆,王曦等,离子束增强沉积形成梯度薄膜,材料研究学报,1994,8(1):61.
    [121]Z.Tokei, F.Iacopi, O.Richard, et al., Barrier studies on porous silk semiconductor dielectric, Microelection Eng.,2003,70(2-4):352.
    [122]J.M.Correia-Pires, J.B.Almeida, V Teixeira, Gas-sensitive response of SnO2 thin-film sensors produced by reactive DC magnetron sputtering, Key Eng. Mater.,2002,230:388.
    [123]宋继鑫.国外光学薄膜的应用和真空镀膜工艺.光学技术,1994,1:32.38.
    [124]Bendavid A, Martin P J, Takikawa H. Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films,2000,360(1-2):241-249.
    [125]Zhenga S K, Xiangb G, Wanga T M, et al. Photocatalytic activity studies of TiO2 thin Films prepared by r.f magnetron reactive sputtering. Vacuum,2004,72:79-84.
    [126]Zeman P, Takabayashi S. Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate. Surface and Coatings Technology, 2002,153:93-99.
    [127]陈洪龄,王延儒,时钧,单分散超细二氧化钛颗粒的制备及粒径控制,物理化学学报,2001,17(8):713.
    [128]仇雁翎,赵建夫,李田,朱志良,热处理温度对TiO2光催化膜性能的影响,同济大学学报(自然群学版),2008,36(6):764.
    [129]H.J.Lee, S.H.Hahn, E.J.Kim, ct al., Influence of calcination temperature on structural and optical properties of TiO2-SiO2 thin films prepared by sol-gel dip coating, J.Mater.Sci.,2004, 39(11):3683.
    [130]王鹤峰,李秀燕,张洪涛,不锈钢基底上TiO2薄膜的制备和结构分析,太原理工大学学报,2008,39(1):17.
    [131]Gauthier V Bourgeois S, Sibillot P, et al. Growth and characterization of AP-MOCVD iron doped titanium dioxide thin films. Thin solid films,1999,340(1-2):175-182.
    [132]Sun Hongfu, Wang Chengyu, Pang Shihong et al. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. Journal of Non-Crystalline Solids,2008, 354:1440-1443.
    [133]Halary-Wagner E, Bret T, Hoffmann P. Light. induced chemical vapour deposition painting with titanium dioxide. Applied Surface Science,2003,208-209:663-668.
    [134]Nilson C. da Cruz, Elidiane C. Rangel, Manfredo H. Tabacknics, et al. The effect of ion bombardment on the properties of TiOx films deposited by a modified ion. assisted PECVD technique. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2001,175-177:721-725.
    [135]Battiston G A, Gerbasi R, Gregori A, et al. PECVD of amorphous TiO2 thin films:Effect of growth temperature and plasma gas composition. Thin Solid Films,2000.371(1-2):126-131.
    [136]Tyen R, Weber A, K. lages C P. Plasma-enhanced chemical. vapour-depositon of thin film by corona discharge at atmospheric pressure. Surface and Coatings Technology,1997,97: 426-434.
    [137]林君,庞茂林,韩银花等,溶胶-凝胶工艺制备发光薄膜研究进展,无机化学学报,2001,17(2):153.
    [138]于向阳,程继健,杜永娟,Ti02光催化薄膜的制备法,玻璃与搪瓷,2001,29:37.
    [139]郭建辉,杨建军,李庆霖等,纳米薄膜光催化剂的制备与表面态研究,化学研究,2003,14(2):13.
    [140]K. Jamting. J. M. Bell, M. V Swain, L. S. Wielunski, R. Clissold, Measurement of the micro mechanical properties of sol-gel TiO2 films, Thin Solid Films,1998,332:189.
    [141]T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass, J. Sol-Gel. Sci. Technol.,2000,19:71.
    [142]M. J. Alam, D. C. Cameron, Preparation and characterization of TiO2 thin films by sol-gel method, J. Sol-Gel. Sci. Technol.,2002,25:137.
    [143]Harizanov O, Harizanova A. Development and investigation of sol-gel solutions for the formation of TiO2 coatings. Sol. Energy Mater. Sol. Cells,2000,63:185-195.
