用户名: 密码: 验证码:
卫星星座协同优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对全球性资源探测、天基预警、导航和无线通信等服务的需求日益增长,推动了卫星星座系统设计方法的快速发展。卫星星座系统设计是一个典型的大规模、高度约束、多目标和多学科的优化设计问题,协同优化方法之前已成功地求解过此类设计问题。协同优化法的分布式分析结构可以有效提高卫星星座系统的设计质量,降低卫星星座设计与部署总的成本,对于设计可负担的卫星星座系统具有非常重要的现实意义。为了将协同优化方法用于卫星星座设计,提高设计效率和降低计算复杂度,本文在系统研究卫星星座设计理论的基础上,建立了一个基于改进的协同优化方法的卫星星座设计框架。
     此改进的设计框架包含以下内容:
     首先,指出了卫星星座传统设计方法和现有优化设计方法的局限性,针对原始构型的选择提出了基于分类与回归树(CART, Classification And Regression Tree)算法的卫星星座原始构型选择策略,将星座原始构型选择空间从满足约束条件的全空间缩小到一个包含少于8个稳定的星座原始构型的小空间。在此策略的基础上,结合卫星星座构型三种典型设计方法的优点提出了层次递进的星座构型设计方法。利用此方法设计了一个区域导航卫星星座的构型,并用数值仿真验证了与现有星座构型设计方法相比层次递进的星座构型设计方法计算效率高,设计的星座能够长期保持稳定的构型。
     其次,针对NSGA-Ⅱ (Non-dominated Sorting in Genetic Algorithms Ⅱ)的计算复杂度高的缺点,改进了其非支配排序算法。改进后的NSGA-Ⅱ其计算复杂度为O(MNlogN),远小于原NSGA-Ⅱ的O(MN2),降低了原算法的计算量。改进的NSGA-Ⅱ算法被用于卫星星座协同优化设计的子学科性能分析中,提高了卫星星座协同优化设计的计算效率。
     最后,针对卫星星座设计涉及学科多,卫星星座协同优化法设计系统级迭代计算次数多,而且每次迭代计算开销大的缺陷,提出了一种基于比例、积分和微分(PID, Proportion Integration Differentiation)控制的卫星星座协同优化设计法。数值仿真验证了该方法与原协同优化法达到了相同的设计结果,但子学科耦合变量本地值与系统级对应耦合变量的目标值之间差值的下降速度加快,系统级迭代的次数减少33.3%,计算量明显下降。
     结果表明,本文在卫星星座系统设计的多个环节所进行的改进,形成了一套灵活高效的卫星星座协同优化设计框架,促进了卫星星座系统设计的模块化。另外,此设计框架在系统级是以星座系统设计和部署总成本为优化目标,为设计最小成本卫星星座系统奠定了良好的基础。
The growing demand of the global resource exploration, space-based early warning, navigation and wireless communications services promote the rapid development of the satellite constellation system design method. The design of satellite constellation system is a typical large-scale, highly constrained, multi-objective and multidisciplinary optimization design problems. Collaborative optimization method has succeeded to solve such design problems. The distributed analysis architecture of Collaborative optimization method can effectively improve the quality of the satellite constellation system design and reduce the total cost of the design and deployment of satellite constellation, which has the very important practical significance for the design of satellite constellation system that can be afforded. In order to improve the efficiency of satellite constellation design and reduce the computation complexity of collaborative optimization method for satellite constellation design, a satellite constellation design framework based on the improved collaborative optimization method is built after having investigated the satellite constellation design theory systematically.
     This improved design framework contains the following details:
     Firstly, the limitations of the traditional design method and the current optimization design method are pointed out. The strategy for original configuration selection of satellite constellation based on CART (Classification And Regression Tree) algorithm is put forward to overcome these limitations. With this strategy the selection space of original configuration selection is reduced the total space to a small space which contains less than eight stable constellation original configuration. Based on this strategy, the layer progressive design method is put forward after the strengths of three typical design methods of satellite constellation configuration are combined. With this method a configuration of regional navigation satellite constellation is designed. Compared with the existing configuration design methods of satellite constellation by Numerical simulation, the layer progressive design method has high computational efficiency and the long term stability constellation configuration can keep stable for a long time.
