用户名: 密码: 验证码:
考虑支座极限变形的串联隔震体系性能分析与振动台试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,地震的频繁发生给各地震区造成巨大经济损失和人员伤亡,特别是近场地震造成的损失和伤亡更加严重。随着隔震技术的迅速发展和应用,隔震建筑如雨后春笋般涌现出来。由于工程的需要,隔震建筑呈多种发展形式,包括了基础隔震结构、层间隔震结构和复杂的串联隔震结构。对于基础隔震结构和层间隔震结构在建筑抗震规范中已有明显的体现,然而,对于复杂的串联隔震结构的设计在规范中并没有明显针对性的要求。随着串联隔震结构的大量建设,将叠层橡胶支座连接于钢筋混凝土柱顶部形成隔震层的现象比较常见,其被定义为串联隔震体系。对于串联隔震体系的力学性能和试验研究相对较少,特别是在串联隔震体系广泛应用的情况下,对于串联隔震体系的理论和试验研究就显得更加重要。本文在研究此问题的过程中采用渐进式的分析方法,首先分析了不同边界条件下叠层橡胶支座的水平刚度变化,然后对串联隔震体系的水平刚度进行了研究,再针对罕遇地震下叠层橡胶支座的变形特点,对串联隔震体系进行性能分析,同时,用有限元方法和理论分析探讨了串联隔震体系的恢复力模型、质点模型和地震响应,最后对串联隔震体系进行了近场和远场地震下的振动台试验研究,最终完成了整个串联隔震体系的理论和试验研究。
     本文的主要研究内容包括以下几个方面:
     1.针对隔震结构中叠层橡胶支座端部连接的特点,推导了考虑不同边界约束状态下叠层橡胶支座的水平刚度方程,用算例分析了边界条件对叠层橡胶支座的水平刚度的影响,探讨了不同边界条件下端部约束能力和竖向荷载对叠层橡胶支座的水平刚度的影响;然后,对典型的下部边界约束问题的串联隔震体系进行了分析,针对其自身的特点,考虑叠层橡胶支座和钢筋混凝土柱相互作用,在弯-剪-压作用下推导了串联隔震体系的水平刚度方程,对9种普通的叠层橡胶支座对应的串联隔震体系的水平刚度进行了参数分析,提出了简化方程。并针对某一类代表性的叠层橡胶支座对应的串联隔震体系水平刚度方程进行了参数影响分析,与用有限元模型的分析结果进行对比,验证模型的正确性和适用性;
     2.针对建筑抗震规范的相关规定隔震层下部结构和构件要进行罕遇地震下变形和承载力验算的要求,进行了以叠层橡胶支座的极限变形为基础,考虑钢筋混凝土柱的不同损伤状态的串联隔震体系的性能分析,讨论了串联隔震体系的性能指标限值,并与静力试验进行了对比;
     3.在隔震结构中串联隔震体系以隔震层的形式存在,隔震结构在进行动力计算时串联隔震体系的恢复力模型就较为关键。用有限元软件Marc对带铅芯叠层橡胶支座的串联隔震体系进行了非线性力学性能分析,系统的分析了力和变形关系、等效水平刚度和破坏等力学特性,并与试验部分结果进行了对比分析;基于铅芯叠层橡胶支座的恢复力模型提出串联隔震体系的恢复力模型,探讨串联隔震体系参数对双质点模型和单质点模型的特性的影响,采用单质点模型分析了近场地震作用下串联隔震体系的动力响应和减震效果,探讨了地震动加速度峰值对串联隔震体系减震效果的影响;
     4.对串联隔震体系进行了近场和远场地震作用下的振动台试验,研究串联隔震体系的动力响应特点,对比了近场和远场地震作用下串联隔震体系的动力响应,分析了近场和远场地震作用下串联隔震体系的减震效果,探讨了近场地震作用下输入模式对串联隔震体系的减震效果的影响,分析串联隔震体系试验模型的破坏特点和规律,讨论地震动加速度峰值对串联隔震体系减震效果的影响,并用串联隔震体系试验测试的加速时程响应度和位移时程响应与理论模型的计算结果进行了对比。
In recent years, earthquake occurs frequently and causes great damage and casualties in seismic areas, especially for the near-fault earthquake the losses and casualties is more serious. With the rapid development and application of isolation technology, many isolation buildings occur. Because of the need for engineering, there are many forms of isolation building including based isolation structure and mid-story isolation structure and series isolation structure. There are obvious requirements for based isolation structure and mid-story isolation structure in the code for seismic design of building except the series isolation structure. With the construction of many series isolation structures, it is a common phenomenon that the laminated rubber bearing is set on the top of reinforced concrete column, and is difined as series isolation system. The study of mechanical properties and experimental research for series isolation system is rare, and is more important with the widely application of series isolation system in the series isolation structure. In this paper, firstly, the horizontal stiffness of laminated rubber bearing for the defferent boundary conditions is analyzed, and the horizontal stiffness of series isolation system is studied. Secondly, performance analysis of series isolation system is done considering the limited deformation of laminated rubber bearing under the rare earthquake. Thirdly, restoring force model and the mass model and dynnimic responses of series isolation system is further discussed using the finite element method and the theoretical analysis. Finally, shaking table test of series isolation system is carried out for the near-fault and far-fault ground motion, and dynamic response and seismic reduced ratio is analyzed, and the theoretical and the experimental research for series isolation system should be finished.
     The main research content of this article is as followed:
     1. Considering the connection of top and bottom of laminated rubber bearing in the isolation structure, horizontal stiffness of laminated rubber bearing is derived for the different boundary conditions. The influence of different boundary condition for horizontal stiffness of laminated rubber bearing is analyzed using a case and the influence of boundary constraint ability for horizontal stiffness of laminated rubber bearing is further discussed under the different boundary conditions. Series isolation system is a typical boundary condition that the bottom of laminated rubber bearing is constrained by the conlumn. Based on its characteristic, the equation of horizontal stiffness for series isolation system is derived under the bending-shear-axial force considering the interaction of the laminated rubber bearing and reinforced concrete column. Horizontal stiffness for series isolation system related to nine given common laminated rubber bearings are analyzed using the related parameters, and the simplified equation is proposed. The influence of the related parameters for horizontal stiffness for series isolation system related to certain laminated rubber bearing is studied. Finally, the condition is given that the simplified equation is used
     2. Substructure and component under the isolation layer in the isolation building is done by deformation and bearing capacity checking calculation under the rare earthquake in the code for seismic building design. The analytical method is proposed, which performance analysis of series isolation system is done considering the performance levels of reinforced concrete column based on the limit deformation of laminated rubber bearing. Performance indexes are proposed. Finally, the analysis results of the performance indexes are compared to that of static test.
     3. The restoring force model of series isolation system is important when the dynamic calculation for isolation structure is done considering the series isolation system as an isolation layer. The nonlinear mechanical properties of series isolation system with the lead laminated rubber bearing are analyzed using the finite element software MARC, and mechanic properties including the relationship of deformationand force and equavilent horizontal stiffness and damage are studied systematically. Parts of mechanic properties are compared to the results of shaking table test for series isolation system. The restoring force model of series isolation system is analyzed based on the restoring force model of lead laminated rubber bearing, and the influence of parameters including the horinzontal stiffness ratio and mass ratio on its natural vibration properties are analyzed for the two mass model compared with the single mass model. Dynamic response and seismic reduced ratio of the series isolation system are studied and the influence of the peak grond acceleration for the seismic reduced ratio of series isolation system is further discussed.
     4. The shaking table test of series isolation system is carried out under the near-fault ground motion and far-fault ground motion. The characteristic of dynamic response for series isolation system is studied. Dynamic responses under the near-fault and far-fault ground motion are compared and seismic reduced ratio for series isolation system is analyzed. The effect of input patterns of the earthquake waves for seismic reduced ratio of series isolation system is discussed, and the damage characteristics and laws of series isolation system are analyzed and the influence of the peak grond acceleration for the seismic reduced ratio of series isolation system is further discussed. The acceleration time history response and for series isolation system displacement time history response of shaking table test are compared with that of theoretical model.