    [144]Schmidt H, KaiserA, Rudolph M, et al. Science ofcemmic chemical process. Wiley,1986,20: 85-87.
    [145]孙志华,刘明辉,应用电沉积方法制备纳米多层膜的研究现状,腐蚀与防护,2002,23:114.
    [146]王震林,王太宏,基于阳极氧化法的纳米结构加工和纳米器件的制备,微电子技术,2001,29:17.
    [147]V Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic medi4 an electrochemical approach, Electrochim. Acta,1999,45:921.
    [148]刘惠玲,周定,李湘中,余秉涛,网状Ti/Ti02电极光电催化氧化若丹B,环境科学,2002,23:47.
    [149]D. Gong, C. A. Grimes, O. K. Varghese, W Hu, R. S. Singh, Z. Chert,E. C. Dickey, Titanium oxide nanotubc arrays prepared by anodic oxidation, J. Mater. Res.,2001,16:3331.
    [150]J. M. Macak, H. Tsuchiya, P Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed.,2005,44:2100.
    [151]邱建斌,曹亚安,马颖,管自生,姚建年,担载材料对Ti02薄膜光催化性的影响,物 理化学学报,2000,16:1.
    [152]Y V. Kolen'ko, V D. Maximov, A. V Garshev, et al., Hydrothermal synthesis of nanocrystalline and mesoporous titania from aqueous complex titanyl oxalate acid solutions, Chem. Phys. Lett.,2004,388(4-6):411.
    [153]Z. Y Yuan, X.B.Zhang, B. L.Su, Moderate hydrothermal synthesis of potassium titanate Nanowires, Appl.Phys. A-Mater.,2004,78(7):1063.
    [154]S.Uchida,R. Chiba, M.Tomiha, et al., Application of titania nanotubes to a dye, sensitized solar cell, Electrochemistry,2002,70(6):418.
    [155]黄晖,罗宏杰,姚熹.水热法制备Ti02薄膜的研究.物理学报,2002,51(8):1881-1886.
    [156]Chen Q W, Qian Y T, Chen Z Y et al. Hydrothermal Epitaxy of Highly Oriented TiO2 Thin Films on Silicon. Appl. Phys. Lett.,1995,66:1608-1610.
    [157]Lang F F. Chemical Solution Routes to Single-Crystal Thin Films.Science,1996,273: 903-909.
    [158]Chien A T, Speck J S, Lange F F et al. Low temperature/low pressure hydrothermal synthesis of barium titanate:Powder and heteroepitaxial thin films. J.Mater.Res.1995,10, 1784-1789.
    [159]周磊,刘昌,赵文宽,胡翎,方佑龄,液相沉积法制备光催化活性掺铁Ti02薄膜,催化学报,2003,24:359.
    [160]王晓平,于云,高濂,胡行方,Ti02薄膜的液相沉积法制备及其性能表征,无机材料学报,2000,15:573.
    [161]H.Nagayarna, H.Honda, H.Kawahara, J.Electrochem Soc.,1988,135(8):2013.
    [162]H.Yu, S.C.Lee, J.Yu, C.H.Ao, Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers, J.Mol.Catal. A-Chem.,2006,246:206.
    [163]Nagayama H, Honda H, Kawahara H. Preparation of multilayer thin film by LPD method and its catalytic response to visible light.. Materials Letters,1998,135(8):2013-2016.
    [164]T.H.Kim, B.H.Sohn, Photocatalytic thin films containing TiO2 nanoparticles by the layer-by-layer self-assembling method, Appl. Surf. Sci.,2002,201:109.
    [165]J.Jin, L.S.Li, Y.Li, X.Chert, L.Jiang, Y.Y.Zhao, T.J.Li, Preparation of titanium dioxide and barium titanate nanothick fill by Langmuir-Blodgett technique, Thin Solid Films,2000,379: 218.
    [166]郝维昌,潘锋,王天民,郑树凯,Ti02/PSS自组装薄膜的光催化性能,稀有金属材料与工程,2004,33:63.
