用户名: 密码: 验证码:
掷铁饼动作中人体运动协调特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究意义与目的
     理论意义:对人体运动协调机理的探索是技能学习与控制领域中的一个重要研究方向。解释人体运动协调机理的一个核心问题称之为“自由度问题”。分层控制理论在解释该运动协调问题上具有较强的影响力。基于日常生活中简单动作研究成果而构建运动协调分层控制理论的一些观点还需验证,理论系统还需完善。本研究对具有高爆发力、高技巧性表现的高水平运动员掷铁饼动作中人体运动协调规律的探索,旨在在这种复杂的竞技性动作以及优秀运动员这一群体中对一些分层控制理论观点的验证。
     实际意义:对优秀运动员专项技术特征的研究有助于科学评价动作合理性,完善和提高动作质量,优化个体技术,监测训练过程,提高训练水平,在各种竞技体育项目高水平运动员的训练过程中发挥着重要的科技保障作用。对专项技术中优秀运动员运动协调的评价是目前的一个难点问题。本研究将为竞技体育动作中人体运动协调特征的探索及其诊断与评价方法的建立提供借鉴,其所揭示的掷铁饼动作中人体运动协调特征能够为该动作中运动协调诊断与评价提供理论与方法的依据。该项目是我国在各种世界重大比赛中科技攻关重点项目之一。
     研究目的:⑴揭示掷铁饼动作中运动系统各元素活动间关联性。⑵揭示在掷铁饼动作中肢体与肌肉层面运动协调元及其活动与运动任务间的关联,体现其基础功能性。⑶揭示高阶段中不同掷铁饼动作水平间肢体与肌肉层面运动协调元及其活动的差异,体现其基础功能性的优化表现。⑷揭示掷铁饼动作中针对重要任务变量时运动协调元活动的灵活性以及其优化表现。⑸在这种竞技性复杂动作以及优秀运动员这一群体中对一些分层控制理论观点的验证。
     2.研究方法
     文献资料法:在“中国期刊网”、“万方数据库”、“维普中文科技期刊数据库”、“Elsevier Science全文电子期刊数据库”、“springer全文电子期刊”、“EBSCOhost全文数据库”以及“SPORTDiscus数据库”等中外文学术期刊数据库中以运动协调分层控制相关的词汇进行了检索。对所获的相关文献资料进行研读,掌握与本课题研究相关的理论基础,当前研究的不足以及未来研究的趋势。
     专家访谈法:在国内外相关文献研读的基础上,对一些不理解的理论观点以及研究的设想与有关专家进行探讨,从而更深入地把握本课题的研究现状与趋势,以及研究设计的合理性、创新性以及可靠性。
     数据的测量方法:本研究中采用了一些测量方法对优秀运动员掷铁饼动作中肢体运动与肌肉活动等进行测量。⑴使用两台高速摄像机,采用三维定点定焦摄像法,对比赛与测试中优秀运动员掷铁饼动作进行拍摄,然后采用ariel运动解析系统获取肢体环节的运动学参数;⑵使用芬兰的MegaWin6000-16表面肌电遥测系统对测试的优秀运动员掷铁饼动作中12块肌肉的肌电进行遥测,获得这些肌肉的肌电值;⑶使用两块瑞士Kistler三维测力台对测试的优秀运动员掷铁饼动作中人体受到的三维地面反作用力进行测量。
     运动协调分层控制核心概念量化方法:本研究中采用了一些矩阵分解方法对人体运动协调分层控制中的核心概念进行量化。⑴使用函数型主成分分析方法对肢体层面运动协调元及其活动系数进行量化;⑵采用非负矩阵分解方法对肌肉层面运动协调元及其活动系数进行量化;⑶采用多元线性回归与Uncontrolledmanifold analysis相结合方法对运动协调元活动间的补偿功能指数进行量化。
     数理统计法:在本研究中采用了描述性统计分析、相关分析、独立样本“t”检验等统计分析方法进行数据处理与分析。
     3研究结论
     基于运动分层控制理论框架,对掷铁饼动作中肢体、肌肉运动协调元的基础功能性及其优化表现,以及针对重要运动任务时运动协调元活动的灵活性及其优化表现进行探讨,研究认为:
     ⑴掷铁饼中肢体环节的运动主要受到四种运动协调元活动的控制。第一运动协调元的活动主要是控制掷铁饼动作中两侧下肢的运动协调;第二运动协调元的活动主要是控制掷铁饼动作中上肢与左下肢间以及左右侧上肢间运动协调;第三运动协调元的活动主要是控制掷铁饼动作中两侧上肢间以及人体右侧肢体环节间运动协调;第四运动协调元的活动主要是控制右大腿与右上肢间运动协调。这些运动协调元的活动能够使绕垂直轴角动量的获得、合理肩髋角与拉引角等姿态的形成、上下肢间以及左右侧上肢间动量的传递等任务的实现。随着技术水平的提高,肢体层面运动协调元活动的基础功能性会产生适应性变化,有利于更高要求的运动任务实现。
     ⑵在掷铁饼动作中,主要存在四种肌肉运动协调元的活动,支配运动系统完成该动作。第一种运动协调元主要活动区域在第二双支撑阶段,侧重于组织右腓肠肌外侧、右股二头肌、右股直肌、左股直肌、左腹外斜肌、右肱二头肌以及右腕屈肌的同步收缩;第二种运动协调元主要活动区域在两个单支撑阶段以及第二双支撑阶段,侧重于组织右腓肠肌外侧、右股二头肌、右股直肌、左股二头肌、右竖直肌、右腕屈肌的同步收缩;第三种运动协调元主要活动区域在两个双支撑阶段,侧重于组织右股二头肌、右臀大肌、左股直肌以及右竖直肌的同步收缩;第四种运动协调元主要活动区域在第一单支撑阶段后期与腾空阶段,侧重于组织左腓肠肌外侧、左股二头肌、左股直肌、左臀大肌、右竖直肌、左腹外斜肌的同步收缩。这些运动协调元在掷铁饼动作各阶段的活动与这些阶段中的运动任务密切关联。随着运动成绩的提高,第二、第三、第四种运动协调元活动的基础功能性会产生适应性变化,有利于更高要求的运动任务实现。
     ⑶在掷铁饼动作中针对铁饼速度、人体重心位移、左脚尖位移、拉引角、肩髋角运动任务中运动协调元活动的功能变异性占主导地位,体现了中枢神经系统为了确保这些运动任务的实现对其实施的控制。在该动作中,精英运动员在腾空阶段中针对左脚尖位移与肩髋角运动协调元活动的功能变异性的主导地位较高,在第二单支撑阶段与第二双支撑阶段中针对铁饼速度与拉引角运动协调元活动的功能变异性的主导地位较高,在全动作过程中针对重心位移运动协调元活动的功能变异性的主导地位较高。在腾空阶段中其较高的控制程度主要源自较高的运动协调元活动的功能变异性;然而,在第二单支撑与双支撑中其较高的控制程度主要源自较低的运动协调元活动的非功能变异性。
     掷铁饼动作的结构比较复杂,技巧性较高,而且要求人体尽量发挥自身的爆发力来完成(竞技目的性)。在这种特殊动作以及优秀运动员这一群体中该理论的应用对其自身具有一定的验证作用。本研究认为:
     ⑴在掷铁饼动作中,大量运动器官的活动完全可以由少量的运动协调元的灵活组合来实现,这一点支持由运动协调元实施低层次控制的观点。
     ⑵在掷铁饼动作中,各肢体或肌肉运动协调元的活动具有较为明显的基础功能性,能够使一些运动子任务顺利实现,这一点支持运动协调元活动的运动任务导向性观点。
     ⑶在掷铁饼动作中随着运动成绩或运动水平的提高时也存在运动协调元活动的相位移动,这一点支持中枢神经系统通过运动协调元活动相位移动这一简单的方式来应对人体内外约束条件的变化,体现了其简化控制的原则。然而,在这些复杂的、以竞技为目的的动作中,单纯的采用这种简化的控制方式不易于运动任务的实现,中枢神经系统还会适时的增强运动协调元活动的幅度以及通过多种运动协调共同活动增强单个运动器官的活动强度等。
     ⑷在掷铁饼动作中,针对一些重要运动任务变量时运动协调元活动的功能变异性均占主导性地位,这点支持中枢神经系统通过利用运动协调元活动的灵活性来控制重要运动任务变量,使其顺利实现。
