用户名: 密码: 验证码:
荻和芒对干旱胁迫的生理响应和适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是影响植物生长的主要环境因子之一。近年来,随着全球气候变暖,我国水资源的匮乏日益严重,尤其是东北的广大地区,这一问题尤为突出。干旱胁迫已经成为制约东北地区植物生长发育和城市绿化的重要生态问题。荻和芒是理想的第二代能源植物,具有广泛的应用价值,但东北地区水资源匮乏的状况制约了荻和芒在该地区的推广和应用。因此研究干旱胁迫下荻和芒的生长、光合特性和生理特性的变化规律,对提高它的水分管理水平,促进荻和芒在东北地区的可持续发展具有重要意义。
     本研究选用芒属植物荻(Miscanthus sacchariflorus)和芒(Misconstrues sinensis)为实验材料,采用聚乙二醇(PEG)模拟干旱法对其种子进行4个PEG浓度水平的胁迫处理(5%、10%、15%、20%),研究荻和芒种子在PEG干旱胁迫下的萌发特性;采用盆栽控水的方法分别对荻和芒的实生苗进行4种土壤水分处理即:正常供水(土壤含水量为最大田间持水量80%,下同)、轻度土壤干旱胁迫(65%)、中度土壤干旱胁迫(50%)和重度土壤干旱胁迫(35%),分别测定了不同土壤干旱胁迫下荻和芒光合、生理和生长指标,研究荻和芒对土壤干旱胁迫的适应性;同时调查了东北地区荻和芒的分布和生境特征,主要研究结果如下:
     (1)东北野生荻芒分布和生境特征
     荻和芒在东北地区属点状分布,喜低海拔、土壤湿润,光照充足的生境;不同生境下荻和芒的生长性状存在差异,随着生境内土壤含水量的上升和光照条件的改善,荻和芒的生长性状和生物量提高,各生境间部分性状差异显著;荻和芒的叶形指数(叶长/叶宽),株高、地下茎粗、分布深度等表型性状受环境因素影响小,相对稳定;荻和芒的株高、茎粗等茎部性状与生物量显著相关。
     (2)PEG胁迫对荻和芒种子萌发特性的影响
     低浓度的PEG(5-20%)对芒和荻种子的发芽率没有明显的影响,但对芒种子的发芽指数、活力指数、胚根长度、胚根鲜重以及荻种子胚芽的长度有一定的促进作用;高浓度的PEG(15~20%),对芒和荻种子的发芽率、发芽指数、活力指数、胚根胚芽长度以及鲜重都有明显的抑制作用;荻种子的半致死浓度为15%,致死浓度为20%,而芒种子的半致死浓度为20%;随着PEG浓度的升高,芒和荻的萌发抗旱指数逐渐下降,芒在20%PEG处理时表现为中间型,而荻在15%PEG处理时就表现为不抗旱。
     (3)土壤干旱胁迫对荻和芒光合特性的影响
     土壤干旱胁迫下,荻和芒叶片的相对含水量(RWC)、叶绿素含量(Chl)、净光合速率(Pn)、最大净光合速率(Pmax)、表观量子效率(AQE)、暗呼吸速率(Rd)、光饱和点(LSP)、蒸腾速率(Tr)、最大羧化速率(Vcmax)和电子传递速(Jmax)均随着土壤干旱胁迫程度的加剧而下降;光补偿点(LCP)和水分利用效率(WUE)随土壤干旱胁迫程度的加剧而上升。荻和芒的气孔导度(Gs)随着土壤干旱胁迫程度的加剧而下降;胞间C02浓度(Ci)随着土壤干旱胁迫程度的加剧呈先下降后上升的趋势;气孔阻力值(Ls)随着土壤干旱胁迫程度的加剧呈先上升后下降的趋势。
     荻在轻度土壤干旱胁迫下、芒在轻度和中度土壤干旱胁迫下,对光合作用的抑制由气孔限制所引起;而荻在中度、重度土壤干旱胁迫下,芒在重度土壤干旱胁迫下对光合作用的抑制由非气孔限制所引起。
     (4)土壤干旱胁迫对荻和芒的生理特性的影响
     在土壤干旱胁迫下荻和芒的细胞膜相对透性,丙二醛(MDA)和过氧化氢(H202)含量随着土壤干旱胁迫程度的加剧而显著增加。
     在轻度干旱胁迫下,荻的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性随着干旱胁迫时间的延长而逐渐上升;而在中度和重度干旱胁迫下SOD、CAT和POD活性随着干旱胁迫时间的延长呈先上升后下降趋势。在不同程度土壤干旱胁迫下,芒的SOD和CAT活性随着干旱胁迫时间的延长而逐渐上升;而POD活性则在不同干旱胁迫处理下无明显变化。
     在不同程度干旱胁迫下芒叶片的抗坏血酸过氧化物酶(APX)、甘肽还原酶(GR)活性和还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)含量始终保持上升趋势;而荻在轻度干旱胁迫下也可以保持较高的抗坏血酸合成和代谢活性,但在中度和重度干旱胁迫下,随着干旱胁迫的加剧和胁迫时间的延长荻的APX、GR活性和AsA、GSH含量开始下降。
     (5)土壤干旱胁迫对荻和芒的生长和生物量的影响
     荻和芒的株高、地径、茎节间长度、叶面积和比叶重随着土壤干旱胁迫程度的加剧而下降。轻度干旱胁迫下,芒的地下茎粗和长度均高于正常供水处理,表明适宜的土壤干旱胁迫对芒地下茎的生长有一定的促进作用;而在荻和芒在中、重度干旱胁迫下,地下茎粗、长度和分蘖数量均随着土壤干旱胁迫程度的加剧而显著下降。
     土壤干旱胁迫下,除芒在轻度干旱胁迫下地下部分生物量增加外,其余胁迫处理中荻和芒的单株总生物量、地上部分生物量、地下部分生物量和冠根比均随土壤干旱胁迫程度的加剧而下降,胁迫越重,生长速度越慢,生长量越小,生物量越低。
Water is one of the main environmental factors affecting plant growth. In recent years, with the global climate warming, the shortage of water resources is increasingly serious in our country, especially in Northeastern China. Water stress has become an important ecological problem of reducing plant growth and development in Northeastern China. Miscanthus sacchariflorus and Miscanthus sinensis are the ideal second generation of energy plants, and have wide application value, but a lack of water resources restricts the promotion and application of Miscanthus in the Northeast of China. Therefore it is great significance to study on growth, photosynthetic characteristics and physiological characteristics of M. sinensis and M. sacchariflorus under water stress for improving its moisture management level, promoting Miscanthus sinensis and Miscanthus sacchariflorus in the Northeastern region's sustainable development.
