用户名: 密码: 验证码:
砂—粘复合地层土压平衡盾构隧道开挖面稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着城市建设的快速发展,土压平衡盾构在城市地铁隧道建设中的应用范围越来越广。而且随着施工范围扩大,所遇到地层的复杂程度不断增加,特别是在砂-粘复合地层中,开挖面稳定性的预测与控制都非常困难,因此复杂地层土中压平衡盾构开挖面稳定性问题得到了广泛的关注,成为盾构隧道施工掘进的核心问题之一。
     首先,通过大型三轴试验(第二章),开展了砂‐粘复合地层的基本力学特性研究,弄清了不同应力水平下、不同砂‐粘组构和成分等条件下的基本力学特性,并以此为基础进行了砂‐粘土体相似性配比的试验,探究砂‐粘土体地层的结构特征,以供大型相似模型试验研究参考。
     其次,通过土压平衡盾构室内大型相似模型试验(第三章),探究了盾构开挖面失稳过程中开挖面支护压力变化规律和破坏模式。主要研究了砂‐粘复合地层中不同埋深和直径比(C/D=0.5、1、2)下,盾构开挖面的稳定性问题,分析了不同埋深和直径比对开挖面极限支护压力、地表沉降、开挖面土体变形规律的影响。并通过监测开挖面前方土体压力变化,探究了砂‐粘复合地层成拱与隧道埋深的关系,明确了开挖面破坏局部失稳与整体失稳的机理。
     此外,基于极限分析上限法(第四章),构建了旋转破坏模型,拟合了开挖面破坏区域。利用临界破坏时外力所做功的功率与土体内部耗散功相等的原理,推导了开挖面支护压力计算公式,并将计算结果与Leca&Dormieux等提出的经典破坏模型得出的结果作了比较,得出在不同土体中极限支护力均有提高,但在软粘土和硬粘土中得到的极限支护力提高幅度较大。
     最后,通过采用能够考虑大变形、渐进破坏的FLAC3D程序对土压平衡盾构施工力学过程进行了三维数值模拟,探究了不同的隧道埋深、土层材料性质、土层空间分布等因素对开挖面失稳破坏形式、开挖面变形、极限支护力以及地表变形的影响规律。
Earth pressure balanced (EPB) shield machines are widely used in theconstruction of urban subway in recent years with the repaid development of urbanexpansion. Particular attention is paid to the face stability of EPB shield machine inthe sandy-clay mixed ground and it has become one of the key challenges in shieldtunneling.This thesis proposes to deal with this problem using three types ofapproaches, especially with the back ground of Beijing subway. Firstly, experimentsusing large-scale triaxial test to study the mechanical properties of mixed stratumunder varied stress level, petrofabric and composition of mixed grounds areperformed and the results are regarded as the strong basis for indoor model test andground conditioning. Secondly, an indoor model test with different cover depths(C/D=0.5,1,2) to simulate the construction of EPB driven-tunnel is applied to findout the law of support pressure on tunnel face, soil deformation and failuremechanism. In addition, the evolution of arching during face failure is investigated.The boundaries of the arch zones are also proposed. Then upper-bound approach inlimit analysis with rotating failure model is presented and the limit face supportingpressure is improved compared with the classical model of Mollon, Leca&Dormieux.Finally, a three-dimensional fast lagrangian finite difference program (FLAC3D),which can simulate large-strain deformation and progressive failure, is adopted tostudy the soil deformation and failure mechanism in EPB shield tunnelling on variousgrounds. Both of the local failure and global failure in collapse are studied whentaking into account the cover depth, soil character, ground spatial distribution and thecharacteristics of EPB shield tunnels in mixed ground.
引文
A-H. Soubra, D. Dias, F. Emeriault, R.Kastner. Three-dimensional face stabilityanalysis of circular tunnels by a kinematical approach[C]. Geocongress, New Orleans,Louisiana (2008), Vol.179, p.894
    A-H. Soubra. Kinematical approach to the face stability analysis of shallowcircular tunnels[C]. In: Proceedings of the Eight International Symposium onPlasticity, Canada, British Columbia.2002, pp.443~445
    A-H. Soubra. Three-dimensional face stability analysis of shallow circulartunnels[C]. In:International Conference on Geotechniacal and Geological ngineeringAustrallia: Melboume,2000
    Anagnostou G,Kov'ari K. The face stability of slury shield driven tunnels.Tunneling and Underground Space Technology,1994,9(2):165~174
    ASM Masud Karim,Three-Dimensional Discrete Element Modeling of Tunneling inSand[D]..University of Alberia. Edmonton,Alberta.Fall,2007
    Atkinson, J.H.,Potts,D.M.,Sehofield,A.N.. Centrifugal model tests on shallowtunnels in sand[J].Tunnels and Tunnelling,1977.