引文
[1]Haringx, J.A. On highly compressible helical springs rubber rods and their application for vibration-free mountings [J]. I. Philips Res. Rep.1948,3,401449.
    [2]Gent, A. N. Elastic stability of rubber compression springs [J].Journal of Engineering Mechanics,1964,6(4):318-326.
    [3]Koh, C.G., Kelly, J.M. A simple mechanical model for electrometric bearings used in base isolation [J].Journal of Engineering Mechanics,1988,30(12):933-943.
    [4]Imbimbo, M., Kelly J.M. Stability of isolators at large horizontal displacements [J].Earthquake Spectra,1997,13 (3):415-430.
    [5]Kelly,J.M.Tension buckling in multilayer elastomeric isolation bearings[J].journal of engineering mechanics,2003,129(12):1363-1368.
    [6]Imbinmo, M.and Kelly, J. M. Stability aspects of elastomeric bearings [J].earthquake spectra, 1997,13(3):431-449.
    [7]Kelly, J.M.and Marsico, M.R. Stability and post-buckling behavior in non-bolted elastomeric isolators [J]. Seism. Isolation Protect. Syst,2010,1(1):41-54.
    [8]Nagarajaiah S.Ferrell K. Stability of electrometric seismic isolation bearings [J]. Journal of Structural Engineering,1999,125(9):946-954.
    [9]Iizuka, M.A. macroscopic model for predicting large deformation behavior of laminated rubber bearing [J]. Engineering Structures,2000,22(4):323-334.
    [10]Buckle I.G. and Liu, H. experimental Determination of Critical Loads of Elastomeric Isolators at High Shear Strain [J]. NCEER Bulletin,1994,8(3):1-5.
    [11]Ali Karbakhsh Ravari. P-△ and end rotation effects on the influence of mechanical properties of elastomeric isolation bearings[J]. Journal of Structural Engineering,2012,138:669-675.
    [12]刘文光,周福霖,庄学真.柱端隔震夹层橡胶垫力学性能试验研究[J].地震工程与工程振动,1999,19(3):121-126.
    [13]张敏政,孟庆利,裴强.叠层橡胶隔震支座的动态稳定性和力学特性研究[J].地震工程与工程振动,2002,22(5):87-91.
    [14]杨巧荣,庄学真,刘文光,周福霖.夹层橡胶隔震支座全刚性性能、回转刚性及高压缩应力性能试验研究[J].地震工程与工程振动,2000,20(4):118-125.
    [15]ElMandooh GK, Ghobarah A. Flexural and shear hysteretic behavior of reinforced concrete columns with variable axial load [J]. Engineering Structures 2003,25(11):1353-1367.
    [16]Sezen H. Shear deformation model for reinforced concrete columns [J]. Structural Engineering and Mechanics,2008,28(1):39-52.
    [17]Shi-Yu Xu, Jian Zhang. Axial-shear-flexure interaction hysteretic model for RC columns under combined actions [J]. Engineering Structures,2012,34:548-563.
    [18]Shi-Yu Xu. Jian Zhang. Hysteretic shear-flexure interaction model of reinforced concrete columns for seismic response assessment of bridges [J]. Earthquake Engng Struct. Dyn,2011,40:315-337.
    [19]Jian Zhang, Shi-Yu Xu1,Yuchuan Tang. Inelastic displacement demand of bridge columns considering shear-flexure interaction [J]. Earthquake Engng Struct.Dyn. 2011,40:731-748.
    [20]K.J.Elwood, M.O.Eberhard. Effect stiffness of reinforcement concrete column [J]. PEER RESEACH DIGEST 2006-1 2006.
    [21]American society of civil engineers. FEMA356:prestandard and commentary for the seismic rehabilitation of buildings [J]. Federal emergency management agency. Washington,2000.
    [22]邹积麟.空间RC框架结构全过程静力弹塑性分析[D].北京:清华大学博士论文,2001.