     The characteristics of seed germination under different PEG stress (5%,10%,15%,20%) were studied taking the selected M. sinensis and M. sacchariflorus as experimental materials. For the purpose of studying the adaptability to natural soil water stress, the photosynthetic characteristics, physiological and biological index were measured under4treatments, normal water (soil moisture content for the maximum80%field capacity, the same below), mild soil drought stress (65%), moderate soil drought stress (50%) and severe soil drought stress (35%).Meanwhile the distribution and habitat characteristics of M. sacchariflorus and M. sinensis in northeastern China were investigated. The main research results are as follows.
     (1) Miscanthus in the northeast China is dotted and prefer the habitat of low altitude, soil moisture and high light intensity. There were differences of Miscanthus growth traits under different habitats, and the growth potential and biomass increased with the soil water content increasing and light conditions improving. There was a significant difference of some growth traits among different habitats (P<0.05). The coefficient of Variance in Miscanthus the growth traits, leaf shape index, plant height、stem diameter and depth of underground distribution of phenotypic traits were relatively stable, and were less influenced by environmental factors. The plant height and stem diameter were significantly related to plant biomass by using principal component analysis.
     (2)There is no significant effect of lower concentration PEG (5-10%) on the seeds' germination rate of M.sinensis and M. sacchariflorus. But it increased the germination index, vigor index, radicle length, radicle fresh weight of M. sinensis and plumules growth of M. sacchariflorus. The higher PEG concentration(15-20%) inhibited significantly the growth of seed, and the germination rate termination index, vigor index and radicles/plumule were reduced. The half of lethal concentration of M. sacchariflorus was15%, and the lethal concentration of M. sacchariflorus was20%. However, the half of lethal concentration of M. sinensis was15%, the lethal concentration of M. sinensis was higher than20%.
     (3)Under soil drought stress, leaf relative water content (RWC), chlorophyll (Chl)contentnet, photosynthetic rate (Pn), maximum net photosynthetic rate(Pmax), apparent quantum efficiency (AQE), dark respiration rate (Rd), light saturation point (LSP),transpiration rate (Tr), maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) reduced, while light compensation point (LCP) and water use efficiency (WUE)increased along with the soil drought stress degree enhancing.
     The stomatal conductance (Gs) of M. sinensis and M. sacchariflorus decreased with soil drought stress degree enhancing. The intercellular CO2concentration (Ci) decreased firstly and then increased, while stomatal resistance value (Ls) increased firstly and then decreased.
     The photosynthesis inhibition of M. sacchariflorus under mild soil drought stress and M. sinensis under mild and moderate soil drought stress were caused by the stomatal limitation; while the photosynthesis inhibition of M. sacchariflorus under moderate and severe soil drought stress and M. sinensis under serious soil drought stress were caused by non-stomatal limitation.
     (4)Under soil drought stress, cell membrane relative permeability, the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) increased significantly with soil drought stress degree enhancing.
     Under mild drought stress, the superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activity of M. sacchariflorus increased gradually along with soil drought stress proceeding; under moderate and severe drought stress, the SOD, CAT and POD activity increased firstly and then decreased; SOD and CAT activity of M. sinensis increased gradually along with soil drought stress proceeding; While there is no obvious change of the POD activity under different treatments.
     Under soil drought stress, there are rising trend of the value of ascorbic acid peroxidase (APX) activity, leaf glutathione reductase (GR) activity, ascorbic acid (AsA) content and reduced glutathione (GSH) content of M. sinensis. Under mild drought stress M. saccharifloru also could maintain high ascorbic acid synthesis and metabolic activity, but under the moderate and severe drought stress, with the intensification of soil drought stress, APX, GR activity and GSH, AsA content began to decrease.
     (5) Under soil drought stress, the plant height, ground diameter, stem internode length, leaf area, specific leaf weight decreased along with the soil drought stress degree enhancing. Under mild drought stress, rhizome stem diameter and length of M. sinensis were higher than normal, which showed that suitable soil drought stress on M. sinensis could promote rhizome growth. However under the moderate and severe drought stress, rhizome stem diameter, length and number of tillers decreased significantly as the soil drought stress degree intensified.
     Under soil drought stress, the per plant total biomass, the biomass on the ground, underground biomass and crown root ratio decreased with soil drought stress degree intensifying except of the increase of the underground biomass under mild drought stress.The heavier stress, the slower the growth rate, the smaller the increment and lower biomass.
引文
[1]詹伟君,任君霞,金松恒,等.能源植物芒草的农学特性研究进展.浙江农林大学学报,2012,29(1):119-124,
    [2]解新明,周峰,赵燕慧,等.多年生能源禾草的产能和生态效益.生态学报,2008,28(5):2329-2339.
    [3]Ceotto E. Grasslands for bioenergy production. A review. Agronomy for Sustainable Development,2008,28(1):47-55.
    [4]Benbi D K, Brar J S. A25-year record of carbon sequestration and soil porperties in intensive agriculture. Agronomy for Sustainable Development,2009,29(2):257-265.
    [5]Ritchter G M, Riche A B, Dailey A G, et al. Is UK biofuel supply from Miscanthus water-limited? 2008, Soil Use and Management,24(4):235-245.
    [6]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003:7.
    [7]Crutzen P J, Mosier A R, Smith K A, et al. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics,2008,8(3):389-395.
    [8]Beale C V, Long S P. Can perennial C4 grasses attain high efficiencies of radiant energy-conversion in cool climates? Plant Cell and Environment,1995,18(4):641-650.
    [9]Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomat erials. Science,2006,311(5760):484-489.
    [10]Borrero M A, Pereira J T, Mirand A E. An environmental management method for sugar cane alcohol production in Brazil. Biomass and Bioenergy,2003,25(3):2872-2899.
    [11]李松,杨荣仲,谭裕模,等.我国发展能源甘蔗研究的现实意义.广西蔗糖,2003,32(3):44-45.
    [12]高士杰,刘晓辉,李玉发,等.中国甜高粱资源与利用.杂粮作物,2006,26(4):273-274.
    [13]贾虎森,许亦农.生物柴油利用概况及其在中国的发展思路.植物生态学报,2006,30(2):221-230.
    [14]Lewandowski I, Scurlockb J M O, Lindvall E, et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy,2003,25(4):335-361.