     Secondly, Non-dominated sorting algorithm of NSGA-II (Non-dominated Sorting in Genetic Algorithms II) is improved for the shortcomings of high computation complexity. The computation complexity of improved NSGA-II is O(MNlogN) which is far less than the original NSGA-II's O(MN2), so the calculated quantity of NSGA-II is reduced. Improved NSGA-Ⅱ algorithm is used in the sub-discipline performance analysis of satellite constellation collaborative optimization design by Numerical simulation, and the calculation efficiency of satellite constellation collaborative optimization design is improved.
     Thirdly, Satellite constellation design involves many disciplines, and there are many times of system iterative computations during the period of satellite constellation collaborative optimization design. Furthermore, each iterative computation takes high computation overhead. For these reasons, an improved collaborative optimization method based on PID (Proportion Integration Differentiation) control is put forward. Compared with the original collaborative optimization method, the same design results are obtained by the improved collaborative optimization method, but the difference between the local value of discipline coupling variable and the target value of discipline coupling variable decreased more quickly so that with the improved collaborative optimization method the number of system-level iterations decreased by33.3percent. The calculated quantity is reduced significantly.
     The results showed that improvements in numerous aspects of the satellite constellation system design constitute a flexible and efficient collaborative optimization framework for satellite constellation design which promotes the modular design of satellite constellation system. Moreover, the total cost is the system-level Optimization Goal in the improved framework which lays a good foundation for the design of minimum cost satellite constellation system.
引文
[1]Louis J. Ippolito, Jr.. Satellite Communications Systems Engineering[M]. Chichester:JohnWiley & Sons Ltd.2008:2-3.
    [2]Budianto I.A.,Olds JR. Design and deployment of satellite constellation using collaborative optimization[J]. Journal of Spacecraft and Rockets,2004,41(06): 956-963.
    [3]A. C. Clarke.Extra-terrestrial Relays[J].Wireless World.1945(08):305-308.
    [4]Thomas A. Stansell, Jr.. The Navy Navigation Satellite System:Description and Status[J]. Navigation.1968,Vol.15(03):229-243.
    [5]Klein W.D., Mandt G.A. & Gagliardo J..Defense Meteorological Satellite Program[C]. The 6th Conference on Satellite Meteorology and Oceanography, Atlanta, US, Jan.5-10,1992:450-452.
    [6]William E.B.. Deep Black:Space Espionage and National Security[M]. New York: Berkley Publishing Group.1988:p187.
    [7]Snowball A. E..Global maritime mobile service via satellite-The INMARSAT system now and in the future[J]e. Telecommunication Journal. Geneva:ITU, 1986,Vol.53(06):331-335
    [8]Hudson E.C.. The Milstar payloads[C].15th AIAA International Communi-cations Satellite Systems Conference. San Diego, US.27 Feb.-3 Mar.1994:1-8
    [9]http://www.fas.org/spp/military/program/warning/dsp.htm
    [10]Andreas N.S..Space-Based Infrared System (SBIRS) system of systems. Aerospace Conference,1997. Proceedings. IEEE. Los Angeles,US.1-8 Feb.,1997, vol.4:429-438.
    [11]吴勤.俄罗斯军用卫星发展现状[J].国际太空,2009,01:21-29.
    [12]Hofmann Wellenhof B., Lichtenegger H. & Collins J..Global Positioning System: Theory and practice[M]. Wien:Springer,1993.
    [13]Richard B. Langley.GLONASS:review and update. GPS World,1997(08):46-51.
    [14]孙家栋.北斗卫星导航系统发展之路[J].太空探索,2010,07:30-32.
    [15]Silber Kenneth. U.S. Lacks Clear Vision for Its Eyes in the Sky [J]. Insight on the News.28 Nov.,1994, Vol.10, No.48.
    [16]Kenneth W. Barker. Airborne and Space-Based Lasers:An Analysis of Technological and Operational Compatibility[R]. Center for Strategy and Technology Occasional paper A925524, Air University, US, June 1999, No.9.
    [17]Tollefson M. V., Preiss B. K.. Space Based Radar Constellation Optimization. 1998 IEEE Aerospace Conference Proceedings. Snowmass at Aspen, US.21 Mar.-28 Mar.,1998, vol.3:379-388.
    [18]Pierce J. R.. Orbital Radio Relays[J]. Jet Propulsion.1955, vol.25(04):153-157.