    [23]叶列平,陆新征,马千里等.钢筋混凝土抗震结构非线性分析模型、方法和算例[J].工程力学,2006,23(sup.Ⅱ):131-140.
    [24]汪训流,陆新征,叶列平.往复荷载作用下钢筋混凝土柱受力性能的数值模型[J]工程力学,2007,24(12):76-81.
    [25]顾祥林,黄庆华,吴周促.钢筋混凝土柱考虑损伤累积的反复荷载一位移关系分析[J].地震工程与工程振动,2006,26(4):68-74.
    [26]郑越,陈兴冲,戴利民等.柱式钢筋混凝土桥墩的弹塑性抗震简化计算[J].公路交通科技,2006,23(4):76-79.
    [27]王德斌,李宏男.不同加载条件下钢筋混凝土构件力学特性及影响规律研究[J].振动与冲击,2013,32(5):113-118.
    [28]雷拓,钱江,刘伯权.考虑非线性剪切效应的钢筋混凝土柱模型化方法及应用[J].土木建筑与环境工程,2013,35(4):13-19.
    [29]孙广俊,蒋雯,李鸿晶.循环荷载下钢筋混凝土柱滞回性能数值模拟[J].振动、测试与诊断,2013,33(2):241-246.
    [30]叶献国,种迅,李康宁,周锡元Pushover方法与循环往复加载分析的研究[J].合肥工业大学学报(自然科学版),2001,24(6):1019-1024.
    [31]魏巍,冯启民.几种push-over分析方法对比研究[J].地震工程与工程振动, 2002,22(4):66-73.
    [32]缪志伟,马千里,叶列平等.Pushover方法的准确性和适用性分析研究[J].工程抗震与加固改造,2008,30(1):55-59.
    [33]周锡元,韩淼.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].振动工程学报,1999,12(2):159-165.
    [34]杜永峰,李慧.叠层橡胶垫与RC柱串联隔震体系的随机屈曲分析[J].防灾减灾工程学报,2010,30:16-21.
    [35]杜永峰,朱前坤,李慧.串联隔震体系的大变形力学行为分析与试验[J].振动与冲击,2011,30(11):236-239.
    [36]杜永峰,朱前坤,李慧.串联隔震系统水平刚度及对结构地震响应影响[J].振动与冲击,2011,30(11):21-24.
    [37]杜永峰,林治丹,李慧.橡胶支座与柱串联体系的动力特性分析[J].振动与冲击,2012,31(17):134-138.
    [38]杜永峰,朱前坤,李慧.加连梁柱串联隔震系统的弹性屈曲[J].中南大学学报:(自然科学版),2012,43(5):1902-1907.
    [39]杨静成.叠层橡胶支座与柱串联隔震体系稳定性分析[D].兰州:兰州理工大学,2009.
    [40]California Office of Emergency Services. Performance based seismic engineering of buildings[S]. Version 2000. California:Version 2000 Committee, Structural Engineering Association of California,1995. FEMA 273/274.
    [41]NEHRP commentary on the guideline for the rehabilitation of building[S]. Washington DC:Federal Emergency Management Agency,1996.
    [42]ATC-40 Seismic evaluation and retrofit of concrete buildings[S]. Redwood City, CA:Applied Technology Council,1996.
    [43]Deierlein G G, Krawinkler H, Cornell C A. A framework for performance-based earthquake engineering[R]. Paper No. 140.Christchurch, New Zealand:New Zealand Society for Earthquake Engineering,2003.
    [44]Moehle J P, Deierlein G G. A framework methodology for performance-based earthquake engineering[C]//Proceedings of 13th Word Conference on Earthquake Engineering. Paper No.679. Vancouver BC, Canada:13 WCEE Secretariat,2004.
    [45]管民生,韩大建,杜宏彪等.钢筋混凝土框架结构的抗震性能指标研究[J].深圳大学学报(理工版),2011,28(3):200-206.
    [46]陆本燕,刘伯权,邢国华等.桥梁结构基于性能的抗震设防目标与性能指标研究[J].工程力学,2011,28(11):96-103.