    [15]Hastings A, Clifton-Brown J C, Wattenbach M, et al. Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agronomy for Sustainable Development,2008,28(4):465-472.
    [16]Heaton E A, Dohleman F G, Long S P. Meeting US biofuel goals with less land:the potential of Miscanthus. Global Change Biology,2008,14(9):2000-2014.
    [17]Glowaka K. A review of the genetic study of the energy crop Miscanthus.Biomass and Bioenergy,2011,35(1):2445-2454.
    [18]John C, Paul F, Michael B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 2004,10(4):509-518.
    [19]Lewandowski I, Clifton-Brown J C, Scurlockb J M O, et al. Miscanthus:European experience with a novel energy crop. Biomass and Bioenergy,2000,19(4):209-227.
    [20]Heaton E A, Clifton-Brown J, Voigt T B, et al. Miscanthus for renewable energy generation:European Union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change,2004,9(4):433-451.
    [21]易自力.芒属能源植物资源的开发与利用.湖南农业大学学报(自然科学版),2012,,38(5):455-463.
    [22]Venendaal R, Jrgensen U, Foster C A. European energy crops:a synthesis. Biomass and Bioenergy,1997,13(3):147-185.
    [23]席庆国,洪浩.外来植物奇岗的生物学特性.草业科学,2008,25(2):26-28.
    [24]Wagenaar B M, Vanden Heuvel E J. Co-combustion of Miscanthus in a pulverised coal combustor:Experiments in adroptube furnace. Biomass and Bioenergy,1997,12(3):185-197.
    [25]Lewandowski I, Kauter D. The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Industrial Crops and Products, 2003,17(2):103-117.
    [26]孙宝明.中国造纸植物原料志.北京:轻工业出版社,1959:37-208.
    [27]张友德,谢成章.荻的种子萌发试验.华中农业大学学报,1980,8(1):79-81.
    [28]萧运峰,王锐,高洁.五节芒生态—生物学特性的研究.四川草原,1995,12(1):25-29.
    [29]赵先南,萧运峰.安徽省的芒属植物资源及其开发利用.武汉植物学研究,1990,8(4):374-381.
    [30]徐泽荣,杨林.四川的芒草资源及其开发利用前景.草业与畜牧,2009,166(9):22-26.
    [31]迟光宇,刘新会,刘素红,等.大坞河流域重金属污染与五节芒光谱效应关系研究.生态环境,2005,14(4):549-554.
    [32]李勤奋,杜卫兵,李志安,等.金属矿区芒草种群对重金属的积累及与土壤特性的关系.生态学杂志,2006,25(3):255-258.
    [33]朱邦长,叶玛丽,张川黔,等,五节芒茎芽繁殖技术的研究.四川草原,1995,12(1):30-34.
    [34]陈慧娟,张卓文,宁祖林,等.施肥对五节芒热值和表型性状的影响.草业科学,2009,26,(8):63-67.
    [35]陈守良.中国植物志:第10卷.北京:科学出版社,2004:4-26.
    [36]刘亮.禾本科植物资源Ⅱ.北京:中国科学院植物研究所,1989:15-21.
    [37]Chen S L, Renvoize S A, Wu Z Y, et al. Flora of China (Vol.22). Beijing:Science Press and St Louis, Missouri Botanical Garden Press,2006:581-583.
    [38]梁绪振,陈太祥,白史且,等.芒属(Miscanthus)植物种质资源研究进展.草业与畜牧,2010,179(10):1-5.
    [39]Christian D G, Yates N E, Riche A B. Estimation of ramet production from Miscanthus × giganteus rhizome of different ages. Industrial Crops and Products,2009,30(1):176-178.
    [40]Bullard M J, Nixon P M I, Cheath M.Quantifying the yield of Miscanthus ×giganteus in the UK.Aspects of Applied Biology,1997,49(3):199-206.
    [41]Cosentino S L, Patane C, Sanzone E, et al. Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus in a Mediterranean environment. Industrial Crops and Products,2007,25(1):75-88.
    [42]Clifton-Brown J C, Lewandowski I. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Annals of Botany,2000,86(1):191-200.
    [43]Vargas L A, Andersen M N, Jensen C R, et al. Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis'Goliath' from radiation measurements. Biomass and Bioenerg,2002,22(1):1-14.
    [44]Clifton-Brown J C, Jones M B. The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus:an important factor in determining the potential productivity of different genotypes. Journal of Experimental Botany,1997,48(5):1573-1581.
    [45]Farrell A D, Clifton-Brown J C, Lewandowski I. et al. Genotypic variation in cold tolerance influences the yield of Miscanthus.Annals of Applied Biology,2006, 149(3):337-345.
    [46]Price L, Bullard M J, Lyons H. et al. Identifying the yield potential of Miscanthus×giganteus:an assessment of the spatial and temporal variability of Miscanthusxgiganteus biomass productivity across England and Wales. Biomass and Bioenerg,2004,26(1):3-13.
    [47]Shoji S, Kurebayashi T, Yamada I. Growth and chemical composition of Japanese pampas grass (Miscanthus sinensis) with special reference to the formation of dark-colored andisols in northeastern Japan. Soil Science and Plant Nutrition,1990,36(1):105-120.
    [48]Stewart J R, Toma Y, Fernandez F G, et al. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan, a review. Global Change Biology Bioenergy,2009,1(2):126-153.
    [49]Clifton-Brown J C, Lewandowski I, Andersson B, et al. Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal,2001,93(5):1013-1019.
    [50]Lewandowski I, Kicherer A. Combustion quality of biomass:practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. European Journal of Agronomy,1997,6(3):163-177.
    [51]Beale C V, Morison J I L, Long S P. Water use efficiency of C4 perennial grasses in a temperate climate. Agricultural and Forest Meteorology,1999,9(1):103-115.
    [52]Cadoux S, Vanderdriessche V, Machet J M, et al. Potential yield and main limiting factors of Miscanthus X giganteus in France. Identification of the needs for further research.Valence:16th European Biomass Conference and Exhibition,2008:15-20.
    [53]Lewandowski I, Schmidt U. Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture Ecosystems Environment,2006,112 (2):335-346.
    [54]Jorgensen U, Mortensen J, Ohlsson C. Light interception and dry matter conversion efficiency of Miscanthus genotypes estimated from spectral reflectance measurements. New Phytologist,2003,157(2):263-270.
    [55]Christian D G, Riche A B, Yates N E. Growth, yield and mineral content of Miscanthus X giganteus grown as a biofuel for 14 succissive harvests. Industrial Crops and Products, 2008,28(3):320-327.