    Bernat S,Cambou B,Dubois P.Assessing a soft soil tunneling numerical model usingfield[J].Geotechnique,1999(4):427~452
    Broere,W.. Tunnel faee Stability and New CPT Applieations[D].Netherlands:Delft University Press,2001
    Broms,B.B., Benermark, H.. Stability of clayatvertical openings. Jounral ofSoil Merchanical and Foundation Engineering Division SMI[J].1967,93:71~94
    Buhan P, Cuvillier A, Dormieux L,et al. Face stability of shallow circulartunnels driven under the water table: A numerical analysis[J].International Journalfor Numerical and Analytical Methods in Geomechanics,1999(23):79~95
    Chambon P.,Corte,J.F.. Shallow tunnels in cohesionless soil: Stability oftunnel faee[J]. Journal of Geotechnical Engineering,1994,120(7):1148~1165
    Davis E. H., GunnM J., et al. The stability of shallow tunnels and undergroundopenings in cohesive material[J]. Geotechnique,1980,30(4):397~416
    Fujita K,Kusakabe. Underground construction in soft ground[M]. Rotterdam:Balkema A A,1995:337一343
    Funatsu, T., Hoshino, T., Sawae, H., Shimizu, N.. Numerical analysis to betterunderstand the mechanism of the effects of ground supports and reinforcements onthe stability of tunnels using the distinct element method[J]. Tunneling andUnderground Space Technology,2008,23(5):561~573
    G. Mollon, D. Dias and A.-H. Soubra. Rotational failure mechanisms for the facestability analysis of tunnels driven by a pressurized shield[J]. Journal ofGeotechnical and Geoenvironmental Engineering,2010,136(1):215~240
    H.A.Janssen, Versuche uber Getreidedruck in Silozellen[J]. Zeitschrift desVereins deutscher Ingenieure,1895,39(35):1045~1049
    Horn N., Horizontaler Erddruck auf senkrechte Abschlussflachen von Tunnelrohren[J]. In Landeskonferenz der Unganschen Tiefoauindustrie,1961,pp:7~16
    Idinber Gregor, Aklik Pelin, Wu Wei. Centrifuge model test on the face stabilityof shallow tunnel[C]. International Workshop on Multiscale and MultiphysicsProcesses in Geomechanics, Standford Univ, Stanford, CA, Jun23-25,2010. ActaGeotechnica,2011,6(2):105~117
    In-Mo Lee&Seok-W00Nam. The study of seepage forces acting on the tunnelingand tunnel face in shallow tunnels[J]. Tunnelling and Underground SpaceTechnology,2001(16):31~40
    In-Mo Lee,Seok-W00Nam,Jae-Hum Alm. Effect of seepage forces on tunnel facestability[J].Canadian Geotechnical Journal,2002,40(2):342~350
    Itasca Consulting Group,Inc. FLAC3D (Fast Lagrangian Analysis of Continua in3Dimensions) User Manuals,Version2.1,Minneapolis,Minnesota,2002,06
    Janeseez S.,Steiner W., Face Support for a large Mix-Shield in HeterogeneousGround Conditions[J]. Tunnelling94,London,1994:531~550
    Kamata,H.,Masimo,H.. Centrifuge model test of tunnel face reinforcement bybolting[J]. Tunneling and Underground Space Technology2003.18(2),205~212
    Kamata,H.,Masimo,H.. Centrifuge model test of tunnel face reinforcement bybolting[J].Tunneling and Underground Space Technology,2003,24:472~478
    Kirsch Ansgar. Experimental investigation of the face stability of shallowtunnels in sand[J]. Acta Geotechnica,2010,5(1):43~62
    Kirsch, A.. ExPerimental and numerical investigation of the face stability ofshallow tunnels in sand[C]//.in: Kocsonya,Pal(Hrsg.): Proceedings of the1TA-AITESWorld Tunnel Congress2009. CD-ROM Proeeedings. Eigenverlag.