    [47]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报,2005,38(1):1-10.
    [48]门进杰,史庆轩,周琦.框架结构基于性能的抗震设防目标和性能指标的量化[J].土木工程学报,2008,41(9):76-82.
    [49]张宇,李宏男,李钢.既有钢筋混凝土结构抗震设防目标与性能评估.建筑结构学报,2013,34(7):29-38.
    [50]郭永恒,邓雪松,周云.某隔震结构基于多级设防的性能反应分析与目标评价.土木工程学报,2010,S1:323-328.
    [51]邓雪松,郭永恒,周云.基础隔震结构性能的设防水准和性能目标研究[J].广州大学学报(自然科学版),2008,7(5):84-88.
    [52]刘鹏飞,刘伟庆,王曙光.基础隔震结构的性能水准与设防目标[J].工程抗震与加固改造,2008,30(6):55-59.
    [53]孙臻,刘伟庆.直接基于位移的橡胶支座隔震结构性能设计方法.南京工业大学学报(自然科学版)[J],2011,33(5):13-18.
    [54]建筑抗震设计规范[M].北京,中国建筑工业出版社,2010.
    [55]党育,杜永峰,李慧.基础隔震结构设计及施工指南[M].北京,中国水利水电出版社,2007,242-255.
    [56]钢筋混凝土设计规范[M].北京,中国建筑工业出版社,2010.
    [57]陆新征,叶列平,廖志伟.建筑抗震弹塑性分析[M].中国建筑工业出版社,2009.
    [58]黄建龙,解广娟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡胶工业,2008,55(8):467-471.
    [59]郑明军,王文静,陈政南等.橡胶Mooney-Rivlin橡胶力学性能常数的确定[J].橡胶工业,2003,50(8):462-465.
    [60]于建华,魏永涛.不可压缩超弹性材料的有限元应力分析[J].西南交通大学学报,1998,33(1):41-45.
    [61]陈红火,杨剑等.新编Marc有限元实例教程[M].机械工业出版社,2007.
    [62]Herrmann, L.R., Hamidi, R, hafigh-Nobari, F, Lim, C.K. Nonlinear behavior of elastomeric bearings.I:Theory [J]. J.Eng.Mech..1988a, 114 (11):1811-1830.
    [63]Herrmann, L.R., Hamidi, R, Shafigh-Nobari,F., Ramaswamy,A.. Nonlinear behavior of elastomeric bearings. Ⅱ: FE analysis and verification [J]. J.Eng.Mech.1988b,114(11):1831-1853.
    [64]Herrmann, L.R, Ramaswamy, A, Hamidi, R. Analytical parameter study for class of elastomeric bearings [J]. J. Struct. Eng.,1989,115 (10):2415-2434.
    [65]Mineo Takayama, Hideyuki Tada, Ryuichi Tanaka. Finite-Element Analysis of Laminated Rubber Bearing Used in Base-Isolation System [J]. Rubber Chemistry and Technology:March 1992,65(1):46-62.
    [66]Abe, M., Yoshida, J., and Fujino, Y. Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. I:Experimental Study [J]. Journal of Structural Engineering,2004,130(8):1119-1132.
    [67]Yoshida, J., Abe, M., Fujino, Y., and Watanabe,H. Three-Dimensional Finite-Element Analysis of High Damping Rubber Bearings [J]. Journal of Engineering Mechanics,2004,130(5):607-620.
    [68]Amin, A., Wiraguna, S., Bhuiyan, A., Okui, Y. Hyper-elasticity Model for Finite Element Analysis of Natural and High Damping Rubbers in Compression and Shear [J]. Journal of Engineering Mechanics,2006,132(1):54-64.
    [69]Imbimbo,M.,and Luca,A. D.. F.E. stress analysis of rubber bearings under axial loads [J]. Comput. Struct,1998,68,31-39.
    [70]叶志雄,李黎,聂肃非等.铅芯橡胶支座非线性动态特性的显式有限元分析[J].工程抗震与加固改造,2006,28(6):53-60.