    [56]Clifton-Brown J C, Lewandowski I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytologist,2000,148(2):287-294.
    [57]Ercoli L, Mariotti M, Masoni A, et al. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research,1999,63(1):3-11.
    [58]Himken M, Lammel J, Neukirchen D, et al. Cultivation of Miscanthus under West European conditions:Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil,1997,189(1):117-126.
    [59]Jorgensen U, Mortensen J, Kjeldsen J B, et al. Establishment, developement and yield quality of fifteen Miscanthus genotypes over three years in Denmark. Acta Agriculturae Scandinavica Section(B),2003,53(4):190-199.
    [60]Lewandowski I, Kicherer A, Vonier P. CO2 Balance for the cultivation and combustion of Miscanthus. Biomass and Bioenerg,1995,8(4):81-90.
    [61]Lewandowski I. Propagation method as an important factor in the growth and development of Miscanthus×giganteus. Industrial Crops and Products,1998,8(3):229-245.
    [62]Danalatos N G, Archontoulis SV, Mitsios I. Potential growth and biomass productivity of Miscanthus×giganteus as affected by plant density and N-fertilization in central Greece. Biomass and Bioenerg,2007,31(2):145-152.
    [63]Jezowski S. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Industrial Crops and Products,2008,27(l):65-68.
    [64]Plazek A, Dubert F, Marzec K. Cell membrane permeability and antioxidant activities in the rootstocks of Miscanthus×giganteus as an effect of cold and frost treatment. Journal of Applied Botany and Food Quality,2009,82(2):158-162.
    [65]曹志平.土壤生态学.北京:化学工业出版社,2007:211-213.
    [66]张崇邦,王江,柯世省,等.五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响.植物生态学报,2009,33(4):629-637.
    [67]杨静丹,陈友静,张崇邦,等.五节芒定居对尾矿砂重金属形态与微生物的影响.生态学杂志,2009,28(5):907-914.
    [68]武维华,植物生理学.北京:科学出版社,2003:35-426.
    [69]赵福庚,何龙飞,罗庆云.植物逆境生理生态学.北京:化学工业出版社,2004:2.
    [70]康绍忠,刘晓明,熊运章.土壤一植物一大气连续体水分传输理论及其应用.北京:水利 电力出版社,1994:56-82.
    [71]陈晓远,罗远壤,石元春.作物对干旱胁迫的反应.生态农业研究,1998,6(4):12-15.
    [72]Michel B E, Kaufmann M R. The Osmotic potential of polyethylene glycol-6000. Plant Physiology,1973,56(5):914-916.
    [73]Dat J F, Lopez-Delgado H, Foye G H, et al. Parallel change in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in musturd seedlings. Plant Physiology,1998,116(4):1352-1357.
    [74]Nuneza M R, Calvob L. Effect of high temperatures on seed germination of Pinups sylvestris and Pinups halepensis. Forest Ecology and Management,2000,131(3):183-190.
    [75]阮松林,薛庆中.植物的种子引发.植物生理学通讯,2002,38(2):198-202.
    [76]石凤翎,王素巍,李俊海,等.扁蓿豆属牧草种子及其幼苗抗旱性的初步研究.草业科学,2003,20(增刊):497-503.
    [77]Uniyal R C, Nautaiyal A R. Seed germination and seedling extension growth in Qugeinia dalbergioides Benth.under water and salinty stress.New Forest,1998,16(3):265-272.
    [78]梁国玲,周青平,颜红波.聚乙二醇对羊茅属4种植物种子萌发特性的影响研究.草业科学,2007,24(6):50-54.
    [79]景蕊莲,昌小平.用渗透胁迫鉴定小麦种子萌发期抗旱性的方法分析.植物遗传资源学报,2003,4(4):292-296.
    [80]Shao H B, Liang Z S, Shao M G, et al. Impacts of PEG-6000 pretreatment for barley (Hordeum vulgare) seeds on the effect of their mature embryo in vitro culture and primary investigation on its physiological mechanism.Colloids and Surfaces B-Bioint erfaces,2005, 41(6):73-77.
    [81]郭巧生,张贤秀,沈雪莲,等.种子引发对夏枯草种子抗旱性的影响.中国中药杂志,2009,34(9):2-4.
    [82]刘晓东,李洋洋,何淼.PEG模拟干旱胁迫对玉带草生理特性的影响.草业科学,2012,,29(5):687-693.
    [83]顾增辉,徐本美,郑光华.测定种子活力方法之探讨(11)发芽的生理测定方法.种子,1982,4(3):11-14.
    [84]朱教君,李智辉,康宏樟,等.聚乙二醇模拟干旱胁迫对沙地樟子松种子萌发影响研究.应用生态学报,2005,16(5):802-804.
    [85]冯淑华,陈雅君.干旱对草地早熟禾种子萌发的影响.草原与草坪,2006,15(1):70-72.
    [86]Heydecker W, Coolbear P. Seed treatments for improved performance Survey and attempted prognosis. Seed Science Reasearch,1977,5(35):3-425.
    [87]Gurusinghe S H, Bradford K J. Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. Seed Science Research,2001,11(2):121-134.
    [88]Rosenthal J P, Kotane P M. Terrestrial plant tolerance to herbivory. Trends in Ecology and Evolution.1994,9(4):145-148.
    [89]孙书存,陈灵芝.辽东栎幼苗对干旱和去叶的生态反应的初步研究.生态学报,2000,20(5):893-897.
    [90]Caldwell M M, Richards J H. Hydraulic lift:water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia,1989,79(1):1-5.
    [91]冯广龙,罗远培,刘建利,等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系.干旱地区农业研究,1997,15(2):73-79.
    [92]金不换.干旱胁迫对不同品种早熟禾形态和生理特性影响的研究.哈尔滨:东北农业大学,2009:25.
    [93]张志新,章恺,田迅.干旱与灌溉生境下少花蒺藜草生物构件的特征.草业科学,2012,29(12):1899-1902.
    [94]张科,张道远,王雷,等.自然生境下盐角草的生物学特征及其影响因子.干旱区地理,2007,30(6):832-838.
    [95]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应.生态学报,2009,29(10):5406-5416.
    [96]王敏,杨万明,侯燕,等.不同类型大豆花荚期抗旱性形态指标及其综合评价.核农学报,2010,24(1):154-159.
    [97]李林锋,刘新田.干旱胁迫对桉树幼苗的生长和某些生理生态特性的影响.西北林学院学报,2003,19(1):14-17.