    [167]Sopyan, M.Watanabe, S.Murasawa, K.Hashimoto, A.Fujishima, A film-type photocatalyst incorporating highly active TiO2 power and fluororesin binder:photocatalytic activity and long-term stability, J.Eleetroanal.Chem.,1996,415:183.
    [168]潘永强,朱昌,弥谦,宋俊杰.电子束蒸发Ti02薄膜的光学特性.应用光学,2004,25(5):52-55.
    [169]Wan L, Li J F, Feng J Y, et al. Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation. Materials Science and Engineering B,2007,139:216-220.
    [170]B.O"Regan, M.Griitzel. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740P
    [171]U.Bach, D.Lupo, E Comte, ct al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies. Nature,1998,395:583-585P
    [1]周绍民等编著.金属电沉积-原理与研究方法.上海,上海科学技术出版社,1987
    [2]D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J-C. Jumas, J-M. Tarascon. Recent findings and prospects in the fields of pure metals as negative electrodes for Li-ion batteries. J Mater Chem.2007,17:3759-3772.
    [3]常铁军,祁欣,材料近代分析测试方法,哈尔滨工业大学出版社,哈尔滨,1999.
    [1]Chen H, Wang J M, Pan T, et al. The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries [J]. J. Power Sources,2005, 143(1-2):243-255.
    [2]Kamath P V, Dixit M, INDIRA L. Stabilized Ni(OH)2 as electrode material for alkaline secondary cells [J].J. Electrochem. Soc,1994,141(11):2956-2959.
    [3]Yang L J, Gao X P, Wu QD, et al. Phase Distribution and Electrochemical Properties of Al-Substituted Nickel Hydroxides [J], J. Phys. Chem. C,2007,111(12):4614-4619.
    [4]Chen H, Wang J M, Zhao Y L, et al. Electrochemical performance of Zn-substituted Ni(OH)2 for alkaline rechargeable batteries[J]. J Solid State Electrochem,2005,9(6):421-428.
    [5]Demourgues-Guerlou L, Delmas C. Effect of iron on the electrochemical properties of the nickel hydroxide [J].J. Electrochem. Soc,1994,141(3):713-717.
    [6]Demourgues-Guerlou L, Delmas C. Structure and properties of precipitated nickel hydroxides [J]. J. Power Sources,1993,45(3):281-289.
    [7]Demourgues-Guerlou L, Delmas C. New manganese-substituted nickel hydroxides-Part 1. Crystal chemistry and physical characterization [J]. J. Power Sources,1994,52(3):269-274.
    [8]Jayalakshmi M, Venugopal N, et al. Optimum conditions to prepare high yield, phase pure α-Ni(OH)2 nanoparticles by urea hydrolysis and electrochemical ageing in alkali solutions [J]. J. Power Sources,2005,150(3):272-275.
    [9]Pan T, Wang J M, Zhao Y L, et al. Al-stabilized α-nickel hydroxide prepared by electrochemical impregnation [J]. Mater.Chem.Phys.,2003,78(3):711-718.
    [10]Zhao Y L, Wang J M, Chen H, et al. Different additives-substituted α-nickel hydroxide prepared by urea decomposition. Electrochim. Acta,2004,50(1):91-98.
    [11]Dixit M, Subbanna Gonur N, Kamath P V. Homogeneous precipitaion from solution by urea hydrolysis:a novel chemical route to the α-hydroxides of nickel and cobalt [J]. J. Mater. Chem.,1996,6(8):1429-1432.
    [1]H. Gerischcr, Z. Phys. Chem.26 (1960) 325.
    [2]M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis,1995, Chem. Rew.95:69-96.
    [3]J. Yu, J.C. Yu, M.K..P. Leung, W. Ho, Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania,2003, J. Catal. 217:69-78.
    [4]X. Wang, W. Lian, X. Fu, J.M. Basset, F. Lefebvre, Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface,2006, J. Catal.238:13-20.
    [5]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor,1972,Nature 238:37.
    [6]S. Lieht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,2001,Int. J. Hydrog. Energy 26:653-659.
    [7]M. Kaneko, H. Ueno, R. Saito, J. Nemoto, Catal. Lett.131 (2009) 184.
    [8]S.F. Chen, W. Zhao, W. Liu, S.J. Zhang, Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2,2008, Appl. Surf. Sci.255:2478-2484.