    [71]江宜城,叶志雄,聂肃菲等四铅芯橡胶支座显式有限元分析及试验研究[J].中国市政工程,2007,03(127):41-43.
    [72]江宜城,聂肃非,叶志雄等.多铅芯橡胶隔震支座非线性力学性能试验研究及其显式有限元分析[J].工程力学,2008,25(7):11-17.
    [73]庄文娟,朱玉华.铅芯橡胶隔震支座阻尼特性有限元分析[J].建筑结构,2010,40(S1),125-127.
    [74]杜永峰,韩登.不同类型串联隔震体系竖向承载力对比分析[J].士木工程学报,2010,43(S1):249-254.
    [75]杜永峰,杨静成,林治丹等.串联隔震体系静力性能有限元分析[J].工程抗震与加固改造,2010,32(4):26-31.
    [76]Bouc R. Forced vibration of mechanical system with hysteresis, Abstrcat[C]. Proceeding of 4th conference on nonlinear oscillation, Prague, Czechoslovakia, 1967.
    [77]Yi-Kwei Wen. Method for random vibration of hysteretic system [J]. Journal of the Engineering Mechanics Division, ASCE,1976,102,249-263.
    [78]Y. J. Park, Y. K. Wen and A. H-S. Ang. Random vibration of hysteretic systems under bi-directional ground motions[J]. Earthquake Engineering and Structural Dynamics,1986,14,543-557.
    [79]R.I.Skinner W H Robinson et al著,谢礼立等译校.工程隔震概论[M].北京:地震出版社,1996.
    [80]唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社,1993.
    [81]王斌,蒋东红,刘之洋.减震结构中橡胶垫水平刚度的变化对动力分析的影响[J].工业建筑,1999,29(6):13-16.
    [82]T. Fujita, S. Suzuki and S. Fujita:High Damping Rubber Bearings for Seismic Isolation of Buildings (1st Report, Hysteretic Restoring Force Characteristics and Analytical Models), Trans. Japan soc. Mech. Eng. C56,658-666,1990.
    [83]FENG Demin,et al. A new analytical model for the lead rubber bearing [C]. 12WCEE,2000.
    [84]金建敏,周福霖,谭平.铅芯橡胶支座微分型恢复力模型屈服前刚度的研究[J].工程力学,2010,27(9):7-13.
    [85]江辉,朱唏.近断层强震速度脉冲效应及连续梁桥减隔震特性分析[J].中国安全科学学报,2003,13(12):57-62.
    [86]江辉,朱唏.脉冲型地震动模拟与隔震桥墩性能的能量分析[J].北方交通大学学报,2004,28(4):6-11.
    [87]杨迪雄,李刚,程耿东.近断层脉冲型地震动作用下隔震结构地震反应分析[J].地震工程与工程振动,2005,25(2):119-124.
    [88]韩强,刘文光,杜修力.大高宽比隔震结构隔震层参数确定及地震反应简化计算,兰州理工大学学报,2006,32(1):121-125.
    [89]谭平,殷伟希,张颖.近场地震下层间隔震偏心结构的减震控制.振动与冲击,2011,30(11):281-286.
    [90]谭平,黄东阳,陈娟.近场地震动对隔震结构的影响分析[J].四川建筑科学研究,2009,35(6):195-197.
    [91]付伟庆,于德湖,刘文光,王福彤.高层隔震模型结构双向地震反应的数值计算与试验[J].振动与冲击,2010,29(5):114-117.
    [92]吴应雄,祁皑.柱顶隔振技术在首层薄弱层框架结构中的应用[J].延边大学学报(自然科学版),2011,37(6):349-354.
    [93]吴应雄,祁皑,颜学渊.某首层柱顶隔震结构动力特性测试研究[J].地震工程与振动工程,2011,31(6):147-152.
    [94]吴应雄,祁皑.首层薄弱层框架结构的柱顶隔震性能分析[J].南昌大学学报(工科版),2011,33(4):365-369.
    [95]马长飞,谭平,周福霖.近场地震作用下考虑P-△效应的首层柱顶隔震结构地震反应分析[J].振动工程学报,2012,25(4):439-445.