    [98]刘庆,钟章成.斑苦竹无性系生长与水分供应及其适应对策的研究.植物生态学报,1996,20(3):245-254.
    [99]Zheng D, Rademacher J, Chen J, et al. Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northern Wisconsin. Remote Sensing of Environment,2004,93(3):402-411.
    [100]Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management,1999,123(1):81-90.
    [101]王淼,代力民,姬兰柱,等.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究.应用生态学报,2001,12(4):496-500.
    [102]吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应.华北农学报,2000,15(1):92-96.
    [103]孔祥生,郭秀朴,张妙霞,等.渗透胁迫对小麦萌发生长及某些生理生化特性的影响.麦类作物,1998,18(4):35-38.
    [104]Heckathorn S D, Deluciae E H.Retrans location of shoot nitrogen to rhizomes and roots in prairie grasses may limit loss of N to grazing and fire during drought.Functional Ecology. 1996,10(3):396-400.
    [105]刘长利,王文全,崔俊茹,等.干旱胁迫对甘草光合特性与生物量分配的影响.中国沙漠,2006,26(1):142-145.
    [106]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,2003,23(12):2137-2422.
    [107]Kate M, Johnson G N. Chlorophyll fluorescence — a practical guide. Journal of Experimental Botany,2000,51(345):659-668.
    [108]柯世省,金则新.干旱胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响.应用生态学报,2008,29(1):43-49.
    [109]张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系.植物生理与分子生物学学报,2004,30(3):269-276.
    [110]Zhou H H, Chen Y N, Li W H, et al. Photosynthesis of Populus euphratica and its response to elevated CO2 concentration in an arid environment. Progress in Natural Science, 2009,19(4):443-451.
    [111]史胜青,袁玉欣,杨敏生,等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响.林业科学,2004,40(10):168-173.
    [112]Arndt S K, Clifford S C, Wanek W, et al. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress.Tree Physiology,2001,21 (11):705-715.
    [113]Rieger M, Bianco R L, Okie W R. Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Tree Physiology,2003,23(1):51-58.
    [114]Seppo K, Wang K Y. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiology,1996, 16(9):765-772.
    [115]Zhang J W, Feng Z, Cregg B M, et al. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Tree Physiology, 1997,17(7):461-466.
    [116]贺康宁,张光灿,田阳.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境.林业科学,2003,39(1):10-16.
    [117]李文华.陕北黄土地区主要造林树种蒸腾耗不及光合特性的研究.北京:北京林业大学,2007:50.
    [118]郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,2004,24(12):2716-2722.
    [119]田晶会,贺康宁,王百田.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系.北京林业大学学报,2005,27(3):53-56.
    [120]陈家宙,吕国安,何圆球.土壤水分状况对花生和早稻叶片气体交换的影响.应用生态学报,2005,16(1):105-110.
    [121]宋玉伟,赵丽英,杨建伟.水分胁迫下玉米幼苗光合变化和生理特性分析.河南大学学报,2009,39(4):387-390.
    [122]覃盈盈,甘肖梅,蒋潇潇,等.红树林生境中互花米草气孔导度的动态变化.生态学杂志,2009,28(10):1991-1995.
    [123]Cowan I R. Regulation of water use in relation to carbon gain in higher plants. Encyclopedia of Plant Physiology,1982,12(2):589-613.
    [124]Casson S, Gray J E. Influence of environmental factors on stomatal development. New Phytologist,178(1):9-23.
    [125]左应梅,陈秋波,邓权权,等.土壤水分、光照和空气湿度对木薯气孔导度的影响.生态学杂志,2011,30(4):689-693.
    [126]Calatayud P A, Lovera E, Bois J F, et al. Phtosynthesis in drought-adapted cassava.Phtosynthetica,2000,38(1):97-104.
    [127]司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应.西北植物学报,2008,28(1):125-130.
    [128]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响.中国农业科学,2005,38(5):922-928.
    [129]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33(6):317-345.
    [130]Downton W J, Loveys B R, Grant W J R. Non-uniform stomatal closure induced by water stress cause putative non-stomatal inhibition of photosynthesis. New Phytology,1988, 110(4):503-509.
    [131]Brestic M, Cornic G, Fryer M J, et al. Dose photorespiration protect the photosnthetic apparatus in French bean leaves fom photoinhibition during drought stress?Planta,1995, 19(6):450-457.
    [132]许大全.光合作用气孔限制中的一些问题.植物生理学通讯,1997,33(4):241-244.
    [133]Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybdan plant. Biologia Plantarum,2006,50(1):138-141.
    [134]郎莹,张光灿,张征坤,等.不同土壤水分下山杏光合作用光响应过程及其模拟.生态学报,2012,3(16):4449-4508.
    [135]许大全.光合作用效率.上海:上海科学技术出版社,2002:33-33.
    [136]陈建,张光灿,张淑勇,等.辽东楤木光合和蒸腾作用对光照和土壤水分的响应过程应用生态学报,2008,19(6):1185-1190.
    [137]Kramer P J, Kozlowski T T. Physiology of woody plants. London:Academic Press. 1979:443-444.
    [138]孙广玉,蔡淑燕,胡彦波,等.盐碱地马蔺光合生理特性的研究.植物研究,2006,26(1):45-47.
    [139]蒋高明,林光辉,Marino B D V.美国生物圈二号内生长在高CO2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化.植物学报,1997,39(6):546-553.
    [140]樊巍.农林复合系统的林网对冬小麦水分利用效率影响的研究.林业科学,2000,36(4):16-20.
    [141]Farquhar G D, Leary M H, Berry J A. On the relationship between carbon isotope discrimination and int ercellular carbon dioxide concentration in leaves.Journal of Plant Physiology,1982,9(2):121-137.
    [142]渠春梅,韩兴国,苏波,等.云南西双版纳片断化热带雨林植物叶片(?)13C值的特点及其对水分利用效率的指示.植物学报,2002,43(2):186-192.
    [143]Morecroft M D, Woodward F I. Experimental investigations on the environmental determination of б13C at different altitude. Journal of Experimental Botany,1990,41(3): 1303-1308.
    [144]Heitholt J J. Water use efficiency and dry matter distribution in nitrogen and water-stressed interwheat. Agronomy Journal,1989,81(2):464-469.
    [145]Wright, G C, Hubick K T, Farquhar G D, et al. Genetic and environmental variation in transpiration efficiency and its correlation with carbon isotope discrimination and specific leaf area in peanut. New York:Academic Press,1993:247-267.