    Kirsch,A., Kolymbas, D.. Theoretische Untersuchung zurOrtsbruststabilitat[J].In: Bautechnik2005,82(7):449~456
    Komiya,K., Shimizu,E., et al.(2000). Earth pressure exerted on tunnels due tothe subsidence of sandy ground. Proc. Geotechnical Aspect of UndergroundConstruction in soft Ground.(eds Kusakabe, Fujita&M iyazaki). Balkema. pp.397~402
    Konishi,Shinji.Evaluation of tunnel face stability by rigid plasticity finiteelement method[J].Railway Technology Advalanche,2004(5):29~29
    Krause,T. Schildvortrieb mit flussigskeits-und erdgestutzerOrtsbrust[J].Dissertation Universitat Braunschweig,1987.HeftNr.24.
    Leca B, Dormieux L. Upper and lower bound solutions for the stability of shallowcircular tunnels in frictional material[J]. Geotechnique,1990,40(4):581~606
    Lee, C.J., Wu, B.R.,Chen, H.T., Chiang, K.H.. Tunneling stability and archingeffects during tunneling in soft clayey soil[J]. Tunneling and Underground SpaceTechnology2006.21(2),119~132
    Mair R.J., Taylor R.N.. Theme lecture: Bored tunneling in the urban environment[C]. Proceedings of the14th International Conference on Soil Mechanics andFoundation Engineering, Hamburg,1997:2353~2385
    Peck,R.B., Hendron, A. J.et al.. State of the art of soft ground tunneling. Proc.1972RETC (Chicago).1972(l):259~280
    Peck,R.B.. Deep excavations and tunneling in soft ground[C]. Proc.7thInt.Contsoil Mechanical and Foundation Engineering. Mexico City. State of theArt.1969,93:225~290
    R.P. Chen, L.J. Tang, D.S. Ling, Y.M. Chen. Face stability analysis of shallowshield tunnels in dry sandy ground using the discrete element method[J]. Computersand Geotechnics,2011,38:187~195
    Sterpi,D.,Cividini,A.,Sakurai,S.,Nishitake,S. Laboratory model tests andnumerical analysis of shallow tunnels[C]. In: Barla,G.(Ed.), Proceedings ofthe International Symposium on Eurcok’96-ISRM,Torino,vol.1. Balkema,Rotterdsm,1996:689~696
    Subrin,D., Wong H.. Tunnel face stability in frictional material: a new3Dfailure mechanism[J]. C. R. Mecanique,2002.330,513~519. In French.
    Takano, D., Otani,J., Nagatani,H., Mukunoki, T. Application of X-ray CT boundaryvalue problems in geotechnical engineering-Research on tunnel face failure[C].Proc.,Geocongress, ASCE, Reston, Va,2006
    Veermeer P.A., Ruse N.M., Marcher T.. Tunnel heading stability in drainedground[J].Felsbau,2002,20(6),8~18
    Y. Li, F. Emeriault, R. Kastner, Z.X. Zhang. Stability analysis of large slurryshield-driven tunnel in soft clay [J].Tunneling and Underground Space Technology,2009,18(2):205~212