     ⑸在掷铁饼动作中,在高阶段中运动水平提高时运动协调元活动功能变异性的主导地位会提高,在腾空阶段中其源自功能变异性的增加,在第二单支撑与双支撑阶段中源自非功能变异性的降低。这些并不与运动协调元灵活性发展理论中观点相一致。
1. Research significance and research aims
     Theoretical significance: Exploration of human movement coordinationmechanism is one of the most important research parts in the area of skilllearning and control. Work out the core problem of human movementcoordination which is called “freedom of degree”. Hierarchical control theoryhas strong influence on explaining coordination problems. Some of the ideasof movement coordination of hierarchical control theory, which is based onresearch results of simple actions in daily life still need to be verified, theorysystem also should be developed. In order to verify and develop some ideas ofhierarchical control theory in the complex competitive actions as well as eliteathletes. This article explored the law of human movement coordination aboutdiscus action of high level athletes, who have high power and high technicalperformance.
     Practical significance: Research on special technical feature of eliteathletes have contributed to scientific evaluation of the rationality, perfect andimprove the quality of action, optimization individual technology, monitoring thetraining process, improve the level of training. It also works as scientificsafeguard. One difficult problem is the evaluation of movement coordination.Our research provides reference for diagnosis and the establishment of theevaluation method of human body movement coordination. It reveals thecharacteristics of discus action movement coordination can give theory andmethods to the diagnosis and evaluation of elite discus athletes’ motioncoordination. Discus throwing event has being listed as one of the majornational key scientific and technological projects.
     Research aims:(1) Reveal the correlation between each element in thediscus throwing movement system.(2) Reveal the correlation between bodyand muscle synergy, and activities and movement tasks, show its basicfunctionality.(3) Reveal its difference in body and muscle synergy, and in activity, and reflect its basic functional optimization performance, in differentdiscus action in the stage of high level.(4) Reveal flexibility of synergy and itsoptimal performance according to variable of important task.(5) Validate anddevelop the viewpoint of hierarchical control in the competitive and complexmovement and in the group of elite athletes.
     2.Research methods
     Literature: Using relevant words include movement coordination toretrieve various database, include “Chinese Journal Net”,“Wan Fang Data”,“VIP Database for Chinese Technical Periodicals”,“Elsevier Science Full-textDigital Periodicals Data”,“Springer Full-text Digital Periodicals Data”,“EBSCOhost Full-text Database” and “SPORTDiscus Data”. By studying therelevant literature, the author mastered the basic theory related to this topicresearch, the shortcomings of current research and future research trend.
     Expert interview: On the basis of reviewing relative literature, the authorinterviewed relevant experts on theoretical perspectives which don’tunderstand and research expectations, so as to grasp the present researchingstatus and trends, and the rationality, innovation and reliability of the researchdesign.