    [146]赵俊芳,杨晓光,王志敏,等.不同水分条件下旱稻水分利用效率的研究.中国生态农业学报,2003,11(4):111-113.
    [147]Jerry L, Thomas J, Prueger H.Managing soils to achieve greater water use efficiency. Agronomy Journal,2001,93(2):271-290.
    [148]高暝,李毅,种培芳,等.渗透胁迫下不同地理种源白刺的生理响应.草业学报,2021,20(3):99-107.
    [149]于卓.5种披碱草幼苗抗旱性的研究.中国草地,1989,10(2):13-16.
    [150]沈艳,谢应忠.牧草抗旱性和耐盐性研究进展.宁夏农学院学报,2004,25(1):65-69.
    [151]王纪华,赵春江,黄文江,等.土壤水分对小麦叶片含水量及生理功能的影响.麦类作物学报,2001,21(4):42-47.
    [152]Colom M R, Vazzana C. Drought stress effects on three cultivars of Eragrostis curvula: photosynthesis and water relations, Plant Growth Regulation,2001,34(3):195-202.
    [153]Munns R, Weir R. Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Plant Function and Evolutionary Biology,1981,8(1):93-105.
    [154]周瑞莲.应用生物化学技术进行牧草抗逆性鉴定的原理和方法.中国草地,1991,12(3):56-59.
    [155]任安芝,高玉葆,梁宇,等.白草和赖草无性系生长对干旱胁迫的反应.中国沙漠,1999,19(增刊):31-34.
    [156]Farrant J M. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology,2000,151(1):29-39.
    [157]武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响.华北农学报,2001,16(2):87-93.
    [158]Patel P K, Heman T A. Salicylic acid induced alteration in dry matter pattiong antioxidant defence system and yield in Chickpea (Cicer arietinum L.) under drought stress. Asian Journal of Crop Science,2012,4(3):386-102.
    [159]Brodribb T J, Holbrook N M. Stomatal protection against hydraulic failure:a comparison of coexisting ferns and angiosperms. New Phytologist,2004,162(3):663-670.
    [160]蒋龙,尹俊,孙振中.4种画眉草抗旱性比较.草业科学,2009,26(11):64-72.
    [161]刘丽平,欧阳竹,武兰芳,等.阶段性干旱及复水对小麦光合特性和产量的影响.应用生态学报,2012,31(11):2797-2803.
    [162]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用.植物学报,1994,36(8):289-295.
    [163]董明,苏德荣,刘泽良,等.干旱胁迫对阿诺红鞑靼忍冬生理指标的影响.西北林学院学报,2008,23(4):8-13.
    [164]崔秀妹,刘信宝,李志华,等.不同水分胁迫下水杨酸对分枝期扁蓿豆生长及光合生理的影响.草业科学,2012,29(6):82-93.
    [165]邵钰,邱菊,干友民,等.干旱胁迫对西南野生马蹄金生理特性的影响.草业科学,2011,28(6):1004-2008.
    [166]刘碧英,潘远智,赵杨迪.藿香蓟(Ageratum conyzoides)寸土壤铅胁迫的生理响应.应用与环境生物学报,2011,17(5):651-655.
    [167]万里强,石永红,李向林.PEG胁迫下3个多年生黑麦草品种抗性生理研究.草地学报,2009,17(4):440-444.
    [168]张木清,陈如凯,余松烈.水分胁迫下蔗叶活性氧化谢的数学分析.作物学报,1996,22(6):263-267.
    [169]Chen S Y. Relationship between membrane lipid peroxidation and stressed plants. Chinese Bulletin of Botany,1989,6(4):211-217.
    [170]李志刚,刘威,林彰文,等.芦笋在PEG模拟干旱条件下的生理生化变化.生态科学,2006,25(1):22-23.
    [172]何树斌,刘国利,杨惠敏.不同水分处理下紫花苜蓿刈割后残茬的光合变化及其机制.草业学报,2009,28(6):192-197.
    [172]Valentovic P, Luxova M, Kolarovic L, et al. Effect of osmotic stress on compatible slutes content, membrance stability and water relations in two maize cultivars.Plant Soil and Environment,2006,52(4):186-191.
    [173]焦树英,徐家林,李红利.芒草对NaCl和PEG胁迫的生理响应及相关性分析.中国草地学报,2010,32(5):21-26.
    [174]成自勇.新疆大叶苜蓿对土壤干旱胁迫的生理响应及生态适应性研究.甘肃农业大学博士论文,2022:7.
    [175]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,2005,25(2):413-418.
    [176]王贺正,马均,李旭毅,等.水分胁迫对水稻结实期活性氧产生和保护系统的影响.中国农业科学,2007,40(7):1379-1387.
    [177]孔德政,于红芳,李永华,等.干旱胁迫对不同品种菊花叶片光合生理特性的影响.西北农林科技大学学报(自然科学版),2010,38(11):103-108.
    [178]Shao H B, Chu LY, Shao M A, et al. Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biologies,2008,331(5):433-441.
    [179]Bartoli C G, Guiamet J J, Kiddle G. et al. Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant Cell and Environment,2005,28(2):1073-1081.
    [180]Gupta A S, Webb R, Holaday A S, et al. Overexpression of super oxide dismutase protects plants from oxidative stress. Plant Physiology,1993,103(4):1067-1073.
    [181]马玉华,马锋旺,马小卫,等.干旱胁迫对苹果叶片抗坏血酸含量及其代谢相关酶活性的影响.西北农林科技大学学报(自然科学版),2008,36(3):103-108.
    [182]单长卷,韩蕊莲,梁宗锁.黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应.植物生态学报,2011,35(6):653-662.
    [183]Pinheiro H A, DaMatta F M, Chaves A R M, et al. Drought tolerance in relation to protection against oxidative stress in clones of coffea canephora subjected to long-term drought. Plant Science,2004,167(6):1307-1314.
    [184]Sofo A, Tuzio A C, Dichio B, et al. Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. Plant Science,2005,169(2):403-412.
    [185]龚吉蕊,赵爱芬,张立新,等.干旱胁迫下几种荒漠植物抗氧化能力的比较研究.西北植物学报,2004,24(9):1570-1577.
    [186]孙宗玖,李培英,阿不来提,等.干旱复水后4份偃麦草渗透调节物质的响应.草业学报,2009,18(5):52-57.
    [187]王霞,侯平,伊林克,等.干旱胁迫对柽柳植物可溶性物质的影响.干旱区研究,1999,16(2):6-11.