    曹洋.土压平衡式盾构机过地铁车站施工技术[J].铁道建筑.2012(04):96~98
    陈鹏飞.城际铁路车站深基坑地表沉降估算方法研究[D].中南大学2012
    陈仁朋,李君,陈云敏,孔令刚,干砂盾构开挖面稳定性模型试验研究[J],岩土工程学报,2011,33(1):117~122
    程展林,吴忠明,徐言勇,砂基中泥浆盾构法隧道施开挖面稳定性试验研究,长江科学院院报,2001,18(5):53~55
    褚东升.长沙地铁下穿湘江土压平衡盾构隧道掘进参数研究[D].中南大学2012
    崔娟.盾构机切刀切削过程模拟及刀盘扭矩计算方法[D].大连理工大学2012
    段小明.盾构掘进过程中的自动轨迹跟踪控制技术研究[D].浙江大学2012
    方勇,何川.土压平衡式盾构掘削面支护压力特性分析[J].岩土力学.2009,30(11):3528~3532
    冯义,陈寿根.盾构掘进参数优化研究[J].吉林水利.2010(07)
    胡欣雨,张子新,徐营.黏性土层中泥水盾构泥浆作用对开挖面土体强度和侧向变形特性影响研究[J].岩土工程学报.2009(11):1735~1743
    黄宏伟,闫玉茹,胡群芳.复合式土压平衡盾构刀盘失效风险分析[J].岩土力学.2009,30(08):2324~2330
    黄正荣,朱伟,梁精华,秦建设.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005~2009
    江玉生,陈冬,王春河,杨志勇,刘品.土压平衡盾构双螺旋输送机力学机理简析[J].隧道建设.2007,27(06):15~18
    姜忻良,崔奕,李园,等,天津地铁盾构施工地层变形实测及动态模拟[J],岩土力学,2005,26(10):1612~1616
    蒋洪胜,侯学渊,盾构掘进对隧道周围土层扰动的理论与实测分析[J],岩石力学与工程学报,2003,22(9):1514~1520
    康洪信.土压平衡盾构掘进中的止水技术[J].建筑机械化.2006,27(03):50~51
    李璐.盾构隧道施工对邻近地下燃气管线的影响规律研究[D].北京交通大学2012
    李鹏,杜守继,刘艳滨.地铁盾构隧道穿越大直径越江隧道的影响分析[J].地下空间与工程学报.2011,07(06):1053~1059
    李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报.2006,28(09):1101~1105
    李晓军,朱合华,郑路.盾构隧道数字化研究与应用[J].岩土工程学报.2009(09):1456~1461
    李学峰,杜守继,张顶锋.新建盾构隧道施工对近接平行隧道的影响分析[J].地下空间与工程学报.2012(05):1065~1069,1074
    李昀,张子新,张冠军.泥水平衡盾构开挖面稳定模型试验研究.岩土工程学报,2007,29(7).1074~1079
    郦能惠,程展林,杨光华.土的基本性质和测试技术,中国土木工程学会第八届土力学及岩土工程学术会议,江苏,南京,1999
    刘恩献.地铁隧道衬砌施工力学行为的数值模拟[J].华东公路.2012(05):34~36
    刘福东,郭京波.土压平衡盾构机螺旋输送机液压系统功能分析[J].隧道建设.2011(S1):415~420
    刘佳佳.基于透明土的盾构隧道开挖面稳定性分析[D].武汉理工大学2012
    刘训华,李博,季昌.越江地铁隧道土压平衡盾构施工土压力分区研究[J].城市轨道交通研究.2012(09):72~75
    吕丹.盾构切刀摩擦磨损特性研究[D].中南大学2012
    欧阳涛.盾构典型刀具组合破岩受力特性研究[D].中南大学2011
    秦建设,盾构施工开挖面变形与破坏机理研究:[博士学位论文],南京;河海大学,2005
    宋修元,杨宏强.成都地铁富水砂卵石地层中土压平衡盾构机安全快速施工技术[A].地下交通工程与工程安全——第五届中国国际隧道工程研讨会文集[C].2011
    苏翠侠,蔡宗熙,王燕群,亢一澜.基于数值仿真的盾构刀盘载荷影响因素分析[J].机械设计与研究.2012,28(04):66~69
    仝哲.盾构刀盘的受力分析及结构优化[D].郑州大学2012
    汪国锋.北京地铁十号线土压平衡盾构土体改良技术应用研究[J].现代隧道技术.2009,46(04):77~82
    王东,秦建国.盾构施工引起地表沉降的影响因素分析[J].山西建筑.2012,38(10):199~200
    王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报.2006,39(09):86~86
    王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究[J].土木工程学报.2007,40(05):61~69
    王洪新.土压平衡盾构刀盘开口率选型及其对地层适应性研究[J].土木工程学报.2010(03):88~92
    王洪新.土压平衡盾构刀盘扭矩计算及其与盾构施工参数关系研究[J].土木工程学报.2009(09):109~113
    王建秀,田普卓,付慧仙,朱雁飞.基于地层损失的盾构隧道地面沉降控制[J].地下空间与工程学报.2012,08(03):569~576
    王凯.盾构机盘形滚刀及切刀磨损预测模型研究[D].中南大学2011