     Data measuring method: Some measurement method is adopted in thissubject to measure elite athletes’ body movement and muscle activity in thediscus action.(1)Application of three-dimensional fixed point videotapemethod, the research Use two high-speed cameras to film excellent discusthrowing athletes in competition and test, then using Ariel motion analysissystem to get body kinematics parameters.(2) Using the FinnishMegaWin6000-16methods of electromagnetic telemetry system to telemeterelectromyography of excellent discus-throwing athletes’12muscles, andobtain the muscle electromyography values.(3) Using two pieces of SwissKistler three-dimensional strain to measure3d ground reaction force thatexcellent discus-throwing athletes get, when they are throwing discuses.
     Quantization method for core concept of movement coordination of hierarchical control: Some matrix decomposition method is adopted in thisresearch to quantify the key concepts in human movement coordination ofhierarchical control.(1) Functional principal component analysis method isused to quantify motor coordination of body synergies and its activitycoefficient.(2) Nonnegative matrix decomposition method is used to quantifymotor coordination of muscle synergies and its activity coefficient.(3) Usingthe combination of multiple linear regression and the uncontrolled manifoldanalysis method to quantify the index of compensation function duringmovement synergies campaign.
     Mathematical statistics: In this research, data are processed bydescriptive statistics analysis, correlation analysis, independent sample testson the "t" statistical analysis methods, etc.
     3.Research conclusions
     Framework based on hierarchical control theory, the research discusedthe fundamental functionality and optimization of movement coordination ofbody and muscle synergies in the discus throwing action, and its flexibility andoptimization according to important movement tasks. The study finds that:
     (1) There are four limbs movement coordination synergies in the discusaction to control the movement of the body. The first movement coordinationsynergy mainly controls the motion of the hip axis. The second movementcoordination synergy mainly controls the relative motion of the shoulder andhip axis. The third movement coordination synergy mainly controls the motionof the shoulder axis. The fourth movement coordination synergy mainlycontrols the relative motion of gravity center of human body and the discus.The movement of these body motor coordination synergies would be able toachieve the rotation of the body parts, reasonable shoulder hip angle andangle of pull, and form the energy transmission between the upper and lowerextremities as well as between the left and right side upper limb, etc..
     (2) The main activity area of the first movement coordination synergy is inthe second double support phase, the late towards, it focuses on organizing right lateral gastrocnemius, right biceps femoris muscle, left rectus femoris, leftexternal oblique muscle, right bicipital muscle of arm and right wrist flexormuscle in synchrony. The main activity area of the second movementcoordination synergy is in the two single support phases and the seconddouble support phase; it focuses on organizing the lateral of gastrocnemiusmuscle, right biceps femoris muscle, left rectus femoris, left external obliquemuscle, right vertical muscle and right wrist flexor muscle in synchrony. Themain activity area of the third movement coordination synergy is in the twodouble support phase; it focuses on organizing right biceps femoris muscle,the right gluteus, left rectus femoris and right vertical muscle in synchrony. Themain activity area of the fourth movement coordination synergy is in the latefirst single support phase and the flight phase; it focuses on organizing leftlateral gastrocnemius, left biceps femoris muscle, left rectus femoris, leftgluteus and right vertical muscle and left external oblique muscle in synchrony.These movement coordination synergies at every stage of the discusmovement activities closely associated with the movement tasks in thesestages. There is a close correlation relation among the activity in the second,third and fourth kind of movement coordination synergy with performance, inthe discus action.
     (3) For discus speed, displacement of body center of gravity, displacementof left toe, pull angle, angle of shoulder hip, beneficial variation of movementcoordination synergy activity is in a dominant position, it reflects that in order toensure the fulfillment of these tasks the central nervous system takes Controlof them. In this action, beneficial variation of movement coordination synergiesof left toe displacement and angle of shoulder hip is in a dominant position,among elite athletes. For the discus speed and pull angle, beneficial variationof movement coordination synergy activity is in a dominant position, in thesecond single support and double support phase. For the displacement ofbody center of gravity, beneficial variation of movement coordination synergyactivity is in a dominant position. As the beneficial variation of movement coordination synergy activity is high, it has a high degree of control in the flightphase. However, the low harmful variation of movement coordination synergyactivity causes a high degree of control in the second single support anddouble support phase. The internal and external environment of human bodyhave a different interference in human motion, it causes different controlstrategy of the central nervous system, thus forming the differences.
     Discus action structure is complicated, high technical, and requires thebody try to exert its power to finish it (competitive purpose). It has certainverification and development for the application of the theory, in this specialaction and in the group of elite athletes. This research believes that:
     (1) In discus action, a lot of activity in the sport organs may completelyachieve by the flexible combination of a small amount of movementcoordination synergies, which supports the view the control of low level isfinished by movement coordination synergy.
     (2) In discus action, the movement coordination synergy activity of limbsand muscles is evident in the foundation, to ensure the realization of somemovement subtasks. It supports the view task orientation of movementcoordination synergy activity.
     (3) As the improvement of sport achievement and sport level, the phase ofmovement coordination synergy activity may also shift, it supports the view thecentral nervous system uses a simple way of movement coordination synergyphase shift to deal with the changes of internal and external constraint ofhuman body. And it embodies the principle of the simplified control. However,in these complex, for the purpose of competitive action, the simple way ofusing the simplified control is not easy to exercise the realization of the task,the central nervous system can properly increase the magnitude to movementcoordination synergy activities and through joint activities of a variety ofmovement coordination to enhance the intensity of individual sports organs.
     (4) According to some important task variable, beneficial variation ofmovement coordination synergy activity is in a dominant position, in discus action. This support of the central nervous system by using the flexibility ofmovement coordination synergy activities to control important task variable,makes it work smoothly.
     (5) In discus action, with the sport level improves in the high stage thedominant position of beneficial variation of movement coordination synergyactivity will be enhanced. It comes from the increase of beneficial variation inthe flight phase, the decrease of harmful variation in the second single supportand double support phase. It is not fully consistent with the flexibilitydevelopment theory of movement coordination synergy.