    [188]Michael B L, Elmore C D. Proline accumulation in water stressed cotton leaves. Crop Science,1997,17(6):905-908.
    [189]Meyer R F, Boyer J S. Sensitivity of cell division and cell elongation to low water potentials in Soybean hypocotyls. Planta,1972,108(2):77-87.
    [190]Bartoli C G. Drought and watering dependent oxidative stress, effect on antioxidant content in Triticum aestivum leaves.Journal of Experimental Botany,1999,50(1):375-383.
    [191]李树华,许兴,米海莉,等.水分胁迫对牛心朴子植物生长及渗透调节物质积累的影响.西北植物学报,2003,23(4):592-596.
    [192]Saini H S, Westgate M E. Reproductive development in grain crops during drought.Advances in Agronomy,2000,68(1):59-66.
    [193]周以良.黑龙江植物志:第10卷.哈尔滨:东北林业大学出版社,,2002:352-353.
    [194]秦忠时.东北草本植物志:第10卷.北京:科学出版社,2004:300-329.
    [195]肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志,2005,24(6):711-714.
    [196]周丽霞.乌头属部分植物的资源调查及引种栽培研究.北京林业大学硕士论文,2008:28.
    [197]Takashima T, Hikosake K, Hirose T. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Ouercus species. Plant Cell and Environment,2004, 27(8):1047-1054.
    [298]白岩,张艳,杨潮,等.白术比叶重与地下根茎干重变化规律及相关性研究.中药材,2012,32(7):1013-1016.
    [199]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应.生态学报,2002,22(6):901-910.
    [200]陈金平,李利红,周新国,等.共生期土壤水分对麦棉套种冬小麦比叶重、WUE和产量的影响.西北植物学报,2006,26(5):1048-1052.
    [201]郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系.生态学报,2007,27(1):171-181.
    [202]GB/T2930,1-2930.11-2001-牧草种子检验规程.
    [203]孙时轩.造林学.北京:中国林业出版社,1992:48.
    [204]Bouslama M, Schapaugh W T. Stress tolerance in Soybeans.I.Evaluation of three screening techniques for heat and drought tolerance.Crop science,1984,24(3):932-937.
    [205]郑光华,史忠礼,赵同方,等.实用种子生理学.北京:农业出版社,1990:91-135.
    [206]王赞,李源,吴欣明,等.PEG渗透胁迫下鸭茅种子萌发特性及抗旱性鉴定.中国草地学报,2008,30(1):50-55.
    [207]赵晓英,任继周,王彦荣,等.3种锦鸡儿种子萌发对温度和水分的响应.西北植物学报,2005,25(2):222-217.
    [208]孙霞,高信芬.聚乙二醇(PEG)模拟干旱胁迫对干旱河谷5种木蓝种子萌发的影响.应用与环境生物学报2010,16(3):317-322.
    [209]张晨妮,周青平,颜红波,等.PEG-6000对老芒麦种质材料萌发期抗旱性影响的研究.草业科学,2010,27(1):119-123.
    [210]刘杰,刘公社,齐冬梅,等.聚乙二醇处理对羊草种子萌发及活性氧代谢的影响.草业学报,2002,11(1):1-3.
    [211]马卉,徐秀红,江绪文,等.PEG引发对草坪草种子萌发及活力的影响.种子,2006(11):20-25.
    [212]郭贤仕.谷子旱后的补偿效应研究应用.生态学报.1999,10(5):563-566.
    [213]Maria S O, Leticia P L G, Rosaura G, et al. Germination of four species of the genus Mimosa (Leguminosae) in a semi-arid zone of Central Mexico. Journal of Arid Environments, 2003,55(1):75-92.
    [214]王彦荣,张健全,刘慧霞,等.PEG引发紫花苜蓿和沙打旺种子的生理生态效应.生态学报,2004,24(3):402-408.
    [215]宁书菊,曾夏安,魏道智.不同引发处理对朝天椒种子活力的影响.福建农林大学学报(自然科学版),2012,41(5):469-474.
    [216]钱森和,杨超英,薛正莲,等.PEG引发对芹菜种子活力影响的研究.生物学杂志,2009,26(1):76-78.
    [217]焦树英,李永强,沙衣拉.沙尔合提,等.干旱胁迫对3种狼尾草种子萌发和幼苗的生长的影响.西北植物学报,2009,29(2):308-313.
    [218]曾彦军,王彦荣.几种旱生灌木种子萌发对干旱胁迫的响应.生态学报,2002,13(8):953-956.
    [219]胡晓艳,呼天明,李红星.草坪草马蹄金与结缕草种子萌发期抗旱性比较.草业科学,2006,23(1):89-92.
    [220]霍宏,王传宽.冠层部位和叶龄对红松光合蒸腾特性的影响.应用生态学报,2007,18(6):1181-1186.
    [221]Walker D A. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density. Philosophical Transactions of the Royal Society London B,1989, 323(4):313-326.
    [222]Farquhar G D, Von Caemmerer S, Berry J A. Models of photosynthesis. Plant Physiology, 2001,125(4):42-45
    [223]Farquhar G D, Von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta,1980,149(2):78-90.
    [224]Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany,2003,54(392):2393-2401.
    [225]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:24-245.
    [226]Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil,2003,257(2):219-226.
    [227]Plaut Z, Butow B J, Blumenthal C S, et al. Transport of dry matter into developing wheat kernels and its contribtion to grain yield under postanthesis water deficit and elevated temperature. Field Crops Research,2004,86(8):185-198.
    [228]Wilson K B, Baldocchi D D, Hanson P J. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell and Environment,2001,24(3):571-583.
    [229]祝廷成.羊草生物生态学.长春:吉林科学技术出版社,2004:539-542.
    [230]Wang C R, Han S J, Luo X B. Photosynthetic response of Pinus sylvestriformis to elevated carbon dioxide and its influential factor analysis. Journal of Forestry Research,2000, 11(3):167-172.
    [231]Kurets V K, Drosdov S N, Popov E G. The temperature gradient air-soil as a factor in the optimization of net photosynthesis in whole plants. Russian Journal of Plant Physiology, 2003,50(1):72-78.
    [232]Brodribb T J, Holbrook N M. Stomatal protection against hydraulic failure:a comparison of coexisting ferns and angiosperms. New Phytologist,2004,162(6):663-670.
    [233]张淑勇,周泽福,夏江宝,等.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应.西北植物学报,2007,27(12):2514-2521.
