用户名: 密码: 验证码:
不同杨树—农作物复合经营模式下凋落物分解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用杨树凋落叶和农作物秸秆为材料,通过野外实验和室内培养,研究了农林复合条件下杨树凋落物和农作物秸秆混合分解及养分释放的季节动态、土壤动物在分解过程中的作用以及混合分解对林地土壤呼吸的影响。同时,本文还探讨了改变添加频次对土壤碳氮矿化的影响。主要研究结果如下:
     (1)杨树养分内循环会影响凋落物基质质量,进而影响分解速率。栽培密度对杨树叶片N、P、Ca含量及转移效率有一定的影响,对K和Mg影响较小。南林-895杨的N、P和Ca含量较高,转移效率较小;而南林-95杨N和P含量较低,转移效率较高。
     (2)试验结束时(2012年1月初),杨树凋落叶和小麦秸秆的残留率较高,花生茎秆次之,花生叶的残留率最低;混合模式都表现出一定的促进分解作用,且杨树叶-花生叶模式的相互促更明显。
     (3)杨树叶和小麦秸秆中N和P元素表现为先富集,后释放;花生叶K含量低,失重率高于其他处理,而小麦秸秆K含量最高,前6个月的失重率却低于其他处理;随着凋落物的分解,各处理Ca元素的含量有所升高,Ca元素的释放主要集中在7月以后;花生叶处理和杨树叶处理表现出Mg元素的净释放,而小麦秸秆和花生茎秆在分解的初期存在一定程度的富集,然后才释放。混合模式能促进养分释放,且杨树叶-花生叶模式的促进作用最大。
     (4)凋落物中土壤动物优势类群为弹尾目和蜱螨目,夏季,土壤动物与凋落物的分解速率存在明显的正相关,冬季,土壤动物数量大幅减少,对凋落物分解速率的作用也很小。
     (5)春、夏季节,花生叶和花生茎秆的土壤呼吸速率高于杨树叶和小麦秸秆,而秋季时,花生叶和小麦秸秆呼吸速率较低。夏季时,杨树叶-花生叶和杨树叶-花生茎秆处理土壤呼吸速率高于杨树叶-小麦秸秆处理;秋季也存在相似的规律。
     (6)花生叶有机碳矿化累积量最大,花生茎秆和杨树叶次之,小麦秸秆最低。培养结束时(第52天),混合物表现出明显的促进矿化的作用;土壤微生物量碳氮与各残落物氮含量、C/N比存在显著的相关性;杨树叶、小麦秸秆及其混合物处理的土壤矿质态氮含量均低于对照,而添加花生叶、花生茎秆以及它们与杨树叶混合使矿质态氮含量高于对照。
     (7)分4次添加杨树叶的呼吸速率在1-7天较小,第8天后高于其他处理,且在9、17、25天出现峰值;分4次添加杨树叶最终的有机碳净矿化累积量高于一次添加处理;分4次添加杨树叶的土壤微生物量碳、氮高于一次性添加处理。添加残落物处理均降低了土壤矿质态氮含量,且这种现象在混合处理中更为明显。
In the agroforestry system, the mixture of the forest litter and crop straw residues is differentin chemical compositions and physical structure from monoculture, and plays a key role inecosystem nutrient cycle. The agroforestry patterns of poplar-peanut and poplar-wheat, which arethe typical agroforestry models in northern Jiangsu province, were chosen to study the impacts ofmixed residues on decomposition rate, nutrient release, the change of soil fauna and soilrespiration. The main results are as follows:
     (1)The contents of N、P and Ca and their transfer efficiency in poplar leaves were differentin the various plantations (spacing6m×6m and spacing3m×8m); Compare to poplarNanlin-95, the contents of N、P and Ca were lower, and thetransfer efficiency was higher inpoplar Nanlin-895.
     (2)The decomposition rate displayed in the order of H>HJ>Y>M for singleresidue treatments, while it was ranged as Y-H>Y-HJ>Y-M in mixed residue treatments. Atthe end of experiment, the mixture of the forest litter and crop residues demonstratedsignificantly stimulative effects on the decomposition rate.
     (3)N and P contents in poplar leaf litter and wheat straw residues mainly manifested asenrichment during the initial stage of decomposition, then released gradually. K content in peanutleaf residue was the lowest, but weight loss rate of total K was much higher than other treatments.On the contrary, K content in wheat straw residues was the highest, and weight loss rate of totalK was lower than other treatments during initial stage. In summer (July), Ca in the treatmentsbegan to release. N and P content in the poplar and wheat straw residues mainly manifested asenrichment during the initial stage of decomposition, then released gradually. There was asignificant net release of Mg in poplar leaf litter and peanut litter, while wheat and peanut stalkresidues demostrated enrichment effect for Mg during initial stage. The mixture of the forest litterand crop residues showed a significant stimulative effect on the nutrient release.
     (4)Acarina and Collembola were the dominant groups of soil fauna in litters. Duringsummer, the decomposition rate was well correlated with the population density of soil fauna, butthis phenomenon was not observed in winter.
     (5)In Spring and Summer, the soil respiration increased significantly after adding peanutleaf residue and peanut stalk residue. In Autumn, the soil respiration was lower in the treatmentsof adding peanut leaf residue and wheat straw residues into soils.
     (6)The cumulated carbon mineralization displayed in the order of H>HJ, Y>M>CKfor single residue treatments, while it was ranged as Y-H>Y-HJ>Y-M in mixed residuetreatments. At the end of incubation, the mixture of the forest litter and crop straw residues demonstrated significant stimulative effect on the cumulated carbon mineralization. A significantcorrelation was observed among nitrogen contents in litters, carbon-nitrogen ratio and microbialbiomass carbon and nitrogen in the soil. In mixed residue treatments, higher microbial biomasscarbon and nitrogen, and lower carbon-nitrogen ratio in the soil were observed in treatment ofY-H, while lower microbial biomass carbon and nitrogen, and higher carbon-nitrogen ratio weremeasured in treament of Y-M. When poplar leaf litter, wheat straw residue and their mixture wereadded to the soil, the contents of mineral nitrogen was significantly lower than the control.However, when peanut leaf residue, peanut stalk residue, and their mixed residues with thepoplar leaf litter were added, the contents of mineral nitrogen in soil increased significantly.