引文
[1]邓磊.重剑运动员“弓步刺”动作协调性的非线性动力学特征研究[T]:上海体育学院,2010.
    [2]赫尔曼.哈肯著,凌复华译.协同学—大自然构成的奥秘[M].上海:上海译文出版社,2005.
    [3]雷福民,权德庆.主成分分析和因子分析在体育科学研究中应用方法的探析[J].西安体育学院学报,2008,(4).
    [4]林辉杰,严波涛,许崇高等.基于函数型数据分析技术的运动协调量化方法应用研究[J].体育科学,2012,(9).
    [5]刘宇.生物力学在运动控制与协调研究中的应用[J].体育科学,2010,(11):62-73.
    [6]孟银凤,梁吉业,原曦曦.函数性数据分析中的主成分分析[J].山西大学学报:自然科学版,2011,34(1):21-25.
    [7]施宝兴,魏文仪.应用逆向动力学计算关节内力的可靠性分析[J].北京体育大学学报,2004,27(9):1223-1225.
    [8]孙有平,隋新梅,钱风雷等.基于sEMG的男子旋转推铅球运动员单支撑阶段肌肉用力特征研究[J].体育科学,2010,30(1):44-50.
    [9]魏勇,刘宇.肌肉共同收缩研究进展[T].中国体育科技,2009,45(5):54-59.
    [10]许崇高,严波涛.动作协调能力属性及其相关定义的理论思考[J].西安体育学院学报,1999,16(13):31-34.
    [11]徐佳.函数型数据分析及其在证券投资中的应用[D].浙江大学硕士学位论文.
    [12]杨年峰.人体运动协调规律及其参数化描述[T].北京:清华大学;2001.
    [13]岳敏,朱建平.基于函数型主成分的中国股市波动研究[J].统计与信息论坛,2009,24(3):52-55.
    [14]初立光.对动作“协调性”实质的分析[J].河北体育学院学报,2004,18(2):81-82.
    [15]张虎,刘吉甫.主成分分析方法用于系统评估的若干问题研究[J].统计与决策,2009,13(13).
    [16]ANDERSON D, SIDAWAY B. Coordination changes associated with practiceof a soccer kick[J]. Research quarterly for exercise and sport,1994,65(2):93-99.
    [17]Anne shumway-cook等著,毕胜等译.运动控制的原理与实践[M].北京:人民体育出版社,2009,12.
    [18]BARTLETT, R.M., MüLLER, E., LINDINGER, S., et al. Three-dimensionalevaluation of the kinematic release parameters for javelin throwers ofdifferent skill levels[J]. Journal of Applied Biomechanics,1996,12:58–71
    [19]BARTLETT R. Movement coordination and movement variability[J].Sports Biomechanics,2007,6(2):119-20.
    [20]BARTLETT R, WHEAT J, ROBINS M. Is movement variability important forsports biomechanists?[J]. Sports biomechanics/International Society ofBiomechanics in Sports,2007,6(2).
    [21]BLACK D, RILEY M, MCCORD C. Synergies in intra-and interpersonalinterlimb rhythmic coordination[J]. Motor control,2007,11(4).
    [22]BOCKEM HL T, TROJE N F, D¨1RR V. Inter-joint coupling and joint anglesynergies of human catching movements[J]. Human movement science,2010,29(1):73-93.
    [23]BRETIGNY P, SEIFERT L, LEORY D, et al. Upper-limb kinematics andcoordination of short grip and classic drives in field hockey[J]. Journalof Applied Biomechanics,2008,24(3).
    [24]CAHOU T V, LUC M, DAVID A. Static optimal estimation of jointaccelerations for inverse dynamics problem solution[J]. Journal ofBiomechanics,2002,35(11).
    [25]CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns in humanwalking and running[J]. Journal of neurophysiology,2006,95(6).
    [26]CHANG R, VAN EMMERIK R, HAMILL J. Quantifying rearfoot-forefootcoordination in human walking[J]. Journal of Biomechanics,2008,41(14):3101-05.
    [27]CHERON G, BENGOETXEA A, DAN B, et al. Multi-joint coordinationstrategies for straightening up movement in humans[J]. Neuroscienceletters,1998,242(3).
    [28]DAVIDS K, LEES A, BURWITZ L. Understanding and measuring coordinationand control in kicking skills in soccer: Implications for talentidentification and skill acquisition[J]. Journal of sports sciences,2000,18(9).
    [29]DECOUFOUR N, PUDLO P, BARBIER F, et al. Variations in expert rowercoordination when rate increases on ergometer concept2(R)[J]. ComputerMethods in Biomechanics and Biomedical Engineering,2008,11.
    [30]DIEDRICH F J, WARREN W H. Why change gaits? Dynamics of the walk-runtransition[J]. Journal of Experimental Psychology: Human Perception andPerformance,1995,21(1).
    [31]DIERKS T A, DAVIS I. Discrete and continuous joint couplingrelationships in uninjured recreational runners[J]. Clinicalbiomechanics,2007,22(5).
    [32]DONà G, PREATONI E, COBELLI C, et al. Application of functionalprincipal component analysis in race walking: an emerging methodology[J].Sports biomechanics/International Society of Biomechanics in Sports,2009,8(4).
    [33]DONKER S, BEEK P, WAGENAAR R, et al. Coordination between arm and legmovements during locomotion[J]. Journal of motor behavior,2001,33(1).
    [34]DONOGHUE O A, HARRISON A J, COFFEY N, et al. Functional data analysisof running kinematics in chronic Achilles tendon injury[J]. Medicine&Science in Sports&Exercise,2008,40(7):1323.
    [35]DOREL S, DROUET J, COUTURIER A, et al. Changes of pedaling techniqueand muscle coordination during an exhaustive exercise[J]. Medicine&Science in Sports&Exercise,2009,41(6).