    [19]Office of Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC).2005 Commercial Space Transportation Forecasts[R]. Washington D. C, May 2005:p3.
    [20]王礼恒,闵桂荣,王彦广.卫星应用技术及其产业化进展[J].卫星应用.2007(02):8-17.
    [21]Mosher T. J.. Improving Spacecraft Design Using a Multidisciplinary Design Optimization Methodology[D]. Boulder:University of Colorado, April 2000.
    [22]吴伟仁.军工制造业数字化(第二版)[M].北京:原子能出版社.2007.
    [23]范丽.卫星星座一体化优化设计方法研究[D].长沙:国防科技大学,2006.
    [24]Luders R.D. Satellite Networks for Continuous Zonal Coverage [J].America Rocket Society Journal,1961, vol.31 (2):179-184.
    [25]Rider L. Optimized Polar Orbit Constellation for Redundant Earth Coverage [J]. Journal of Astronautical Science,1985, vol.33:147-161.
    [26]ADAMS W S, RIDER L. Circular Polar Constellations Providing Continuous Single or Multiple Coverage Above a Specified Latitude[J]. Journal of the Astronautical Sciences,1987,35(2):155-192.
    [27]J.G. Walker. Continuous Whole-Earth Coverage by Circular-Orbit Satellite Patterns [R]. Technical Report 77044:Royal Aircraft Establishment,1977.
    [28]Walker J. Satellite Constellations [C].International Conference on Maritime and Aeronautical Satellite Communication and Navigation, London, England, Mar. 1978:119-122.
    [29]Walker J. Satellite Constellations [J] Journal of the British Interplanetary Society, 1984, vol.37 (12):559-571.
    [30]Ballard A. H.Rosette Constellation of Earth Satellites [J].IEEE Transactions on Aerospace and Electronic Systems,1980,16(5):656-673.
    [31]Draim J. E. Three-and Four-Satellite Continuous Coverage Constellations [J]. Journal of Guidance* Control and Dynamics, 1985, vol.8 (6):725-730.
    [32]Draim J. Elliptical-Orbit MEO Constellations:A Cost-Effective Approach for Multi-Satellite Systems[J]. Space Technology,1996,16(1):21-29.
    [33]Cefola P., Carter D., Draim J. E., et al. Demonstration of the COBRA Teardrop Concept Using Two Smallsats in 8-Hour Orbits[C].15th Annual AIAA/USU Conference on Small Satellites, Logan, Utah,2001.
    [34]Inciardi R., Cefola P., Carter D., et al. Beyond GEO—Using Elliptical Orbit Constellations to Multiply the Space Real Estate[C].52nd International Astronautical Congress, Toulouse, France,2001.
    [35]Castiel D., Draim J. E.The Ellipso(TM) Mobile Satellite System[C]. Proeeedings of the Fourth International Mobile Satellite Conference, Ottawa, CAN, June 6-8, 1995:409-418.
    [36]Hu Xiulin,Zeng Yujiang,Wang Ying,et al.Study of mobile satellite network based on GEO/LEO satellite constellation[C]. In Proceedings of SPIE:The First International Conference on Space Information Technology,Wuhan,CHN,2005, vol.5985:73-83.
    [37]Mortari D., Wilkins M. P. and Bruccoleri C.The Flower Constellations [J]. Journal of the Astronautical Sciences,2004, vol.52 (1):107-127.
    [38]Mortari D., M. P. Wilkins.The Flower Constellation Set Theory Part Ⅰ: Compatibility and Phasing [J].IEEE Transactions on Aerospace and Electronic Systems,2008, vol.44(3):953-963.
    [39]Avendano M., Mortari D.Rotating Symmetries in Space-The Flower Constellations [C]. Proceedings of the 2009 Space Flight Mechanics Meeting Conference, Savannah, GA, Feb.2009:1315-1332.
    [40]Frayssinhes E.Investigating New Satellites Constellations Geometries with Genetie Algorithms [C].AIAA Paper 96-3636, Proceedings of the AAIA/AAS Specialist Conference, SanDiego, CA,29-31 Jul.,1996:582-588.
    [41]George E.Optimization of Satellite Constellations for Discontinuous Global Coverage via Genetic Algorithms [J]. Advances in the Astronautical Sciences,1997, 97(8):333-346.