     (7)The cumulated carbon mineralization was significantly higher in the treatment ofadding poplar leaf litter intervally than that of adding all at the first day. The microbial biomasscarbon and nitrogen were significantly higher in the treatment of adding poplar leaf litterintervally than that of adding all at the first day. Compared to the CK, the content of soilinorganic nitrogen decreased significantly for all the residue addition treatments, especially in themixed residues treatments.
引文
[1] Alphei J, Bonkowski M, Scheu S. Protozoa, nematoda and lumbricidae in the rhizosphere ofHordelymus europaeus(Poaceae): Faunal interactions, response of microorganisms andeffects on plant growth[J]. Oecologia,1996,106:111-126.
    [2] Aneja M K, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G., Munch J C, SchloterM. Microbial colonization of beech and spruce litter influence of decomposition site andplant litter species on the diversity of the microbial community. Microbial Ecology,2006,52(1):127-135.
    [3] Austin A T, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled byphotodegradation[J]. Nature,2006,442:555-558.
    [4] Berger T W, Inselsbacher E, Zechmeister-Boltenstern S. Carbon dioxide emissions of soilsunder pure and mixed stands of beech and spruce, affected by decomposing foliage littermixtures[J]. Soil Biology and Biochemistry,2010,42(6):986-997.
    [5] Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on thetemperature sensitivity of soil respiration[J]. Nature,1998,396:570-572.
    [6] Bradley R L, Grenon F. Evidence that straw does not increase the mobilization of N fromdecomposing salal (Gaultheria shallon Pursh) leaf litter[J]. Soil Biology and Biochemistry,2006,38(1):191-194.
    [7] Brussaard L, Pulleman M M, Ouédraogo E, et al. Soil fauna and soil function in the fabric ofthe food web[J]. Pedobiologia,2007,50:447-462.
    [8] Bryant D M, Elisabeth A H, Timothy R S, et al. Analysis of litter decomposition in an alpinetundra[J]. Canadian Journal of Botany,1998,76(7):1295-1304.
    [9] Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to noseasonal temperature acclimation for sugar maple and red pine[J]. Tree Physiology,2003,23(4):273-280.
    [10] Cobb R C, Orwig D A, Currie S. Decomposition of green foliage in eastern hemlock forestsof southern New England impacted by hemlock woolly adelgid infestations[J]. CanadianJournal of Forest Research,2006,36:1331-1341.
    [11] C té B, Fyles J W, Djalivand H. Increasing N and P resorption efficiency and proficiency innorthern deciduous hardwoods with decreasing foliar N and P concentrations[J]. Annals offorest science,2002,59(3):275–281.
    [12] Demoling F, Figueroa D, B th E. Comparison of factors limiting bacterial growth indifferent soils[J]. Soil Biology and Biochemistry,2007,39:2485-2495.
    [13] Dick W A, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustmentindicators[J]. Soil Biology and Biochemistry,2000,32(13):1915-1919.
    [14] Duong T T T, Baumann K, Marschner P. Frequent addition of wheat straw residues to soilenhances carbon mineralization rate[J]. Soil Biology and Biochemistry,2009,41:1475-1482.
    [15] Ernst G, Henseler I, Felten D, et al. Decomposition and mineralization of energy cropresidues governed by earthworms[J]. Soil Biology and Biochemistry,2009,41:1548-1554.
    [16] Filser J, Mebes K H, Winter K, et al. Long-term dynamics and interrelationships of soilCollembola and microorganisms in an arable landscape following land use change[J].Geoderma,2002,105(3-4):201-221.
    [17] Fyles J W, Fyles I H. Interaction of Douglas-fir with red alder and salal foliage litter duringdecomposition[J]. Canadian Journal of Forest Research,1993,23(3):358-361.
    [18] González G, Seastedt T R. Soil fauna and plant litter decomposition in tropical and subalpineforests[J]. Ecology,2001,82:955-964.
    [19] Hansen R A.Effects of habitat complexity and composition on a diverse littermicroarthropod assemblage[J]. Ecology,2000,81(4):1120-1132.
    [20] Hansen R A.Red oak litter promotes a microarthropod functional group that accelerates itsdecomposition[J]. Plant and Soil,1999,209(1):37-45.
    [21] Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictorsof C and N mineralization[J]. Soil Biology and Biochemistry,1995,27:1099-1108.
    [22] H ttenschwiler S, Vitousek P M. The role of polyphenols in terrestrial ecosystem nutrientcycling[J]. Trends in Ecology and Evolution,2000,15(6):238-243.
    [23] Hector A, Beale A J, Minns A. Consequences of the reduction of plant diversity for litterdecomposition: effects through litter quality and microenvironment[J]. Oikos,2000,90(2):357-371.
    [24] Hoorens B, Aerts R, Stroetenga M, et al. Litter quality and interactive effects in littermixtures: more negative interactions under elevated CO2?[J].2002, Journal of Ecology,90:1009-1016.
    [25] Hutchens J J, Benfield E F. Effects of forest defoliation by the gypsy moth on detritusprocessing in southern Appalachian streams[J]. American Midland Naturalist,1999,143(2):397-404.
    [26] Janssens I A, Pilegaard K. Large seasonal changes in Q10of soil respiration in a beechforest[J]. Global Change Biology,2003,9:911-918.
    [27] Kramer C, Trumbore S, Fr berg M, et al. Recent (<4year old) leaf litter is not a majorsource of microbial carbon in a temperate forest mineral soil[J]. Soil Biology andBiochemistry,2010,42(7):1028-1037.
    [28] Kromp B. Carabidbeetlecommunities (Carabidae, coleoptera) in biologically andconventionally farmed agroecosystems[J]. Agriculture, ecosystems and environment,1989,27(1-4):241-251.