    [96]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [97]N.Makris and S.P, Chang. Effect of Viscous-Viscoplastic and Friction Damping on the Response of Seismic Isolated Structures [J].Earthquake Engineering and Structural Dynamics,2000,29:85-107.
    [98]朱玉华,施卫星,吕西林,冯德民.基础隔震房屋模型振动台对比试验与分析[J].同济大学学报,2001,29(5):505-509.
    [99]何文福,刘文光,霍达.小高宽比隔震结构双向输入振动台试验研究及数值分析[J].地震工程与工程振动,2006,26(5):218-225.
    [100]付伟庆,王焕定,刘文光,丁琳.LRB隔震结构模型振动台试验研究(1)[J].哈尔滨工业大学学报,2007,39(2):201-204.
    [101]付伟庆,王焕定,刘文光,丁琳.LRB隔震结构模型振动台试验研究(2)[J].哈尔滨工业大学学报,2007,39(4):521-525.
    [102]韩强,杜修力,刘晶波,刘文光.多维地震作用下隔震桥梁地震反应(Ⅰ)—模型结构振动台试验[J].振动与冲击,2008,27(9):59-65.
    [103]韩强,杜修力,刘晶波,刘文光.多维地震作用下隔震桥梁地震反应(Ⅱ)—理论分析与试验结果比较[J].振动与冲击,2008,27(9):66-71.
    [104]冼巧玲,刘建安,周福霖,楼板隔震消能结构的振动台试验研究[J].地震工程与工程振动,2008,28(3):146-151.
    [105]于旭,宰金珉,王志华.铅芯橡胶支座隔震钢框架结构体系振动台模型试验研究[J].世界地震工程,2010,26(3):30-36.
    [106]金建敏,谭平,周福霖等.下部减震层间隔振结构进行了振动台试验研究[J].振动与冲击,2012,31(6):104-108.
    [107]丁琳,付伟庆,吕孔才.振动台模拟高层隔震结构多维地震反应的试验[J].沈阳建筑大学学报(自然科学版),2007,23(3):367-371.
    [108]朱腾宇,朱玉华.铅芯橡胶支座滞回特性的振动台试验研究[J].结构工程师,2012,28(4):128-132.
    [109]胡晓莹,朱玉华.基础隔震结构竖向地震反应试验研究[J].结构工程师,2012,28(4):122-127.
    [110]XU ZhaoDong, ZENG Xiao, WU KeYi, LI AiQun, XU QingYang .Horizontal shaking table tests and analysis on structures with multi-dimensional earthquake isolation and mitigation devices[J]. Sci China Ser E-Tech Sci,2009,52(7): 2009-2016.
    [111]Xu Z D, Shi B Q, Wu K Y, et al. Vertical shaking table tests on the structure with viscoelastic multi-dimensional earthquake isolation and mitigation devices[J]. Sci China Ser E-Tech Sci,2009,52(10):2869-2876.
    [112]Mazza, F. and Vulcano, A.. Nonlinear Response of RC Framed Buildings with Isolation and Supplemental Damping at the Base Subjected to Near-Fault Earthquakes [J]. Journal of Earthquake Engineering,2009,13(5):690-715.
    [113]Takaoka, E., Takenaka,Y., Nimura,A.. Shaking table test and analysis method on ultimate behavior of slender base-isolated structure supported by laminated rubber bearings [J]. Earthquake Engineering & Structural Dynamics,2011,40(5), 551-570.
    [114]Sanchez, J., Masroor, A., Mosqueda, G., Ryan, K.. Static and Dynamic Stability of Elastomeric Bearings for Seismic Protection of Structures [J]. Journal of Structural Engineering,2013,139(7):1149-1159.
    [115]Han, X.,Warn, G., Kasalanati,A. Dynamic Stability Testing of Isolation Systems Composed of Elastomeric Bearings and Implications for Design [J].2013, 2140-2150.
    [116]胡庆昌,孙金墀,郑祺.建筑结构抗震减震与连续倒塌控制[M].北京:中国建筑工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700