    [234]林祥磊,许振柱,王玉辉,等.羊草(Leymus chinensis)叶片光合参数对干旱与复水的响 应机理与模拟.生态学报,2008,28(10):4715-4724.
    [235]Kolb T E, Stone J E. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest. Tree Physiology,2000,20(1):1-12.
    [236]华建峰,胡李娟,杜丽娟,等.水分条件对中山杉406光合特性的影响.生态环境学报,2011,20(12):1221-1225.
    [237]Yang H B, An S Q, Sun O J X, et al. Seasonal variation and correlation with environmental factors of photosynthesis and water use efficiency of Juglans regia and Ziziphus jujube. Journal of Integrative Plant Biology,2008,50(2):210-220.
    [238]朱艳艳,贺康宁,唐道锋,等.不同土壤水分条件下白榆的光响应研究.水土保持研究,2007,14(2):92-94.
    [239]Van Den Boogaard R, Alewijnes D, Veneklaas E J, et al. Growth and water use efficiency of 10 Triticum aestivum cultivars at different water availability in relation to allocation of biomass. Plant Cell and Environment,1997,20(2):200-210.
    [240]严昌荣,韩兴国,陈灵芝,等.温带落叶林叶片(?)13C的空间变化和种间变化.植物学报,1998,40(8):853-859.
    [241]汤绍虎,罗充.植物生理学实验教程.重庆:西南师范大学出版社,2012:73-261.
    [242]Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany,2002,53(1):2401-2410.
    [243]Grace S C, Logan B A. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiology,1996,112(4):1631-1640.
    [244]Hodges D M, Delong J M, Forney C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta,1999,207(2):604-611.
    [245]Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry,1980,106(3):207-212.
    [246]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅰ).亚热带植物学报,2004,33(2):77-80.
    [247]Srivalli B, Sharma G, Khanna C R. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery.Physiologia planttarum,2003,119(4):503-512.
    [248]Khanna C R, Devarshi S. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany,2007,60(2):276-283.
    [249]Goyal A. Effect of water stress on glycolate metabolism in the leaves of rice seedling (Oryza saliva). Plant Physiology,1987,69(5):289-294.
    [250]Rashmi P, Agarwal R M, Sharma G L, et al. Osmotic stress-induced alterations in rice (Oryza sativa) and recovery on stress release.Plant Growth Regulations,2004,42(2):79-87.
    [251]Shao H B, Liang Z S, Shao M A, et al. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage.Colloids and Surfaces B-Biointerfaces,2005,42(6):187-195.
    [252]刘世鹏,刘济明,陈宗礼,等.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响.西北植物学报,2006,26(9):1781-1787.
    [253]刘建新,王鑫,王凤琴.水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响.草业科学,2005,22(3):18-21.
    [254]王东清,李国旗,苏德喜.干早胁迫对两种罗布麻渗透调节物质积累和保护酶活性的影响.干旱区资源与环境,2012,26(12):177-181.
    [255]Scandalios J G. Oxygen stress and superoxide dismutases. Plant Physiology,1993, 101(1):7-12.
    [256]王茅雁,邵世勤,张建华,等.水分胁迫下对玉米保护酶活力及膜系统结构的影响.华北农学报,1995,10(2):43-49.
    [257]周瑞莲,王刚.水分胁迫下豌豆保护酶活力变化及脯氨酸积累在其抗旱中的作用.草业学报,1997,6(4):39-43.
    [258]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响.西北植物学报,2002,22(3):561-565.
    [259]孙存华,李扬,贺鸿雁,等.藜对干旱胁迫的生理生化反应.生态学报,2005,25(10):2256-2261.
    [260]Sgherri M C L, Navariizzo F. Sunflower seedlings subjected to increasing water deficit stress:oxidative stress and defense mechnism. Plant Physiology,1995,93(1):25-30.
    [261]Asada K. Production and action of active oxygen in photosynthetic tissue. Boca Raton FL:CRC Press,1994:77-104.
    [262]Selot D S, Khanna-Chopra R. Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedings.Physiologia Plantarum,127(4):494-500.
    [263]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32(2):144-150.
    [264]Cristina L M S, Sgherri C L M, Maffei M, et al. Antioxidative enzymes in wheat subjected to increasing water defiCit and rewatering. Journal of plant physiology,2000,157(3): 273-279.
    [265]周永波,邵孝侯,苏贤坤,等.水分调控对烤烟生长、干物质积累和养分吸收的影响.灌溉排水学报,2010,29(1):56-59.
    [266]肖艳辉,何金明,王羽梅,等.土壤含水量对茴香植株生长及精油含量和组分的影响.园艺学报,2009,36(7):1005-1012.
    [267]Wu Q S, Xia R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and phot osynthesis of Citrus under well watered and water stress conditions. Journal of Plant Physiology,2006,163(4):417-425.
    [268]陈晓远,高志红,罗远培,等.水分胁迫效应对冬小麦生长发育的影响研究.华北农学报,2004,19(3):43-46.
    [269]邓环,曹凑贵,程建平,等.不同灌溉方式对水稻生物学特性的影响.中国生态农业学报,2008,16(3):602-606.
    [270]徐克章,张治安,刘振库,等.高梁叶片比叶重的变化与产量关系的研究.吉林农业大学学报,1998,20(2):11-13.
    [271]徐惠风,刘兴土,金研铭,等.向日葵叶片叶绿素和比叶重及其产量研究.吉林农业大学学报,2003,19(2):97-1001.
    [272]苏丹,孙国峰,张金政,等.水分胁迫对费菜和长药八宝生长及生物量分配的影响.园艺学报,2007,34(5):1317-1320.
    [273]景茂,曹福亮,汪贵斌.土壤水分含量对银杏生长及生物量分配的影响.南京林业大学学报(自然科学版),2005,29(3):5-8.
    [274]李阳,齐曼·尤努斯,祝艳.水分胁迫对大果沙枣光合特性及生物量分配的影响.西北植物学报,26(12):2493-2499.
    [275]许振柱,周广胜,肖春旺,等.C02浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响.植物生态学报,2005,29(2):281-288.
    [276]Friend A L, Colenan M D, Bebrands J G. Carbon allocations to root and shoot systems of woody plants. New York:Plenum Press,1994:1-6.
    [277]孔艳菊,孙明高,苗海霞,等.干旱胁迫下元宝枫生长性状及生理特性研究.西北林学院学报,2006,21(5):26-31.
    [278]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响.植物生态学报,28(6):803-809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700