    [29] Ladd J N, Amato M, Oades J M. Decomposition of plant material in Australian soils: III.Residual organic and microbial biomass C and N from isotope-labelled legume material andsoil organic matter, decomposing under field conditions[J]. Australian Journal of SoilResearch,1985,23:603-611.
    [30] Loranger-Merciris G, Barthes L, Gastine A, et al. Rapid effects of plant species diversity andidentity on soil microbial communities in experimental grassland ecosystems[J]. SoilBiology and Biochemistry,2006,38(8):2336-2343.
    [31] Lorena C A, Noé V D, Victoria C M, et al. Soil nitrogen in relation to quality anddecomposability of plant litter in the Patagonian Monte, Argentina[J]. Plant Ecology,2005,181:139-151.
    [32] Lousier J D, Parkinson D. Chemical element dynamics in decomposing leaf litter [J].Canadian Journal of Botany,1978,56:2795-2812.
    [33] Marhan S, Scheu S. The influence of mineral and organic fertilisers on the growth of theendogeic earthworm Octolasion tyrtaeum (Savigny)[J]. Pedobiologia,2005,49:239-249.
    [34] McGonigle T P. The significance of grazing on fungi in nutrient cycling[J]. Canada Journalof Botany,1995,73:1370-1376.
    [35] Meier C L, Bowman W D. Chemical composition and diversity influence non-additiveeffects of litter mixtures on soil carbon and nitrogen cycling: Implications for plant speciesloss[J]. Soil Biology and Biochemistry,2010,42(9):1447-1454.
    [36] Mo J, Brown S, Peng S, et al. Nitrogen availability in disturbed, rehabilitated and matureforests of tropical China[J]. Forest Ecology and Management,2003,175(1-3):573-583.
    [37] Mondini C, Cayuela M L, Sanchez-Monedero M A, et al. Soil microbial biomass activationby trace amounts of readily available substrate[J]. Biology and Fertility of Soils,2006,42:542-549.
    [38] Moody S A, Newsham K K, Ayres P G, et al. Variation in the responses of litter andphylloplane fungi to UV-B radiation (290-315nm)[J]. Mycological Research,1999,103(11):1469-1477.
    [39] Moody S A, Paul N D, Bj rn L O, et al. The direct effects of UV-B radiation on Betulapubescens litter decomposing at four European field sites[J]. Plant Ecology,2001,154(1-2):27-36.
    [40] Moore T R, Trofymow J A, Prescott CE, et al. Patterns of carbon, nitrogen and phosphorusdynamics in decomposing foliar litter in Canadian forests[J]. Ecosystems,2006,9(1):46-62.
    [41] Moretto A S, Distel R A, Didone N G. Decomposition and nutrient dynamics of leaf litterand roots from palatable and unpalatable grasses in a semiarid grassland[J]. Applied SoilEcology,2001,18:31-37.
    [42] Ostertag R, Marín-Spiotta E, Silver W L, et al. Litterfall and decomposition in relation tosoil carbon pools along a secondary forest chronosequence in Puerto Rico[J]. Ecosystems,2008,11:701-714.
    [43] Pancotto V A, Sala O E, Cabello M, et al. Solar UV-B decreases decomposition inherbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altereddecomposer community[J]. Global Change Biology,2003,9(10):1465-1474.
    [44] Paterson E, Osler G, Dawson L A, et al. Labile and recalcitrant plant fractions are utilizedby distinct microbial communities in soil: independent of the presence of roots andmycorrhizal fungi.[J]. Soil Biology and Biochemistry,2008,40:1103-1113.
    [45] Pausas J G, Casals P, RomanyàJ. Litter decomposition and faunal activity in Mediterraneanforest soils: effects of N content and the moss layer[J]. Soil Biology and Biochemistry,2004,36:989-997.
    [46] Petersen H. A review of collembolan ecology in ecosystem context[J]. Acta ZoologicaFennica,1994,195:111-118.
    [47] Polyakova O, Billor N. Impact of deciduous tree species on litterfall quality, decompositionrates and nutrient circulation in pine stands[J]. Forest Ecology andManagement,2007,253(123):11-18.
    [48] Prescott C E, Vesterdal L, Preston CM, et al. Influence of initial chemistry on decompositionof foliar litter in contrasting forest types in British Columbia[J]. Canadian Journal of ForestResearch,2004,34:1714-1729.
    [49] Prescott C E. Do rates of litter decomposition tell us anything we really need to know[J].Forest Ecology and Management,2005,220(1-3):66-74.
    [50] Prévost-Bouré NC, Soudani K, Damesin C, et al. Increase in aboveground fresh litterquantity over-stimulates soil respiration in a temperate deciduous forest[J]. Applied SoilEcology,2010,46(1):26-34.
    [51] Raich J W, Nadelhoffer KJ. Below ground carbon allocation in forest ecosystems: globaltrends[J]. Ecology,1989,70(5):1346-1354.
    [52] Raich J W, SchlesingerW H. The global carbon dioxide flux in soil respiration and itsrelationship to vegetation. Tellus B,1992,44:81-99.
    [53] Rantalainen M L, Kontiola L, Haimi J, et al. Influence of resource quality on thecomposition of soil decomposer community in fragmented and continuous habitat. SoilBiology and Biochemistry,2004,36:1983-1996.
    [54] Rowell D M, Prescott C E, Preston C M. Decomposition and nitrogen mineralization frombiosolids and other organic materials: relationship with initial chemistry[J]. Journal ofEnvironmental Quality,2001,30:1401-1410.
    [55] Ruan H H, Li Y Q, Zou X M. Soil communities and plant litter decomposition as influencedby forest debris: Variation across tropical riparian and upland sites[J]. Pedobiologia,2005,49(6):529-538.
    [56] Saiya-Cork K R, Sinsabaugh R L, Zak D R, et al. The effects of long term nitrogendeposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biologyand Biochemistry,2002,34(9):1309-1315.