    [42]Mason W. J., Coverstone-Carroll Victoria,Hartmann J. W.Optimal Earth Orbiting Satellite Constellations via a Pareto Genetie Algorithim[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Boston,MA,1998:169-177.
    [43]Crossley W. A., Williams E. A., Lang T. J.Average and Maximum Revisit Time Trade Studies for Satellite Constellations Using a Multi-Objective Genetic Algorithm[J]Journal of the Astronautical Sciences,2001,49(3):385-400.
    [44]David B. S., Matthew P. F.Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation[J] Journal of Spacecraft and Rockets,2006,43(6):1404-1411.
    [45]Crossley W. A., William E. A. Simulated Annealing and Genetic Algorithim Approaches for Discontinuous Coverage Satellite Constellation Design[J]. Engineering Optimization,2000, vol.32(3):353-371.
    [46]Enguerran Grandchamp,Vincent Charvillat. Meta-heuristics to Design Satellite Constellation[C].4th Metaheuristics International Conference. Porto, Portugal, 2001:505-510.
    [47]王瑞,马兴瑞,李明.卫星星座优化设计的分布式遗传算法[J].中国空间科学技术,2003(1):38-43.
    [48]阎志伟,田菁,李汉铃.基于改进的NSGA-II算法的区域覆盖卫星星座优化[J].空间科学学报,2004,24(1):43-50.
    [49]郦苏丹,朱江,李广侠.采用遗传算法的低轨区域通信星座优化设计[J].通信学报,2005,26(8):122-128.
    [50]魏蛟龙,岑朝辉.基于蚁群算法的区域覆盖卫星星座优化设计[J].通信学报,2006,27(8):62-66.
    [51]蒙波,伊成俊,韩潮.基于多目标粒子群算法的导航星座优化设计[J].航空学报,2009,30(7):1284-1291.
    [52]E. Herraiz Monseco,A. Mozo Garcia,M. M. Romay Merino.ELCANO: Constellation Design Tool[C]. Proceedings of the IAIN World Congress and the 56th Annual Meeting of The Institute of Navigation, San Diego, CA,26-28 Jun., 2000:140-150.
    [53]Stefama Cornara, Theresa W. Beech, Miguel Bello-Mora.Satellite Constellation Mission Analysis and Design[J]. Acta Astronautic,2001,Vol.48:681-691.
    [54]Lansard E., Frayssinhes E., Palmade J.. Global Design of Satellite Constellations: A Multi-criteria Performance Comparison of Classical Walker Patterns and New Design Patterns[J]. Acta Astronautics,1998,vol.42(09):555-564.
    [55]Sobieszczanski-Sobieski, J. A linear decomposition method for large optimization problems-Blueprint for development[G], NASA Technique Memorandum 83248, 1982.
    [56]Berkes U. L.Efficient Optimization of Aircraft Structures with a Large Number of Design Variables[J].Journal of Aircraft,1990,vol.27(12):1073-1078.
    [57]Adelman H. M.,and Mantay W. R.Integrated Multidisciplinary Design Optimization of Rotorcraft[J].Journal of Aircraft,1991,vol.28(1):22-28.
    [58]Harry D.Optimization in Solid Rocket Booster Application[C].Proceedings of the 4th AIAA/NASA/USAF/OAI Symposium on Multidisciplinary Analysis and Optimization,Cleveland,Ohio,21-23 Sep.,1992:33-51.
    [59]Braun R. D.,Powell R. W.,Lepsch, R. A.,et al.Comparison of Two Multidisciplinary Optimization Strategies for Launch Vehicle Design[J] Journal of Spacecraft and Rockets,1995,vol.32(3):404-410.
    [60]Bearden D.,Coleman G.,Streeter T.An End-to-End Simulation to Support Optimization of a Multi-Function Space-Based Surveillance System[C]. Proceedings of the 5th A1AA/NASA/USAF/1SSMO Symposium on Multi-disciplinary Analysis and Optimization,Panama City Beach, Florida. AIAA Paper No.94-4371,7-9 Sep.,1994.
    [61]Matossian M. G. Earth Observing System Constellation Design Optimization Through Mixed Integer Programming[C]. The Sixth Alumni Conference of the International Space University, Houston, US,11 Jul.,1997:158-171.