    [36]DOUNSKAIA N. Control of Human Limb Movements: The Leading JointHypothesis and Its Practical Applications[J]. Exercise and Sport SciencesReviews,2010,38(4).
    [37]FARMER S E, PEARCE G, STEWART C. Developing a technique to measureintra-limb coordination in gait: Applicable to children with cerebralpalsy[J]. Gait&posture,2008,28(2).
    [38]GALLOWAY J C, KOSHLAND G F. General coordination of shoulder, elbowand wrist dynamics during multijoint arm movements[J]. Experimental BrainResearch,2002,142(2).
    [39]GITTOES M, WILSON C. Intralimb joint coordination patterns of thelower extremity in maximal velocity phase sprint running[J]. Journal ofApplied Biomechanics,2010,26(2).
    [40]HAMILL J, HADDAD J, MCDERMOTT W. Issues in quantifying variabilityfrom a dynamical systems perspective[J]. Journal of Applied Biomechanics,2000,16(4).
    [41]HARRISON A, RYAN W, HAYES K. Functional data analysis of jointcoordination in the development of vertical jump performance[J]. SportsBiomechanics,2007,6(2).
    [42]HEIDERSCHEIT B. Movement variability as a clinical measure forlocomotion[J]. Journal of Applied Biomechanics,2000,16(4).
    [43]HIRASHIMA M, KADOTA H, SAKURAI S, et al. Sequential muscle activityand its functional role in the upper extremity and trunk during overarmthrowing[J]. Journal of sports sciences,2002,20(4).
    [44]HIRASHIMA M, KUDO K, OHTSUKI T. Utilization and compensation ofinteraction torques during ball-throwing movements[J]. Journal ofneurophysiology,2003,89(4).
    [45]HIRASHIMA M, KUDO K, WATARAI K, et al. Control of3D limb dynamicsin unconstrained overarm throws of different speeds performed by skilledbaseball players[J]. Journal of neurophysiology,2007,97(1).
    [46]HIRASHIMA M, OHGANE K, KUDO K, et al. Counteractive relationshipbetween the interaction torque and muscle torque at the wrist ispredestined in ball-throwing[J]. Journal of neurophysiology,2003,90(3).
    [47]HUG F, TURPIN N A, COUTURIER A, et al. Consistency of muscle synergiesduring pedaling across different mechanical constraints[J]. Journal ofneurophysiology,2011,106(1).
    [48]IRWIN G, KERWIN D G. Inter-segmental coordination in progressions forthe longswing on high bar[J]. Sports Biomechanics,2007,6(2).
    [49]IVANENKO Y P, POPPELE R E, LACQUANITI F. Five basic muscle activationpatterns account for muscle activity during human locomotion[J]. TheJournal of Physiology,2004,556(1).
    [50]JARIC S, LATASH M L. Learning a motor task involving obstacles by amulti-joint, redundant limb: two synergies within one movement[J].Journal of Electromyography and Kinesiology,1998,8(3).
    [51]KAMM K, THELEN E, JENSEN J L. A dynamical systems approach to motordevelopment[J]. Physical Therapy,1990,70(12).
    [52]KAMINSKI T. The coupling between upper and lower extremity synergiesduring whole body reaching[J]. Gait&posture,2007,26(2).
    [53]KELSO J. Phase transitions and critical behavior in human bimanualcoordination[J]. American Journal of Physiology-Regulatory, Integrativeand Comparative Physiology,1984,246(6).
    [54]KELSO J, SCHOLZ J, SCHONER G. Nonequilibrium phase transitions incoordinated biological motion: Critical fluctuations[J]. Physics LettersA,1986,118(6).
    [55]KELSO J A S. Dynamic patterns: The self-organization of brain andbehavior: The MIT Press,1995.
    [56]KO Y G, CHALLIS J H, NEWELL K M. Learning to coordinate redundantdegrees of freedom in a dynamic balance task[J]. Human movement science,2003,22(1):47-66.
    [57]KRISHNAMOORTHY V. Muscle synergies during standing [T]: ThePennsylvania State University;2003.
    [58]KURZA M J, STERGIOUB N. Effect of normalization and phase anglecalculations on continuous relative phase[J]. Journal of Biomechanics,2002,35.
    [59]LAGARDE J, MOTTET D, BARDY B G. Coordination and human perceptuo-motorskills[J]. Motor Control,2008,11(1).
    [60]LATASH M L, SCHOLZ J P, SCHONER G. Toward a new theory of motorsynergies[J]. Motor Control,2007,11(3).
    [61]LATASH M L, GORNIAK S, ZATSIORSKY V M. Hierarchies of synergies inhuman movements[J]. Kinesiology,2008,40(1):29-38.
    [62]LATASH M L. Synergy [M]. Oxford University Press,2008.
    [63]LI L, CALDWELL G E. Coeff cient of cross correlation and the time domaincorrespondence[J]. Journal of Electromyography and Kinesiology,1999.
    [64]LATASH M L. Stages in learning motor synergies: A view based on theequilibrium-point hypothesis[J]. Human movement science,2010,29(5).
    [65]LATASH M L. Stages in learning motor synergies: A view based on theequilibrium-point hypothesis[J]. Human movement science,2010,29(5).
    [66]LI Z M. Functional degrees of freedom[J]. Motor control,2006,10(4).
    [67]MARTIN V. A dynamical systems account of the uncontrolled manifoldand motor equivalence in human pointing movements[J]. Unpublisheddoctoral dissertation, Ruhr-Universit t Bochum,2005.
    [68]MILLER R, CHANG R, BAIRD J, et al. Variability in kinematic couplingassessed by vector coding and continuous relative phase[J]. Journal ofBiomechanics,2010,43(13).