    [57] Sakala W D, Cadischa G, Giller K E, et al. Interactions between residues of maize andpigeonpea and mineral N fertilizers during decomposition and N mineralization[J]. SoilBiology and Biochemistry,2000,32(5):679-688.
    [58] Salamanca E F, Kaneko N, Katagiri S. Rainfall manipulation effects on litter decompositionand the microbial biomass of the forest floor[J]. Applied Soil Ecology,2003,22:271-281.
    [59] Sariyildiz T, Akkuzu E, Kü ük M, et al. Effects of Ips typographus (L.) damage on litterquality and decomposition rates of Oriental Spruce[Picea Orientalis(L) Link] in HatilaValley National Park, Turkey[J]. European Journal of Forest Research,2008,127(5):429-440.
    [60] Sariyildiz T, Anderson J M, Kucuk M. Effects of tree species and topography on soilchemistry,litter quality, and decomposition in Northeast Turkey[J]. Soil Biology andBiochemistry,2005,37:1695-1706.
    [61] Sariyildiz T, Anderson J M. Decomposition of sun and shade leaves from three deciduoustree species, as affected by their chemical composition[J]. Biology and fertility of soils,2003,37:137-146.
    [62] Sariyildiz T, Anderson J M. Variation in the chemical composition of green leaves and leaflitters from three deciduous tree speciesgrowing on different soil types[J]. Forest Ecologyand Management,2005,210(1-3):303–319.
    [63] Teuben A. Nutrient availability and interactions between soil arthropods andmicroorganisms during decomposition of coniferous litter:a mesocosm study[J]. Biology andFertility of Soils,1991,10(4):256-266.
    [64] Tian D L, Peng Y Y, Yan W D, et al. Effects of thinning and litter fall removal on fine rootproduction and soil organic carbon content in masson pine plantations[J]. Pedosphere,2010,20(4):486-493.
    [65] Valá ková V, najdr J, Bittner B, et al. Production of lignocellulose-degrading enzymes anddegradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraeaforest[J]. Soil Biology and Biochemistry,2007,39:2651–2660.
    [66] Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbonstorage through changes in microbial enzymatic activity[J]. Ecological Applications,2004,14(4):1172-1177.
    [67] Wang C Y, Guo P, Han G, et al. Effect of simulated acid rain on the litter decomposition ofQuercus acutissima and Pinus massoniana in forest soil microcosms and the relationshipwith soil enzyme activities[J]. Science of the Total Environment,2010,408(13):2706-2713.
    [68] Wang W J, Baldock J A, Dalal R C, Moody P W. Decomposition of plant materials inrelation to nitrogen availability and biochemistry determined by NMR and wet-chemicalanalysis. Soil Biology and Biochemistry,2004,36(12):2045-2058.
    [69] Wardle D A, Nilssona M-C, Zackrisson O, et al. Determinants of litter mixing effects in aSwedish boreal forest[J]. Soil Biology Biochemistry,2003,35(6):827-835.
    [70] Wardle D A, Yeates G W, Barker G M, et al. The influence of plant litter diversity ondecomposer abundance and diversity[J]. Soil Biology Biochemistry,2006,38(5):1052-1062.
    [71] Weaver A R, Kissel D E, Chen F, et al. Mapping soil pH buffering capacity of selected fieldsin the coastal plain[J]. Soil Science Society of America Journal,2004,68(2):662-668.
    [72] Wiant H V. Influence of temperature on the rate of soil respiration[J]. Joural of Forest,1967,65:489-490.
    [73] Willcock J, Magan N. Impact of environmental factors on fungal respiration and dry matterlosses in wheat straw[J]. Journal of Stored Products Research,2000,37:35-45.
    [74] Wolters, V. Invertebrate control of soil organic matter stability[J]. Biology and Fertility ofSoils,2000,31:1-19.
    [75] Xu M, Qi Y. Spatial and seasonal variation of Q10determined by soil respirationmeasurements at a Sierra Nevadan forest[J]. Global Biogeochemical Cycles,2001,15:687-696.
    [76] Yang X D, Chen J. Plant litter quality influences the contribution of soil fauna to litterdecomposition in humid tropical forests, southwestern China[J]. Soil Biology andBiochemistry,2009,41(5):910-918.
    [77] Zeng D H, Mao R, Chang S X, et al. Carbon mineralization of tree leaf litter and cropresidues from poplar-based agroforestry systems in Northeast China: A laboratory study[J].Applied Soil Ecology,2010,44(2):133-137.
    [78] Zhang P, Tian X J, He X B, et al. Effect of litter quality on its decomposition in broadleafand coniferous forest[J]. European Journal of Soil Biology,2008,44(4):392-399.
    [79]包和林,张艳荷,侯丹,等.氮、硫沉降下凋落物分解失重规律[J].中南林业科技大学学报,2009,29(5):77-81.
    [80]曹建华,陶忠良,赵春梅,等.不同树龄橡胶树枯落物养分归还比较[J].热带作物学报,2011,32(1):1-6.
    [81]常雅军,曹靖,李建建,等.秦岭西部山地针叶林凋落物层的化学性质[J].生态学杂志,2009,28(7):1308-1315.
    [82]常雅军,陈琦,曹靖,等.甘肃小陇山不同针叶林凋落物量、养分储量及持水特性[J].生态学报,2011,31(9):2392-2400.
    [83]陈法霖,张凯,郑华,等. PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J].应用与环境生物学报,2011,17(2):145-150.
    [84]陈法霖,郑华,欧阳志云,等.土壤微生物群落结构对凋落物组成变化的响应[J].土壤学报,2011,48(3):603-611.
    [85]陈四清,崔骁勇,周广胜,等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究[J].植物学报,1999,41(6):645-650.
    [86]陈小鸟,由文辉,王向阳,等.常绿阔叶林不同砍伐处理下土壤动物的群落特征[J].生物多样性,2009,17(2):160-167.
    [87]陈兴丽,周建斌,刘建亮,等.不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响[J].应用生态学报,2009,20(2):314-319.
    [88]陈兴丽,周建斌,王春阳,等.黄土高原区几种不同植物残落物碳、氮矿化特性研究[J].水土保持学报,2010,24(3):109-112.