    [62]Budianto, I. A., Olds, J.R..A Collaborative Optimization Approach to Design and Deployment of a Space Based[C].2000 IEEE Aerospace Conference.Big Sky, MT, March,2000:18-25.
    [63]Lawrence F. R.,Braun R. D.Multidisciplinary Conceptual Design Optimization of Space Transportation Systems[J] Journal of Aircraft,1999,36(1):218-226.
    [64]Prabhat Hajela.Nongradient Methods in Multidisciplinary Design Optimization— Status and Potencial[J] Journal of Aircraft,1999,36(1):255-265.
    [65]Cyrus D. Jilla. A multiobjective, multidisciplinary design optimization methodology for the conceptual design of distributed satellite systems[D]. Boston: Massachusetts Institute of Technology. May 2002.
    [66]张帆.光学遥感小卫星星座总体优化设计与系统分析[D].哈尔滨工业大学,2001.
    [67]陈琪峰.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科技大学,2003.
    [68]姚雯.不确定性MDO理论及其在卫星总体设计中的应用研究[D].长沙:国防 科技大学,2007.
    [69]冯向军.多学科设计优化方法及其在导航星座设计中的应用[D].长沙:国防科技大学,2008.
    [70]陈小前,姚雯,魏月兴等.飞行器多学科设计优化理论的工程应用[J].国防科技大学学报,2011,33(5):1-8.
    [71]AIAA Multidisciplinary Design Optimization Technical Committee. Current State of the Art of Multidisciplinary Design optimization[G]. An AIAA White Paper. ISBN 1-56347-021-7, September 1991.
    [72]Jilla C. D., Miller D.W. Multi-objective, multidisciplinary design optimization methodology for distributed satellite systems[J].Journal of Spacecraft and Rockets,2004,41(01):39-50.
    [73]Sobieszczanski-Sobieski, J., Haftka, R. T.. Multidisciplinary Aerospace Design Optimization:Survey of Recent Developments [J]. Structural Optimization,1997, vol.14(08):1-23.
    [74]Braun R. D.. Collaborative Architecture for Large-Scale Distributed Design[D]. Palo Alto:Stanford University, June 1996.
    [75]范丽,张育林.强约束条件下星座一体化优化设计方法研究[J].宇航学报.2006,27(04):779-782.
    [76]刘纯胜,苏庆华,赵剡.现有天基预警系统浅析[J].红外与激光工程.2009,38(11):234-238.
    [77]Hoult C. P., Wright R. P.. Space Surveillance Catalog Growth During SBIRS Low Deployment[C].1999 IEEE Aerospace Conference Proceedings. Aspen, US. March 1999,vol.4:209-224.
    [78]http://freebsd48.blog.163.com/blog/static/127225361200911308543879/
    [79]Canan J. W.. Setting a Date for Missile Defense[J]. Aerospace America. 2000(05):35-41.
    [80]http://www.globalsecurity.org/space/library/report/1998/sbirs-brochure/part08.htm
    [81]Steward D. V.. Systems Analysis and Management:Structure, Strategy and Design[M]. New York:Petrocelli Books,1981.
    [82]Lang T.J., Adams W.S.. A comparison of satellite constellations for continuous global coverage [C]. Mission design and implementation of satellite constellations, Proceedings of the International Workshop, Toulouse, France, Nov.1997 (A00-2403105-12):51-62.
    [83]Larson W. J., Wertz J. R.. Space Mission Analysis and Design [M].3rd Edition. Boston/London:Microcosm Press and Kluwer Academic Publishers,1999:19-46.
    [84]Lockheed Martin Corporation. Atlas Launch System Mission Planner's Guide [EB/OL]. San Diego:International Launch Services, Sep.2001.
    [85]Comara S., Beech T. W., Bello-Mora M., et al..Satellite Constellation Launch, Deployment, Replacement and End-of-Life Strategies[C]. Proceedings of 13th Annual AIAA/USU Conference on Small Satellites, Logan, CAN. Aug 1999.
    [86]Singiresu S. Rao.Engineering Optimization:Theory and Practice [M].4th Edition. Hoboken:John Wiley & Sons, Inc.,2009.
    [87]Neff J., Presley S. P.. Implementing a Collaborative Conceptual Design System[C]. IEEE 2000 Aerospace Conference, Big Sky, MT.18 Mar.-25 Mar., 2000,Vol.1:341-353.