    [9]X.F. Cheng, W.H. Leng, D.P. Liu, Y.M. Xu, J.Q. Zhang, C.N. Cao, Electrochemical Preparation and Characterization of Surface-Fluorinated TiO2 Nanoporous Film and Its Enhanced Photoelectrochemical and Photocatalytic Properties,2008, J. Phys. Chem. C 112:8725-8734.
    [10]L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase,1996, J. Am. Chem. Soc.118: 6716-6723.
    [11]A.L. Linsebigler, G. Lu, J.T. Jr. Yates, Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results,1995,Chem. Rev.95:735-758.
    [12]A.I. Hochbaum, P.D. Yang, Semiconductor Nanowires for Energy Conversion,2010, Chem. Rev.110:527-546.
    [13]H. Park, K.Y. Kim, W.Y. Choi, Photoelectrochemical Approach for Metal Corrosion Prevention Using a Semiconductor Photoanode,2002, J. Phys. Chem. B.106:4775-4781.
    [14]T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, TiO2-WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability,2001, Chem. Mater.13:2838-2842.
    [15]T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Energy Storage of TiO2-WO3 Photocatalysis Systems in the Gas Phase,2002,Langmuir 18:7777-7779.
    [16]P. Ngaotrakanwiwat, T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima, Charge-discharge behavior of TiO2-WO3 photocatalysis systems with energy storage ability,2003, Phys. Chem. Chem. Phys.5:3234-3237.
    [17]Y. Takahashi, P. Ngaotrakanwiwat, T. Tatsuma, Energy storage TiO2-MoO3 photocatalysts, 2004,Electrochim. Acta,49:2025-2029.
    [18]Y. Takahashi, T. Tatsuma, Oxidative Energy Storage Ability of a TiO2-Ni(OH)2 Bilayer Photocatalyst, Langmuir,2005,21:12357-12361.
    [19]R. Kostecki, T. Richardson, F. McLarnon, Photochemical and Photoelectro- chemical Behavior of a Novel TiO2/Ni(OH)2 Electrode J. Electrochem. Soc.,1988,145:2380-2385.
    [20]Y.Takahashi,T.Tatsuma,Remote energy storage in Ni(OH)2 with TiO2 photocatalyst Phys. Chem. Chem. Phys.,2006,8:2716-2719.
    [21]W.K. Zhang, L. Wang, H. Huang, Y.P. Gan, C.T. Wang, X.Y. Tao, Light energy storage and photoclectrochemical behavior of the titanate nanotube array/Ni(OH)2 electrode, Electrochim. Acta,2009,54:4760-4763.
    [22]H. Chen, J.M. Wang, T. Pan, Y.L. Zhao, J.Q. Zhang, C.N. Cao, The structure and electrochemical performance of spherical Al-substituted α-Ni(OH)2 for alkaline rechargeable batteries,J. Power Sources,2005,143:243-255.
    [23]Y.L. Zhao, J.M. Wang, H. Chen, T. Pan, J.Q. Zhang, C.N. Cao, Different additives-substituted a-nickel hydroxide prepared by urea decomposition, Electrochim. Acta,2004,50:91-98.
    [24]X.Z. Fu, Y.J. Zhu, Q.C. Xu, J. Li, Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2,Solid,State Ion.,2007,178:987-993.
    [25]D.A. Corrigan, R.M. Bendert, Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films:Cyclic Voltammetry in 1M KOH, J. Electrochem. Soc.1989, 136:723-728.
    [26]C.N. Su, M.Z. An, P.X. Yang, H.W. Gu, X.H. Guo, Electrochemical behavior of cobalt from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid, Appl. Surf. Sci.,2010, 256:4888-4893.
    [27]H.C. Shin, J. Dong, M.L. Liu, Nanoporous Structures Prepared by an Electrochemical Deposition Process,Adv. Mater.,2003,15:1610-1614.
    [28]M.S. Wu, Y.A. Huang, J.J. Jow, W.D. Yang, C.Y. Hsieh, H.M. Tsai, Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances, Int.J.Hydrog.Energy,2008,33:2921-2926.