    [89]陈印平,潘开文,吴宁,等.凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响[J].应用与环境生物学报,2005,11(2):146-151.
    [90]程煜,洪伟,吴承祯,等.木荷马尾松群落凋落物养分归还量年变化格局分析[J].亚热带资源与环境学报,2009,4(3):15-21.
    [91]邓琦,刘世忠,刘菊秀,等.南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J].地球科学进展,2007,22(9):976-986.
    [92]邓仁菊,杨万勤,冯瑞芳,等.季节性冻融期间亚高山森林凋落物的质量损失及元素释放[J].生态学报,2009,29(10):5730-5735.
    [93]邓仁菊,杨万勤,张健,等.季节性冻融期间亚高山森林凋落物的质量变化[J].生态学报,2010,30(3):0830-0835.
    [94]邓晓保,邹寿青,付先惠,等.西双版纳热带雨林不同土地利用方式对土壤动物个体数量的影响[J].生态学报,2003,23(1):130-138.
    [95]杜占池,樊江文,钟华平.营养元素在红三叶叶片分解过程中的释放动态[J].草业科学,2003,20(7):12-15.
    [96]樊后保,刘文飞,徐雷,等.氮沉降下杉木(Cunninghamia lanceolata)人工林凋落叶分解过程中C、N元素动态变化[J].生态学报,2008,28(6):2546-2553.
    [97]方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报,2008,19(10):2308-2316.
    [98]冯文婷,邹晓明,沙丽清,等.哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较[J].植物生态学报,2008,32(1):31-39.
    [99]勾影波,苏永春.土壤温度和含水量对螨类和弹尾类动物数量的影响[J].常熟理工学院学报(自然科学版),2007,21(2):57-62.
    [100]谷加存,王政权,韩有志,等.采伐干扰对帽儿山天然次生林土壤表层水分空间异质性的影响[J].生态学报,2005,25(8):2001-2009.
    [101]官昭瑛,赵颖,童晓立.蒲桃和人面子叶片单宁含量与凋落物分解速率及底栖动物定殖的关系[J].应用生态学报,2009,20(10):2493-2498.
    [102]郭剑芬,陈光水,钱伟,等.万木林自然保护区2种天然林及杉木人工林凋落物量及养分归还[J].生态学报,2006,26(12):4092-4098.
    [103]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [104]郭晋平,丁颖秀,张芸香.关帝山华北落叶松林凋落物分解过程及其养分动态[J].生态学报,2009,29(10):5684-5695.
    [105]郭培培,江洪,余树全,等.亚热带6种针叶和阔叶树种凋落叶分解比较[J].应用与环境生物学报,2009,15(3):655-659.
    [106]郭伟,文维全,黄玉梅,等.川西亚高山针阔混交林与针叶纯林苔藓凋落物层持水性能研究[J].水土保持学报,2009,23(6):240-243.
    [107]郭忠玲,郑金萍,马元丹,等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报,2006,26(4):1037-1046.
    [108]韩勇,徐宪根,阮宏华,等.武夷山黄山松凋落叶在不同植物群落中的分解动态[J].南京林业大学学报(自然科学版),2010,34(3):141-145.
    [109]洪江华,江洪,马元丹,等.模拟酸雨对亚热带典型树种叶凋落物分解的影响[J].生态学报,2009,29(10):5246-5251.
    [110]胡灵芝,陈德良,朱慧玲,等.百山祖常绿阔叶林凋落物凋落节律及组成[J].浙江大学学报(农业与生命科学版),2011,37(5):533-539.
    [111]胡亚林,汪思龙,黄宇,等.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J].生态学报,2005,25(10):2662-2668.
    [112]胡亚林,曾德慧,汪思龙,等.管理措施对人工林土壤质量的影响[J].生态学杂志,2007,26(11):1828-1834.
    [113]黄建辉,陈灵芝,韩兴国.几种常微量元素在辽东栎枝条分解过程中的变化特征[J].生态学报,2000,20(2):229-234.
    [114]黄靖宇,宋长春,张金波,等.凋落物输入对三江平原弃耕农田土壤基础呼吸和活性碳组分的影响[J].生态学报,2008,28(7):3417-3424.
    [115]黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709-714.
    [116]黄玉梅,张健,杨万勤,等.川西亚高山云杉人工林土壤动物群落结构特征研究[J].安徽农业科学,2009,37(4):1646-1648.
    [117]惠淑荣,秦莹,刘强,等.辽东地区日本落叶松人工林凋落物层的持水性能研究[J].沈阳农业大学学报,2011,42(3):311-315.
    [118]贾黎明,方陆明,胡延杰.杨树刺槐混交林及纯林枯落叶分解[J].应用生态学报,1998,9(5):463-467.
    [119]柯欣,赵立军,尹文英.青冈林土壤动物群落结构在落叶分解过程中的演替变化[J].动物学研究,1999,20(3):207-213.
    [120]柯欣,赵立军,尹文英.青冈林土壤跳虫群落结构在落叶分解过程中的变化[J].生态学报,2001,21(6):982-987.
    [121]李娟,章明清,林琼,等.钾、钙、镁交互作用对烤烟生长和养分吸收的影响[J].安徽农业大学学报,2005,32(4):529-533.
    [122]李冬梅,由文辉,方芳芳.两种土壤背景值下城市绿地凋落物层土壤动物群落结构与动态[J].安徽农业科学,2009,37(26):12584-12588.
    [123]李国雷,刘勇,李瑞生,等.油松叶凋落物分解速率、养分归还及组分对间伐强度的响应[J].北京林业大学学报,2008,30(10):52-57.
    [124]李海涛,于贵瑞,李家永,等.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放[J].生态学报,2007,27(3):898-908.
    [125]李洁冰,闫文德,马秀红.亚热带樟树林凋落物量及其养分动态特征[J].中南林业科技大学学报,2011,31(5):223-228.