    [88]Aguilar J. A., Dawdy A.. Scope vs. Detail:The Teams of the Concept Design Center [C]. IEEE 2000 Aerospace Conference, Big Sky, MT.18 Mar.-25 Mar., 2000,Vol.1:465-481.
    [89]Osburg J., Mavris D.. A collaborative design environment to support multidisciplinary conceptual systems design[R]. Aerospace Systems Design Laboratory, Georgia Institute of Technology, Atlanta, GA 30332-0150. 2005-01-3435.
    [90]Smith J.. Concurrent Engineering in the Jet Propulsion Laboratory Project Design Center [G]. SAE Technical Paper 981869,1998, doi:10.4271/981869.
    [91]Taylor E. R.. Evaluation of Multidisciplinary Design Optimization Techniques as Applied to the Spacecraft Design Process[D]. Boulder:University of Colorado, December 1999.
    [92]He Q., Han C. Satellite Constellation Design with Adaptively Continuous Ant System Algorithm [J]. Chinese Journal of Aeronautics,2007(20):297-303.
    [93]Hae-Dong Kim, Ok-Chul Jung, Hyochoong Bang.. A computational approach to reduce the revisit time using a genetic algorithm[C].2007 International Conference on Control, Automation and Systems. Seoul, Kor.,17-20 Oct.,2007: 184-189.
    [94]Pegher D. J., Parish J. A. Optimizing Coverage and Revisit Time in Sparse Military Satellite Constellations:A Comparison of Traditional Approaches and Genetic Algorithms[D]. Monterey:Naval Postgraduate School, Sep.2004.
    [95]范丽,张育林.基于稳态遗传算法的间歇式覆盖天基雷达星座优化设计[J].国防 科技大学学报,2006:28(02):17-21.
    [96]李响,李为吉.飞行器多学科设计优化的三种基本类型及协同设计方法[J].宇航学报,2005,26(06):693-697.
    [97]Jilla C. D., Miller D. W., Sedwick R. J.. Application of Multidisciplinary Design Optimization Techniques to Distributed Satellite Systems[J]. Journal of Spacecraft And Rockets,2000,vol.37, No.4.
    [98]Matossian M. G.. Configuration Design Optimization of Multi-Satellite Distributed Task Constellations [D]. Boulder:University of Colorado, December 1995.
    [99]Sobieszczanski-Sobieski J,, Altus T. D,, Phillips M., et al.. Bilevel Integrated System Synthesis for Concurrent and Distributed Processing[J], AIAA Journal, 2003, Vol.41:1996-2003.
    [100]赵勇,杨维维,黄奕勇等.一种改进的混合BLISS多学科设计优化方法[J].国防科技大学学报,2011(05):17-21.
    [101]Alexandrav N. M., Kodiyalam S.. Initial Results of an MDO Method Evaluation Study [R].AIAA1998-4884,1998.
    [102]Kodiyalam S.,Sobieszczanski-Sobieski J..Multidisciplinary design optimization-some formal methods, framework requirements, and application to vehicle design[J]. International Journal of Vehicle Design.2001,Vol.25:3-22.
    [103]Hulme K. F., Bloebaum C. L.. A Comparison of Solution Strategies for Simulation-Based Multidisciplinary Design Optimization[R]. AIAA1998-4977, 1998.
    [104]Alexandrov N. M., Lewis R. M.. Comparative Properties of Collaborative Optimization and Other Approaches to MDO[C]. In Proceedings of the First ASMO UK/ISSMO Conference on Engineering Design Optimization,8-9 Jul., 1999. Available as ICASE technical report 99-24.
    [105]Brown N. F., Olds J. R.. Evaluation of Multidisciplinary Optimization (MDO) Techniques Applied to a Reusable Launch Vehicle[R]. AIAA2005-707,2005.
    [106]Srinivas Kodiyalam, Charles Yuan. Evaluation of Methods for Multidisciplinary Design Optimization. (MDO), PartⅡ[R]. NASA/CR-2000-210313,2000.
    [107]马铁林,马东立.大系统理论体系下的飞行器多学科设计优化方法[J].系统工程理论与实践.2009(09):186-192.
    [108]Rider L. Analytic design of Satellite Constellations for Zonal Earth Coverage Using Inclined Circular Orbits[J]. JAS,1986,34(1):31-64.