    [29]C.X. Xiang, Y.GYang, R.M. Penner, Cheating the diffraction limit:electrodeposited nanowires patterned by photolithography, Chem. Commun.,2009,8:859-873.
    [30]L.L. Lu, G.P. Yin, Y.J., Electrochemical behaviors of dimethyl ether on platinum single crystal electrodes. Part Ⅱ:Pt(100), J. Electroanal. Chem.,2010,642:82-91.
    [31]H.J. Wang, J.M. Wang, W.B. Fang, H., Structural and electrochemical properties of a porous nanostructured SnO2 film electrode for lithium-ion batteries, Electrochem. Commun., 2010,12:194-197.
    [32]U. Kasavajjula, C.S. Wang, A.J. Appleby, Nano-and bulk- silicon -based insertion anodes for lithium-ion secondary cells, J. Power Sources,2007,163:1003-1039.
    [33]S.F. Chen, S.J. Zhang, W. Liu, W. Zhao, Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2,J. Hazard. Mater.,2008,155:320-326.
    [34]W. Liu, S.F. Chen, S.J. Zhang, W. Zhao, H.Y. Zhang, X.L. Yu, J. Nanopart. Res.12 (2010) 1355.
    [1]Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38
    [2]Carey, J. H., Lawrence, J., Tosine, H. M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension. Bull. Environ. Contam. Toxicol.,1976,16:697-701
    [3]Frank, S. N., Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. J. Am. Chem. Soc.,1977,99:303-304
    [4]Frank, S. N., Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at semiconductor powders. J. Phys. Chem.,1977,81:1484-1488
    [5]Vinodgopal, K., Hotchandani, S., Kamat, P. V. Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J. Phys. Chem.,1993,97:9040-9044.
    [6]Kim, D. H., Anderson, M. A. Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ Sci Technol.,1994,28:479-483
    [7]Vinodgopal, K., Stafford, U., Gray, K. A., Kamat, P. V. Electrochemically assisted photocatalysis.2. The role of oxygen and reaction intermediates in the degradation of 4-Chlorophenol on immobilized TiO2 particulate films. J. Phys Chem.,1994,98:6797-6803
    [8]K. Jamting. J. M. Bell, M. V Swain, L. S. Wielunski, R. Clissold, Measurement of the micro mechanical properties of sol-gel TiO2 films, Thin Solid Films,1998,332:189.
    [9]T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima, K. Hashimoto, Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass, J. Sol-Gel. Sci. Technol.,2000,19:71.
    [10]M. J. Alam, D. C. Cameron, Preparation and characterization of TiO2 thin films by sol-gel method, J.Sol-Gel.Sci. Technol.,2002,25:137.
    [11]姜月顺,杨文胜.化学中的电子过程,2004,P57,科学出版社,
    [12]R.R.Hautala,J.Little,E.Sweet.The use of functionalized polymers as photosensitizers in an energy storage reaction.Solar Energy,1977,19,503.
    [13]Martin, S. T., Herrmann, H., Choi, W., Hoffmann, M. R. Time-resolved microwave conductivity. Trans. Faraday Soc.,1994,90:3323-3330
    [14]Mills, G., Hoffmann, M. R. Photocatalytic degradation of pentachlorophenol on titanium dioxide particles:identification of intermediates and mechanism of reaction. Environ. Sci. Technol.,1993,27:1681-1689.
    [15]李新勇,李树本.纳米半导体研究进展.化学进展,1996,8:231-240
    [16]Salvador, P., Gonzalez, M. L., Manoz, F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (Ⅳ) oxide rutile. J Phys. Chem.,1992,96: 10349-10353
    [1]Tan YW, Srinivasan S, Choi KS. Electrochemical deposition of mesoporous nickel hydroxide films from dilute surfactant solutions. J Am Chem Soc.2005; 127(10):3596-604.
    [2]Pang H, Lu QY, Li YC, Gao F. Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem Commun.2009; 48:7542-44.
    [3]Chen H, Wang JM, Pan T, Zhao YL, Zhang JQ, Cao CN. The structure and electrochemical performance of spherical Al-substituted alpha-Ni(OH)2 for alkaline rechargeable batteries. J Power Sources.2005; 143(1-2):243-55.