    [126]李仁洪,胡庭兴,涂利华,等.华西雨屏区慈竹林凋落叶分解过程养分释放对模拟氮沉降的响应[J].林业科学,2010,46(8):8-14.
    [127]李仁洪,胡庭兴,涂利华,等.模拟氮沉降对华西雨屏区慈竹林凋落物分解的影响[J].应用生态学报,2009,20(11):2588-2593.
    [128]李荣华,邓琦,周国逸,等.起始时间对亚热带森林凋落物分解速率的影响植物[J].生态学报,2011,35(7):699-706.
    [129]李荣华,汪思龙,王清奎.不同林龄马尾松针叶凋落前后养分含量及回收特征[J].应用生态学报,2008,19(7):1443-1447.
    [130]李世清,李生秀.有机物料在维持土壤微生物体氮库中的作用[J].生态学报,2001,21(1):136-142.
    [131]李雪峰,韩士杰,郭忠玲,等.红松阔叶林内凋落物表层与底层红松枝叶的分解动态[J].北京林业大学学报,2006,28(3):9-13.
    [132]李雪峰,韩士杰,胡艳玲,等.长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J].应用生态学报,2008,19(2):245-251.
    [133]李雪峰,张岩,牛丽君,等.长白山白桦纯林和白桦山杨混交林凋落物的分解[J].生态学报,2007,27(5):1782-1790.
    [134]李艳红,罗承德,杨万勤,等.桉-桤混合凋落物分解及其土壤动物群落动态[J].应用生态学报,2011,22(4):851-856.
    [135]李志安,林永标,彭少麟.华南人工林凋落物养分及其转移应用[J].生态学报,2000,11(3):321-326.
    [136]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83.
    [137]梁晓兰,潘开文,王进闯.花椒(Zan thoxylum bungeanum)凋落物分解过程中酚酸的释放及其浸提液对土壤化学性质的影响[J].生态学报,2008,28(10):4676-4684.
    [138]廖利平,马越强,汪思龙,等.杉木与主要阔叶造林树种叶凋落物的混合分解[J].植物生态学报,2000,24(1):27-33.
    [139]林开敏,章志琴,曹光球,等.杉木与楠木叶凋落物混合分解及其养分动态[J].生态学报,2006,26(8):2732-2738.
    [140]林玲,孙光明,李绍鹏.几种热带果树的镁素营养研究进展[J].热带农业科学,2003,23(6):64-67.
    [141]林英华,孙家宝,张夫道.我国重要森林群落凋落物层土壤动物群落生态特征[J].生态学报,2009,29(6):2938-2944.
    [142]凌华,陈光水,陈志勤.中国森林凋落量的影响因素[J].亚热带资源与环境学报,2009,4(4):66-71.
    [143]刘满强,胡锋,李辉信,等.退化红壤不同人工林恢复下土壤节肢动物群落特征[J].生态学报,2002,22(1):54-61.
    [144]刘漫萍,刘武惠,崔志兴,等.上海城市绿化带土壤蜱螨目群落结构与生物指标[J].生态学杂志,2007,26(10):1555-1562.
    [145]刘强,彭少麟,毕华,等.热带亚热带森林凋落物交互分解的养分动态[J].北京林业大学学报,2005,27(1):24-32.
    [146]刘任涛,赵哈林,刘继亮.黄河兰州段典型人工林大型土壤动物群落结构及其多样性[J].土壤学报,2009,46(3):553-556.
    [147]刘尚华,吕世海,冯朝阳,等.京西百花山区六种植物群落凋落物及土壤呼吸特性研究[J].中国草地学报,2008,30(1):78-85.
    [148]刘文飞,樊后保,袁颖红,等.氮沉降对杉木人工林凋落物大量元素归还量的影响[J].水土保持学报,2011,25(1):137-141.
    [149]刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-10.
    [150]刘颖,武耀祥,韩士杰,等.长白山四种森林类型凋落物分解动态[J].生态学杂志,2009,28(3):400-404.
    [151]刘勇,李国雷.不同林龄油松人工林叶凋落物分解特性[J].林业科学研究,2008,21(4):500-505.
    [152]卢洪健,刘文杰,罗亲普.西双版纳山地橡胶林凋落物的生态水文效应[J].生态学杂志,2011,30(10):2129-2136.
    [153]卢立华,蔡道雄,贾宏炎,等.南亚热带7种林分凋落叶养分含量的年动态变化[J].林业科学,2009,45(4):1-6.
    [154]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [155]陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(Pinus caribaea)林土壤特性的影响[J].生态学报,2008,28(7):3205-3211.
    [156]罗媛媛,袁金凤,沈国春,等.常绿阔叶林片段中木荷凋落叶分解速率及中小型土壤节肢动物群落的结构动态[J].应用生态学报,2010,21(2):265-271.
    [157]骆土寿,陈步峰,李意德,等.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究[J].生态学报,2001,21(12):2013-2017.
    [158]马元丹,江洪,余树全,等.不同起源时间的植物叶凋落物在中亚热带的分解特性[J].生态学报,2009,29(10):5237-5245.
    [159]马元丹,江洪,余树全,等.模拟酸雨对毛竹凋落物分解的影响[J].中山大学学报(自然科学版),2010,49(2):95-99.
    [160]莫江明,薛璟花,方运霆,等.鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J].生态学报,2004,24(8):1413-1420.
    [161]潘存德,王强,阮晓.天山云杉针叶水提取物自毒效应及自毒物质的分离鉴定[J].植物生态学报,2009,33(1):186-196.
    [162]彭国全,崔汛,吴成春,等.不同海拔岷江冷杉林凋落物量及其季节动态变化研究[J].陕西林业科技,2011,(4):1-4,14.
    [163]齐红岩,李天来,富宏丹,等.不同氮钾施用水平对番茄营养吸收和土壤养分变化的影响[J].土壤通报,2006,37(2):268-272.
    [164]钱玉婷,常志州,王世梅,等.有机溶剂对秸秆蜡质层溶解和生物降解率的影响[J].农业环境科学学报,2009,28(5):1060-1064.