    [109]Barker L., Stoen J.. Sirius satellite design:The challenges of the Tundra orbit in commercial spacecraft design[J]. Advances in the Astronautical Sciences,2001, Vol.107:575-596.
    [110]Wiedeman Robert A., Viterbi, Andrew J.. The Globalstar Mobile Satellite System for Worldwide Personal Communications [C]. Proceedings of the Third International Mobile Satellite Conference (IMSC 1993). Pasadena, CA,16-18 Jun., 1993:291-296.
    [111]Pini Gurfil. Modern Astrodynamics [M]. Oxford:Butterworth-Heinemann Ltd., Sep.2006.
    [112]Riedl M. J.. Optical Design Fundamentals for Infrared Systems [M].2nd Edition. Bellingham:SPIE Optical Engineering Press, Vol. TT48,2001.
    [113]http://modis.gsfc.nasa.gov/about/specifications.php
    [114]Lomheim T. S., Mihe E. L., Kwok J. D., et al.. Performance/Sizing Relationships for a Short-wave/Mid-wave Infrared Scanning Point-Source Detection Space Sensor[C].1999 IEEE Aerospace Conference Proceedings. Aspen, CO, March 1999, vol.4:113-138.
    [115]http://cost.jsc.nasa.gov/EL V_US.html
    [116]Quarterly Launch Report[R]. Commercial Space Transportation, Washington, D.C.,2001.
    [117]Hillier F. S., Lieberman G. J.. Introduction to Operations Research [M].7th Edition. New York:McGraw-Hill Inc.,2001.
    [118]Walker J G. Some Circular Orbit Patterns Providing Continuous Whole Earth Coverage[J] Journal of the British Interplanetary Society,1971,24:369 — 384.
    [119]Ballard A H. Rosette Constellations of Earth Satellites[J].IEEE Transactions on Aerospace And Electronic Systems,1980,16(5):656-673.
    [120]Lang T J, Adams W S. A Comparison of Satellite Constellations for Continuous Global Coverage[C].Proceedings of the International Workshop. Hague:Kluwer Academic Publishers,1998:51-62.
    [121]Rainer S, Klaus B and Marco D. Small satellites for global coverage:Potential and limits[J]. ISPRS Journal of Photogrammetry and Remote Sensing. Amsterdam: Elsevier,2010,65(6):492-504
    [122]Luciano A, Carmen P. Orbital evolution of the first upper stages used for the new European and Chinese navigation satellite systems[J].Acta Astronautica. Amsterdam:Elsevier,2011,68(11-12):2066-2079.
    [123]Confessore G,Gennaro M Di and Ricciarelli S. A Genetic Algorithm to Design Satellite Constellation for The Regional Coverage[C].Operations Research Proceedings 2000. Berlin:Springer-Verlag,2001:35-41
    [124]胡修林,王贤辉,曾喻江,等.基于遗传算法的区域性Flower星座设计[J].华中科技大学学报(自然科学版),2007,35(6):8-10.
    [125]Breiman L, Friedman J H, Olshen R A, et al. Classification and Regression Trees[M].New York:Chapman & Hall,1984.
    [126]Richard O Duda.模式分类[M].2版.李宏东,姚天翔,译.北京:机械工业出版社,2003.
    [127]Yisehac Y, Patrick W. Classification and Regression Trees, Cart:A User Manual for Identifying Indicators of Vulnerability to Famine and Chronic Food Insecurity[M]. Washington, D. C:International Food Policy Research Institute, 1999.
    [128]赵萍,傅云飞,郑刘根,等.基于分类回归树分析的遥感影像土地利用/覆被分类研究[J].遥感学报,2005,9(6):708-716.
    [129]张育林,范丽,张艳,等.卫星星座理论与设计[M].北京:科学出版社,2008:69-121.
    [130]江刚武.航天器轨道设计与分析仿真系统的设计[D].郑州:中国人民解放军信息工程大学,2003.
    [131]潘君.整数规划的分支定界法及其MATLAB实现[J].科技信息(科学教研).2008,07:167-168.
    [132]杨夷梅,杨玉军.分支定界算法优化研究[J].中国科技信息.2008,21-
    [133]A. H. Land, A. G. Doig. An automatic method of solving discrete programming problems [J]. Econometrica.1960,28(3):497-520.
    [134]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007:78-117.