    [69]MILOVANOVIC I, POPOVIC D B. Principal Component Analysis of GaitKinematics Data in Acute and Chronic Stroke Patients[J]. Computationaland Mathematical Methods in Medicine,2012.
    [70]MULLINEAUX D, CLAYTON H, GNAGEY L. Effects of Offset-NormalizingTechniques on Variability in Motion Analysis Data[J]. Journal of AppliedBiomechanics,2004,20(2).
    [71]MULLINEAUX D, UHL T. Coordination-variability and kinematics ofmisses versus swishes of basketball free throws[J]. Journal of sportssciences,2010,28(9).
    [72]NELSON-WONG E, GREGORY D E, WINTER D A, et al. Gluteus medius muscleactivation patterns as a predictor of low back pain during standing[J].Clinical biomechanics,2008,23(5).
    [73]NEWELL K. Coordination, control and skill[J]. Differing perspectivesin motor learning, memory, and control,1985.
    [74]PETERS B T, HADDAD J M, HEIDERSCHEIT B C, et al. Limitations in theuse and interpretation of continuous relative phase[J]. Journal ofBiomechanics,2003,36(2).
    [75]POHL M B, MESSENGER N, BUCKLEY J G. Forefoot, rearfoot and shankcoupling: effect of variations in speed and mode of gait[J]. Gait&posture,2007,25(2).
    [76]PREATONI E. Motor variability and skills monitoring in sports [C].2010; Marquette, MI, USA.
    [77]PREATONI E, FERRARIO M, DONà G, et al. Motor variability in sports:A non-linear analysis of race walking[J]. Journal of sports sciences,2010,28(12).
    [78]ROBERT T, ZATSIORSKY V M, LATASH M L. Multi-muscle synergies in anunusual postural task: quick shear force production[J]. ExperimentalBrain Research,2008,187(2).
    [79]RAMSAY J. Matlab, r and s-plus functions for Functional DataAnalysis[J]. Matlab, r and s-plus functions for Functional Data Analysis,2003.
    [80]RAMSAY J O. Functional data analysis [M]. Wiley Online Library,2006.
    [81]RIEMER R, HSIAO-WECKSLER E T. Improving joint torque calculations:Optimization-based inverse dynamics to reduce the effect of motionerrors[J]. Journal of Biomechanics,2008,41(7).
    [82]RODACKI A, FOWLER N, BENNETT S. The Effect of Postural Variations inMovement Co-Ordination During Plyometric Rebound Exercises[J]. Journalof Applied Biomechanics,2001.
    [83]RODRIGUEZ T, BUCHANAN J, KETCHAM C. Identifying Leading JointStrategies in a Bimanual Coordination Task: Does Coordination StabilityDepend on Leading Joint Strategy?[J]. Journal of motor behavior,2009,42(1):49-60.
    [84]RYAN W, HARRISON A, HAYES K. Functional data analysis of knee jointkinematics in the vertical jump[J]. Sports Biomechanics,2006,5(1).
    [85]RYU Y U. The coordination dynamics of control and learning in avisuomotor tracking task [T]: TEXAS A&M UNIVERSITY;2007.
    [86]SAFAVYNIA S A, TORRES-OVIEDO G, TING L H. Muscle Synergies:Implications for Clinical Evaluation and Rehabilitation of Movement[J].Topics in spinal cord injury rehabilitation,2011,17(1):16-24.
    [87]SANGER T D. Human arm movements described by a low-dimensionalsuperposition of principal components[J]. The Journal of Neuroscience,2000,20(3).
    [88]SCHOLZ J P. Dynamic pattern theory—some implications fortherapeutics[J]. Physical Therapy,1990,70(12).
    [89]SCHOLZ J P. Organizational principles for the coordination oflifting[J]. Human movement science,1993,12(5).
    [90]SCHOLZ J P, SCH NER G. The uncontrolled manifold concept: identifyingcontrol variables for a functional task[J]. Experimental Brain Research,1999,126(3).
    [91]SCHOLZ J P,SCH NER G,LATASH M L. Identifying the control structureof multijoint coordination[J]. Experimental Brain Research,2000.
    [92]SCHONER G, KELSO J. Dynamic pattern generation in behavioral andneural systems[J]. Science,1988.
    [93]SCHOLZ J P, SCH NER G. The uncontrolled manifold concept: identifyingcontrol variables for a functional task[J]. Experimental Brain Research,1999,126(3).
    [94]SEIFERT L, DELIGNIERES D, BOULESTEIX L, et al. Effect of expertiseon butterfly stroke coordination[J]. Journal of sports sciences,2007,25(2).
    [95]SEIFERT L, LEBLANC H, CHOLLET D, et al. Inter-limb coordination inswimming: Effect of speed and skill level[J]. Human movement science,2010,29(1).
    [96]Sidaway, B., Sekiya, H., and Fairweather, M. Movement variability asa function of accuracy demands inprogrammed aiming responses[J]. Journalof Motor Behavior,1995,(27)。
    [97]SPARROW W. Measuring changes in coordination and control[J]. Advancesin psychology,1992.
    [98]STERNAD D. Debates in dynamics: A dynamical systems perspective onaction and perception[J]. Human movement science,2000,19(4).
    [99]TEMPRADO J, DELLA-GRASTA M, FARRELL M, et al. A novice-expertcomparison of (intra-limb) coordination subserving the volleyballserve[J]. Human movement science,1997,16(5).
    [100]TEPAVAC D, FIELD-FOTE E. Vector coding: a technique forquantification of intersegmental coupling in multicyclic behaviors[J].Journal of Applied Biomechanics,2001,17(3).
    [101]TING L H, MCKAY J L. Neuromechanics of muscle synergies for postureand movement[J]. Current opinion in neurobiology,2007,17(6).