    [165]邱军,傅荣恕.土壤温湿度对甲螨和跳虫数量的影响[J].山东师范大学学报(自然科学版),2004,19(4):72-74.
    [166]任泳红,曹敏,唐建维,等.西双版纳季节雨林与橡胶多层林凋落物动态的比较研究[J].植物生态学报,1999,23(5):418-425.
    [167]沈善敏,宇万太,张璐,等.杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化[J].应用生态学报,1992,3(4):296-301.
    [168]沈善敏,宇万太,张璐,等.杨树主要营养元素内循环及外循环研究Ⅱ.落叶前后养分在植株体内外的迁移和循环[J].应用生态学报,1993,4(1):27-31.
    [169]施政,汪家社,何容,等.武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性[J].应用生态学报,2008,19(11):2357-2363.
    [170]史学军,潘剑君,陈锦盈,等.不同类型凋落物对土壤有机碳矿化的影响[J].环境科学,2009,30(6):1832-1837.
    [171]宋新章,江洪,余树全,等.中亚热带森林群落不同演替阶段优势种凋落物分解试验[J].应用生态学报,2009,20(3):537-542.
    [172]宋曰钦,翟明普,贾黎明.三倍体毛白杨地上凋落物对林龄的响应[J].东北林业大学学报,2010,38(3):17-22.
    [173]孙向阳.土壤学[M],北京:中国林业出版社,2004.
    [174]孙晓芳,黄建辉,王猛,等.内蒙古草原凋落物分解对生物多样性变化的响应[J].生物多样性,2009,17(4):397-405.
    [175]田茂洁.川中人工纯柏林凋落物分解动态研究[J].生态学杂志,2005,24(10):1147-1150.
    [176]王春阳,周建斌,董燕婕,等.黄土区六种植物凋落物与不同形态氮素对土壤微生物量碳氮含量的影响[J].生态学报,2010,30(24):7092-7100.
    [177]王春阳,周建斌,夏志敏,等.黄土高原区不同植物凋落物搭配对土壤微生物碳、氮的影响[J].生态学报,2011,31(8):2139-2147.
    [178]王光军,田大伦,闫文德,等.改变凋落物输入对杉木人工林土壤呼吸的短期影响[J].植物生态学报,2009,33(4):739-747.
    [179]王光军,田大伦,闫文德,等.马尾松林土壤呼吸对去除和添加凋落物处理的响应[J].林业科学,2009,45(1):27-30.
    [180]王光军,田大伦,闫文德,等.去除和添加凋落物对枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)林土壤呼吸的影响[J].生态学报,2009,29(2):643-652.
    [181]王国兵,唐燕飞,阮宏华,等.次生栎林与火炬松人工林土壤呼吸的季节变异及其主要影响因子[J].生态学报,2009,29(2):966-974.
    [182]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3):375-380.
    [183]王丽丽,宋长春,郭跃东,等.三江平原不同土地利用方式下凋落物对土壤呼吸的贡献[J].环境科学,2009,30(11):3130-3135.
    [184]王良桂,张焕朝,朱强根,等.不同林龄和连栽代次杨树人工林土壤氮矿质化特性[J].河南农业大学学报,2010,44(1):28-33.
    [185]王清奎,汪思龙,于小军,等.杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响[J].应用生态学报,2007,18(6):1203-1207.
    [186]王娓,郭继勋.东北松嫩平原羊草群落的土壤呼吸与枯枝落叶分解释放CO2贡献量[J].生态学报,2002,22(5):655-660.
    [187]王希华,黄建军,闫恩荣.天童国家森林公园常见植物叶凋落物分解的研究[J].植物生态学报,2004,28(4):457-467.
    [188]王意锟,方升佐,田野,等.残落物混合分解对杨树-农作物复合系统土壤碳氮矿化的影响[J].水土保持学报,2012,26(2):150-154.
    [189]魏晶,吴钢,邓红兵.长白山高山冻原生态系统凋落物养分归还功能[J].生态学报,2004,24(10):2211-2216.
    [190]巫志龙,周新年,郑丽凤,等.人工针阔混交林择伐后凋落物及土壤养分含量分析[J].福建林学院学报,2007,27(4):318-321.
    [191]吴福忠,王开运,杨万勤,等.密度对缺苞箭竹凋落物生物元素动态及其潜在转移能力的影响[J].植物生态学报,2005,29(4):537-542.
    [192]吴志丹,王义祥,蔡子坚,等.柑橘果园凋落物量及凋落叶的分解特征[J].生态与农村环境学报,2010,26(3):231-234.
    [193]项文化,闫文德,田大伦,等.外加氮源及与林下植物叶混合对杉木林针叶分解和养分释放的影响[J].林业科学,2005,41(6):1-6.
    [194]肖辉林,郑习健.土壤变暖对土壤微生物活性的影响[J].土壤与环境,2001,10(2):138-142.
    [195]肖玖金,张健,杨万勤,等.巨桉(Eucalyptus grandis)人工林土壤动物群落对采伐干扰的初期响应[J].生态学报,2008,28(9):4531-4539.
    [196]肖洋,陈丽华,余新晓.北京密云麻栎人工混交林凋落物养分归还特征[J].东北林业大学学报,2010,38(7):13-15.
    [197]肖洋,陈丽华,余新晓.北京密云油松人工林凋落物营养元素归还特征研究[J].水土保持学报,2010,24(2):112-115.
    [198]薛立,罗山.常绿和落叶阔叶树叶中N和P的变化及转移[J].林业科学研究,2003,16(2):166-170.
    [199]阎恩荣,王希华,郭明,等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J].植物生态学报,2010,34(1):48-57.
    [200]燕东,李意德,许涵,等.海南岛尖峰岭不同采伐方式热带雨林凋落物持水特性[J].水土保持通报,2011,31(2):57-67.
    [201]羊留冬,王根绪,杨燕,等.贡嘎山峨眉冷杉成熟林凋落物量动态研究[J].江西农业大学学报,2010,32(6):1163-1167.