    王敏强,陈宏胜,盾构推进隧道结构三维非线性有限元仿真[J],岩石力学与工程学报,2002,21(2):228~232
    魏纲.顶管工程土与结构的形状及理论研究[博士学位论文][D].杭州:浙江大学,2005
    吴峰.TBM盘形滚刀贯入度与结构参数优化设计研究[D].中南大学2012
    吴起星.复合地层中盾构机滚刀破岩力学分析[D].暨南大学2011
    夏炜洋.盾构法隧道施工期流固耦合问题研究[D].西南交通大学2012
    肖凯刚.成渝客运专线新中梁山隧道上跨既有线处理方案[J].铁道标准设计.2013(02):93~97
    徐东,黄广军,上海粘土的成拱能力探讨[J],上海铁道大学学报,1999,20(6):49~54
    徐前卫,朱合华,丁文其,吴祥松,于宁.均质地层中土压平衡盾构施工刀盘切削扭矩分析[J].岩土工程学报.2010(01):47~54
    徐前卫,朱合华,廖少明,丁文其.砂土地层中全断面盾构掘进机顶进推力和刀盘切削扭矩的模型试验研究[J].现代隧道技术.2008(S1):178~182
    徐前卫,朱合华,廖少明,傅德明,于宁,汪成兵.砂土地层盾构法施工的地层适应性模型试验研究[J].岩石力学与工程学报.2006,25(S1):2902~2909
    徐前卫,朱合华,廖少明,郑七振,周奎.软土地层土压平衡盾构法施工的模型试验研究[J].岩土工程学报.2007,29(12):1849~1857
    徐前卫,朱合华,廖少明.砂土地层盾构法施工的模型试验设计研究[J].地下空间与工程学报.2006,02(03):361~364,368
    徐岩,赵文,黄龙光,高照.富水砂层土压平衡盾构关键施工技术[J].施工技术.2011,40(07):71~73,77
    徐永福,陈建山,傅德明,盾构掘进对周围土体力学性质的影响[J],岩石力学与工程学报,2003,22(7):1174~1179
    徐孜军.盾构刀具破岩特性的数值模拟及实验研究[D].中南大学2012
    颜波,杨国龙,林辉,林沛元,吴文彪.盾构隧道施工参数优化与地表沉降控制研究[J].地下空间与工程学报.2011,07(S2):1683~1687
    杨洪杰,傅得明,葛修润,土压平衡盾构法施工参数的模型试验研究[J],岩石力学与工程学报,2006,25(8):1652~1657
    杨开艮.盾构施工与邻近不同位置建筑物相互影响分析[J].科技风.2011(23):197
    杨志勇,江玉生,江华,钱丹丹,谭雪.北京地铁盾构隧道安全风险组段划分方法研究[J].铁道标准设计.2012(03):65~68
    叶飞,何川,王士民.浅析盾构隧道模型试验的现状与发展[J].现代隧道技术.2011(01):66~74
    易宏伟,孙钧,盾构施工对软粘土的扰动机理分析[J],同济大学学报,2000,28(3):277~281
    易宏伟,张庆贺,朱忠隆,静力触探在盾构施工对土体扰动研究中的应用[J],世界隧道,2000(2):7~10
    袁大军,尹凡,王华伟,黄清飞,肖衡.超大直径泥水盾构掘进对土体的扰动研究[J].岩石力学与工程学报.2009,28(10):2074~2080
    曾华波,吴来明.土压平衡盾构穿越珠江施工技术难点和对策[J].人民珠江.2006(06):35~39
    张舵.地铁盾构区间穿越既有铁路技术措施研究[J].铁道标准设计.2013(02):81~84
    张乐.地铁隧道施工地表沉降预测模型及实证研究[D].华中科技大学2011
    张明远.既有地铁隧道受下穿施工影响的力学行为研究[D].华南理工大学2012
    张茜,蔡宗熙,黄干云,侯振德,亢一澜,郑琳.盾构刀盘系统界面载荷力学表征与近似计算模型[J].力学学报.2012,44(05):861~868
    张瑞临,高伟贤,邓立营.土压平衡盾构机土舱压力PID控制技术[J].机械工程与自动化.2010(02):171~172
    张旭东. EPB盾构机在富水砂层中的适应性分析[J].铁道建筑技术.2009(02):99~102
    周奇才,王凯,熊肖磊,徐小芳,何自强.盾构施工地层损失关键因素监测系统设计[J].中国工程机械学报.2012,10(03):343~347,368
    周小文,蹼家骝,包承纲.隧洞拱冠土位移与破坏的离心模型试验研究[J].岩土力学,1999,20(2):32~36
    周小文,蹼家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559~563
    周质炎,温竹茵,缪仑.直径14.27m土压平衡盾构机在穿越上海虹桥机场道路工程中的应用[A].地下交通工程与工程安全——第五届中国国际隧道工程研讨会文集[C].2011
    朱合华,徐前卫,傅德明,廖少明,张冠军.地层适应性盾构模型试验设计方法初探[J].岩土力学.2006,27(09):1437~1441
    朱合华,徐前卫,廖少明,于宁,傅德明,吴祥松.土压平衡盾构施工的顶进推力模型试验研究[J].岩土力学.2007,28(08):1587~1594
    朱合华,徐前卫,郑七振等,软土地层土压平衡盾构施工参数的模型试验研究[J],土木工程学报,2007,40(9):87~94
    朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897~902
    朱卫平.盾构法隧道模型试验中的相似关系[J].力学与实践.2005,27(04):35~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700