    [102]TOGO S, KAGAWA T, UNO Y. Motor synergies for dampening hand vibrationduring human walking[J]. Experimental Brain Research,2012.
    [103]TORRES-OVIEDO G, TING L H. Muscle synergies characterizing humanpostural responses[J]. Journal of neurophysiology,2007,98(4).
    [104]TRESCH M C, CHEUNG V C K, D'AVELLA A. Matrix factorization algorithmsfor the identification of muscle synergies: evaluation on simulated andexperimental data sets[J]. Journal of neurophysiology,2006,95(4).
    [105]TURVEY M T. Coordination[J]. American Psychologist,1990,45(8).
    [107]YEN J T, AUYANG A G, CHANG Y H. Joint-level kinetic redundancy isexploited to control limb-level forces during human hopping[J].Experimental Brain Research,2009,196(3).
    [108]VAN EMMERIK R, VAN WEGEN E. On variability and stability in humanmovement[J]. Journal of Applied Biomechanics,2000.
    [109]VAN SOEST A, VAN GALEN G. Coordination of multi-joint movements: Anintroduction to emerging views[J]. Human movement science,1995,14(4-5):391-400.
    [110]WANG Y, ZATSIORSKY V M, LATASH M L. Muscle synergies involved inshifting the center of pressure while making a first step[J]. ExperimentalBrain Research,2005,167(2).
    [111]WILSON C, SIMPSON S E, VAN EMMERIK R, et al. Coordination variabilityand skill development in expert triple jumpers[J]. Sportsbiomechanics/International Society of Biomechanics in Sports,2008,7(1).
    [112]WINTER D A. Biomechanics and Motor Control of Human Movement, FourthEdition [M]. Hoboken, New Jersey: John Wiley&Sons,2009.
    [113]WU J, MCKAY S, ANGULO-BARROSO R. Center of mass control andmulti-segment coordination in children during quiet stance[J].Experimental Brain Research,2009,196(3).
    [1]BERNSTEIN, N.A.(1967). The Control and Regulation ofMovements[M]. London: Pergamon Press.
    [2]FRéDéRIC DANION, MARK L. LATASH. Motor Control: Theories, Experiments,and Applications[M]. Oxford University Press,2010.
    [3]TORRES-OVIEDO G, TING L H. Muscle synergies characterizing humanpostural responses[J]. Journal of neurophysiology,2007,98(4).
    [4]贾谊.运动影像测量方法的误差研究[D].上海体育学院博士学位论文,2012.
    [5] WINTER D A. Biomechanics and Motor Control of Human Movement, FourthEdition [M]. Hoboken, New Jersey: John Wiley&Sons,2009.
    [6] ST-ONGE N, DUVAL N, YAHIA L, et al. Interjoint coordination in lowerlimbs in patients with a rupture of the anterior cruciate ligament of theknee joint[J]. Knee Surgery, Sports Traumatology, Arthroscopy,2004,12(3).
    [7]徐佳.函数性数据分析及其在证劵投资中的应用[T].浙江大学,2008.
    [8] IVANENKO Y P, GRASSO R, ZAGO M, et al. Temporal components of the motorpatterns expressed by the human spinal cord reflect foot kinematics[J].Journal of neurophysiology,2003,90(5).
    [9]林辉杰,严波涛,许崇高等.基于函数型数据分析技术的运动协调量化方法应用研究[J].体育科学,2012(9).
    [10]HUG F, TURPIN N A, GU VEL A, et al. Is interindividual variabilityof EMG patterns in trained cyclists related to different musclesynergies?[J]. Journal of Applied Physiology,2010,108(6).
    [11]KRISHNAMOORTHY V. Muscle synergies during standing [T]: ThePennsylvania State University;2003.
    [12]KAMINSKI T. The coupling between upper and lower extremity synergiesduring whole body reaching[J]. Gait&posture,2007,26(2).
    [13]BOCKEM HL T, TROJE N F, D¨1RR V. Inter-joint coupling and joint anglesynergies of human catching movements[J]. Human movement science,2010,29(1).
    [14]TODOROV E, GHAHRAMANI Z. Analysis of the synergies underlying complexhand manipulation [C].Human movement science,2004.
    [15]BARTLETT R M. The biomechanics of the discus throw: A review[J].Journal of sports sciences,1992,10(5).
    [16]王国伟,韩敬.我国优秀女子铁饼运动员宋爱民投掷铁饼技术的三维运动学分析[J].西安体育学院学报,2011,(01).
    [17] DAPENA J. New insights on discus throwing[J]. Track Technique,1993.
    [18]KNICKER A. Kinematic characteristics of the discus throw[J]. ModernAthlete and Coach,1992.
    [19]李宝宅,刘素兰,李瑞先.国内外优秀铁饼运动员最后用力技术的对比分析[J].武汉体育学院学报,2003,(02):80-82.
    [20]王文胜,魏轶林.对青少年铁饼运动员最后用力阶段左侧支撑技术的研究[J].沈阳体育学院学报,2010,(03):127-28.
    [21]王新坤,崔朋涛.优秀男子铁饼运动员掷铁饼最后用力阶段非投掷臂速度变化的运动学分析[J].沈阳体育学院学报,2010,(02):92-94.
    [22]董文梅,李建臣.对我国优秀女子铁饼运动员肩、髋动作特征的研究[J].中国体育科技,2000,(05).
    [23]李厚林,苏明理,许崇高, et al.女子铁饼运动员马雪君掷铁饼技术特点与未来突破点的研究[J].西安体育学院学报,2010,(06):734-39.
    [24]HAY J G, YU B. Critical characteristics of technique in throwing thediscus[J]. Journal of sports sciences,1995,13(2).