    [135]M. Asvial, R. Tafazolli, and B. G. Evans. Non-GEO satellite constellation design with satellite diversity using genetic algorithm.20th AIAA International Communication Satellite Systems Conference, AIAA, Reston, May 12-152002.
    [136]Zeng Yu-Jiang, Hu Xiulin, Wang Xianhui, et al.. Regional telecommunication satellite constellation design tradeoffs. Second International Conference on Space Information Technology, SPIE, Bellingham, Volume 6795, Nov 2007, pp.679559.
    [137]Li Wang, Yanjuan Wang, Kewei Chen, et al.. Optimization of regional coverage reconnaissance satellite constellation by NSGA-II algorithm.2008 International Conference on Information and Automation, IEEE, Piscataway, June 20-23 2008, pp.1111-1116.
    [138]Rosetti C, Carnebianca C. NAVSAT:a global satellite based navigation system[J].IEEE Aerospace and Electronic Systems Magazine,1987,2(12):15-22.
    [139]Carnebianca C. Regional to global satellite based navigation systems[C]. Position Location and Navigation Symposium, Orlando:IEEE Conference Publications 1988:25-33.
    [140]Won C H. Regional navigation system using geosynchronous satellites and stratospheric airships [J]. IEEE Transactions on Aerospace & Electronic Systems,2002,38(1):271-278.
    [141]Pratt T, Bostian C, Allnutt J. Satellite Communication[M].2nd ed. New York: John Wiley&Sons,2003:458-486.
    [142]韩延本,马利华,乔琪源,等.中国区域卫星定位系统星座布局的选择[J].中国科学G辑,2008,38(12):1671-1686.
    [143]Srinivas N, Deb K. Multiobjective Optimization Using Non-dominated Sorting in Genetic Algorithms [J]. Evolutionary Computation,1994,2(3):221-248.
    [144]Deb K, Agrawal S, Pratap A, et al. A fast elitist nondominated sorting Genetic algorithm for multi-objective optimization:NSGA-II[C].6th International Conference on Parallel Problem Solving from Nature(PPSN VI), Paris, FRA, Sep 18-20,2000.
    [145]K. Deb. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, IEEE, Piscataway, Volume 6, Issue 2, April 2002, pp.182-197.
    [146]王永澄,付锋,陈晓凤.圆轨道同步卫星在区域导航系统中应用研究.南京航空航天大学学报,2002,34(4):359-363
    [147]T. Hatsuda, S. Yoneta. Genetic Algorithm Application to Efficient Utilization of the GSO [J]. IEEE Trans. AES,2004, vol.40(04):1217-1227.
    [148]Way D., Olds J. Sirius. a new launch vehicle option for Mega-LEO constellation deployment[C].33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, AIAA 1997-3122. Seattle, WA,6-9 Jul.,1997:1—14.
    [149]Bayley D. J.. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm [D]. Auburn:Auburn University,2007.
    [150]Mosher T. J.. Spacecraft design using a genetic algorithm optimization approach[C].1998 IEEE Aerospace Conference, Snowmass at Aspen, CO.21-28 Mar.,1998, Vol.3:123-134
    [151]Mosher T. J.. Conceptual Spacecraft Design Using a Genetic Algorithm Trade Selection Process [J]. Journal of Aircraft.1999, Vol.36(01):200-208.
    [152]徐璟.PID参数整定分析[J].广西电业.2010,04:83-85.
    [153]李林欢,苏宏业,褚健.一类多输入多输出系统的预测PID控制算法仿真[J].系统仿真学报.2004,16(03):495-498,503.
    [154]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1998.
    [155]Katsuhiko Ogata. Modern Control Engineering [M].5th Edition. Upper Saddle River:Prentice Hall,2010.
    [156]庞之浩.美国猛增新型导弹预警卫星研制费用[J].中国航天.2002(03):31-33
    [157]Ogle W. C., Goldstein J. S., Mendelson H.. New Detection Manifolds for Radar Signal Processing [C].2010 IEEE Aerospace Conference, Big Sky, MT.6-13 Mar., 2010:1-7.
    [158]潘雷,谷良贤.分块响应面法研究[J].计算机工程与应用.2009,45(19):37-39.
    [159]Andries P. Engelbrecht. Fundamentals of Computational Swarm Intelligence [M]. Wiley Publishing Inc.,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700