    [202]杨会侠,汪思龙,范冰,等.不同林龄马尾松人工林年凋落量与养分归还动态[J].生态学杂志,2010,29(12):2334-2340.
    [203]杨继松,刘景双,于君宝,等.三江平原沼泽湿地枯落物分解及其营养动态[J].生态学报,2006,26(5):1297-1302.
    [204]杨智杰,陈光水,黄石德,等.中亚热带山区不同土地利用方式土壤呼吸的日动态变化[J].亚热带资源与环境学报,2009,4(2):39-45.
    [205]杨智杰,陈光水,谢锦升,等.杉木、木荷纯林及其混交林凋落物量和碳归还量[J].应用生态学报,2010,21(9):2235-2240.
    [206]易文明,周刚,邓家友,等.慈利县水土保持林下凋落物的蓄水功能[J].中南林业科技大学学报,2011,31(3):144-146.
    [207]尹文英.中国土壤动物检索图鉴[M],北京:科学出版社,1998.
    [208]尹文英.中国亚热带土壤动物[M],北京:科学出版社,1992.
    [209]俞飞,侯平,宋琦,等.柳杉凋落物自毒作用研究[J].浙江林学院学报,2010,27(4):494-500.
    [210]宇万太,陈欣,张璐,等.不同施肥杨树主要营养元素内外循环比较研究Ⅰ.施肥对杨树生物量及落叶前后N内外循环的影响[J].应用生态学报,1995,6(4):341-345.
    [211]原作强,李步杭,白雪娇,等.长白山阔叶红松林凋落物组成及其季节动态[J].应用生态学报,2010,21(9):2171-2178.
    [212]曾德慧,陈广生,陈伏生,等.不同林龄樟子松叶片养分含量及其再吸收效率[J].林业科学,2005,41(5):21-27.
    [213]曾锋,邱治军,许秀玉.森林凋落物分解研究进展[J].生态环境学报,2010,19(1):239-243.
    [214]曾昭霞,刘孝利,王克林,等.桂西北喀斯特区原生林与次生林凋落物储量及持水特性[J].生态学杂志,2011,30(7):1429-1434.
    [215]曾昭霞,刘孝利,王克林,等.桂西北喀斯特区原生林与次生林凋落物及养分归还特征比较[J].生态环境学报,2010,19(1):146-151.
    [216]张成林,彭海田.天然次生白桦木质部及韧皮部营养元素含量的分布及动态特性[J].林业科技,1997,22(6):18-20.
    [217]张浩,庄雪影.华南4种乡土阔叶树种枯落叶分解能力[J].生态学报,2008,28(5):2395-2403.
    [218]张洪亮,张毓涛,张新平,等.天山中部人工云杉林凋落量及养分特征的研究[J].新疆农业大学学报,2010,33(5):385-388.
    [219]张金池,孔雨光,王因花,等.苏北淤泥质海岸典型防护林地土壤呼吸组分分离[J].生态学报,2010,30(12):3144-3154.
    [220]张磊,王晓荷,米湘成,等.古田山常绿阔叶林凋落量时间动态及冰雪灾害的影响[J].生物多样性,2011,19(2):206-214.
    [221]张立华,林益明,叶功富,等.不同林分类型叶片氮磷含量、氮磷比及其内吸收率[J].北京林业大学学报,2009,31(5):67-72.
    [222]张梅,郑郁善.滨海沙地吊丝单竹林凋落物分解及养分动态研究[J].西南林学院学报,2008,28(3):4-7.
    [223]张鹏,田兴军,何兴兵,等.亚热带森林凋落物层土壤酶活性的季节动态[J].生态环境,2007,16(3):1024-1029.
    [224]张瑞恒,刘晓,田向军,等. UV-B辐射增强对反枝苋形态、生理及化学成分的影响[J].生态学杂志,2008,27(11):1869-1875.
    [225]张圣喜,陈法霖,郑华.土壤微生物群落结构对中亚热带三种典型阔叶树种凋落物分解过程的响应[J].生态学报,2011,31(11):3020-3026.
    [226]张伟,杨新兵,张汝松,等.冀北山地不同林分枯落物及土壤的水源涵养功能评价[J].水土保持通报,2011,31(3):208-238.
    [227]张伟东,汪思龙,颜绍馗,等.杉木根系和凋落物对土壤微生物学性质的影响[J].应用生态学报,2009,20(10):2345-2350.
    [228]张雪萍,黄初龙,李景科.赤子爱胜蚓对森林凋落物的分解效率[J].生态学报,2005,25(9):2427-2433.
    [229]张雪萍,张毅,侯威岭,等.小兴安岭针叶凋落物的分解与土壤动物的作用[J].地理科学,2000,20(6):552-556.
    [230]赵谷风,蔡延(马奔),罗媛媛,等.青冈常绿阔叶林凋落物分解过程中营养元素动态[J].生态学报,2006,26(10):3286-3295.
    [231]赵勇,吴明作,樊巍,等.太行山针、阔叶森林凋落物分解及养分归还比较[J].自然资源学报,2009,24(9):1616-1624.
    [232]郑金兴,杨智杰,凌华,等.楠木人工林凋落物的产量与月动态[J].福建师范大学学报(自然科学版),2011,27(1):88-92.
    [233]郑圣先,罗成秀,戴平安,等.钾、镁营养水平对油菜产量和养分吸收的影响[J].土攘通报,1991,22(2):87-89.
    [234]周焱,徐宪根,王丰,等.武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB, qCO2)[J].生态学杂志,2009,28(2):265-269.
    [235]朱强,郁永明,胡兆金.不同施肥水平对红麻植株体内养分分布及代谢变化的影响[J].中国麻作,1997,19(4):30-33.
    [236]朱强根,朱安宁,张佳宝,等.黄淮海平原保护性耕作下玉米季土壤动物多样性[J].应用生态学报,2009,20(10):2417-2423.
    [237]朱双燕,王克林,曾馥平,等.桂西北喀斯特次生林凋落物养分归还特征[J].生态环境学报,2009,18(1):274-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700