    [4]Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN. Al-substituted alpha-nickel hydroxide prepared by homogeneous precipitation method with urea. Int J Hydrogen Energy.2004; 29(8):889-96.
    [5]Wu MS, Wang MJ. Electrochemical preparation of highly regulated nickel oxide nanoflakes on carbon nanofiber for electrochemical capacitor. Electrochem Solid State Lett.2010; 13(1): Al-3.
    [6]Zhao DD, Zhou WJ, Li HL. Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films. Chem Mater.2007; 19(16):3882-91.
    [7]Wu MY, Wang JM, Zhang JQ, Cao CN. Effects of coprecipitated manganese on the structure and electrochemical performance of Al-substituted alpha-nickel hydroxide. J Solid State Electrochem,2006; 10(6):411-15.
    [8]Kostecki R, Richardson T, McLarnon D. Photochemical and photoelectrochemical behavior of a novel TiO2/Ni(OH)2 electrode. J Electrochem Soc,1998; 145(7):2380-85.
    [9]Takahashi Y, Tatsuma T. Remote energy storage in Ni(OH)2 with TiO2 photocatalyst. Phys Chem Chem Phys 2006; 8(23):2716-19.
    [10]Huang W, Zheng JF, Li ZL. New oscillatory electrocatalytic oxidation of amino compounds on a nanoporous film electrode of electrodeposited nickel hydroxide nanoflakes. J Phys Chem C,2007; 111(45):16902-08.
    [11]Shangguan EB, Chang ZR, Tang HW, Yuan XZ, Wang HJ. Preparation of nickel oxyhydroxide by a new electrolysis method using spherical beta-Ni(OH)2. Int J Hydrogen Energy 2010; 35(8):3214-20.
    [12]Takahashi Y, Tatsuma T. Oxidative energy storage ability of a TiO2/Ni(OH)2 bilayer photocatalyst. Langmuir,2005; 21(26):12357-61.
    [13]Pan JQ, Sun YZ, Wang ZH, Wan PY, Yang YS, Fan MH. Nano-NiOOH prepared by splitting method as super high-speed charge/discharge cathode material for rechargeable alkaline batteries. J Power Sources,2009; 188(1):308-12.
    [14]Fu XZ, Zhu YJ, Xu QC, Li J, Pan JH, Xu JQ, Lin JD, Liao DW. Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2. Solid State Ionics,2007; 178(13-14):987-93.
    [15]Bemier E, Hamelin J, Agbossou K, Bose TK. Electric round-trip efficiency of hydrogen and oxygen-based energy storage. Int J Hydrogen Energy,2005; 30(2):105-11.
    [16]Corrigan DA, Bendert RM. Effect of coprecipitated metal-ions on the electrochemistry of nickel-hydroxide thin-films-cyclic voltammetry in 1 M KOH. J Electrochem Soc 1989; 136(3):723-28.
    [17]Park H, Kim KY, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J Phys Chem B 2002; 106(18):4775-81.
    [18]Kaneko M, Ueno H, Saito R, Nemoto J. Highly efficient photoelectrocatalytic decomposition of biomass compounds using a nanoporous semiconductor photoanode and an 02-reducing cathode with quantum efficiency over 100. Catal Lett,2009; 131(1-2):184-8.
    [19]Wu MS, Huang YA, Jow JJ, Yang WD, Hsieh CY, Tsai HM. Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances. Int J Hydrogen Energy,2008; 33(12):2921-6.
    [20]Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN. Different additives-substituted alpha-nickel hydroxide prepared by urea decomposition. Electrochim. Acta,2004; 50(1): 91-8.
    [21]Saito R, Ueno H, Nemoto J, Fujii Y, Izuoka A, Kaneko M. Photoelectrochemical conversion of NO3- to N2 by using a photoelectrochemical cell composed of a nanoporous TiO2 film photoanode and an 02 reducing cathode. Chem Commun,2009; 22:3231-3.
    [22]Barnard R, Randell CF, Tye FL. Studies concerning charged nickel-hydroxides 2. Thermodynamic considerations of the reversible potentials. J Appl Electrochem,1980; 10(1): 127-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700