    [25]张良.我国优秀女子铁饼运动员最后用力阶段速度变化对成绩影响的相关分析[J].山东体育学院学报,2009,(02):78-80.
    [26]孙有平,隋新梅,钱风雷, et al.基于sEMG的男子旋转推铅球运动员单支撑阶段肌肉用力特征研究[J].体育科学,2010,(001):44-50.
    [27]NEIGHBOUR B. The Discus Technique.[J]. Modern Athlete&Coach2009,47(1).
    [28]周学兵.江苏省优秀青少年男子铁饼运动员吴健投掷技术运动学分析及其技术训练方法的研究[T]:苏州大学;2005.
    [29]NEIGHBOUR B. The discus technique.[J]. Modern Athlete&Coach2009,47(2).
    [30]贾文彤,李建臣.我国优秀女子铁饼运动员旋转过程中身体重心变化的三维运动学分析[J].中国体育科技,2002,(07).
    [31]NEIGHBOUR B. The discus technique.[J]. Modern Athlete&Coach2009,47(3).
    [32]LEIGH S, YU B. The associations of selected technical parameters withdiscus throwing performance: A cross-sectional study[J]. SportsBiomechanics,2007,6(3).
    [33]LEIGH S, GROSS M T, LI L, et al. The relationship between discusthrowing performance and combinations of selected technicalparameters[J]. Sports Biomechanics,2008,7(2).
    [34]GLAZIER P S, DAVIDS K. The problem of measurement indeterminacy incomplex neurobiological movement systems[J]. Journal of Biomechanics,2009,42(16).
    [35]赵焕彬,李建设.运动生物力学[M].北京:高等教育出版社,2008.
    [36]CHIU C H. Estimating the Optimal Release Conditions for World RecordHolders in Discus[J]. International Journal of Sport and Exercise Science,2009,1(1).
    [37]张英波,佟海青.对我国优秀女子铁饼选手最后用力技术的运动学分析[J].体育科学,2000,(06):84-85+89.
    [38]王锋,游江波.我国优秀女子铁饼运动员最后用力阶段肩、髋速度变化特征分析[J].山东体育学院学报,2009,(10):80-82+90.
    [39]林辉杰,梁海丹,严波涛.国内外优秀女子铁饼运动员掷铁饼技术的比较研究[J].中国体育科技,2013,(01).
    [40]王琨,张俊峰,周静等.我国高水平女子铁饼运动员掷铁饼肌肉用力特征的分析[J].中国体育科技,2010,(5).
    [41]YU B, BROKER J, SILVESTER J. A kinetic analysis of discus throwingtechniques[J]. Sports Biomechanics,2002,1(1):25-46.
    [42]许崇高.“元动作"及其元认知[J].西安体育学院学报,2001,8(1).
    [43]王长生.运动元认知理论体系的初步构建及在运动情境中实验研究的设想[J].西安体育学院学报,2005,22(5).
    [44]许崇高,郑建华.跑跳类田径技能“元动作”分析及其学习的类比迁移问题[J].西安体育学院学报,2006,23(2).
    [45]SCHOLZ J P. Organizational principles for the coordination oflifting[J]. Human movement science,1993,12(5).
    [46]BRETIGNY P, SEIFERT L, LEORY D, et al. Upper-limb kinematics andcoordination of short grip and classic drives in field hockey[J]. Journalof Applied Biomechanics,2008,24(3).
    [47]SEIFERT L, LEBLANC H, CHOLLET D, et al. Inter-limb coordination inswimming: Effect of speed and skill level[J]. Human movement science,2010,29(1).
    [48]GITTOES M, WILSON C. Intralimb joint coordination patterns of thelower extremity in maximal velocity phase sprint running[J]. Journal ofApplied Biomechanics,2010,26(2).
    [49]MULLINEAUX D, UHL T. Coordination-variability and kinematics ofmisses versus swishes of basketball free throws[J]. Journal of sportssciences,2010,28(9).
    [50]MARK L. LATASH. Synergy [M]. Oxford University Press,2008.
    [51]MARK L. LATASH. Hierarchies of synergies in human movements[J].Kinesiology,2008,40(1).
    [52]LATASH M L, SCHOLZ J P, SCHONER G. Toward a new theory of motorsynergies[J]. MOTOR CONTROL,2007,11(3).
    [53]刘宇.生物力学在运动控制与协调研究中的应用[J].体育科学,2010,(11):62-73.
    [54]TYTELL E. Do muscle synergies actually work?[J]. Journal ofExperimental Biology,2009,212(15).
    [55]JARIC S, LATASH M L. Learning a motor task involving obstacles by amulti-joint, redundant limb: two synergies within one movement[J].Journal of Electromyography and Kinesiology,1998,8(3).
    [56]SANGER T D. Human arm movements described by a low-dimensionalsuperposition of principal components[J]. The Journal of Neuroscience,2000,20(3).
    [57]FORNER-CORDERO A, LEVIN O, LI Y, et al. Principal component analysisof complex multijoint coordinative movements[J]. biological cybernetics,2005,93(1).
    [58]MILOVANOVIC I, POPOVIC D B. Principal Component Analysis of GaitKinematics Data in Acute and Chronic Stroke Patients[J].2012.
    [59]TRESCH M C, CHEUNG V C K, D'AVELLA A. Matrix factorization algorithmsfor the identification of muscle synergies: evaluation on simulated andexperimental data sets[J]. Journal of neurophysiology,2006,95(4).
    [60]BYADARHALY K V, PERDOOR M C, MINAI A A. A modular neural model of motorsynergies[J]. Neural Networks,2012.
    [61]BOSGA J, MEULENBROEK R, SWINNEN S. Stability of inter-jointcoordination during circle drawing: Effects of shoulder-joint articularproperties[J]. Human movement science,2003,22(3).
    [62]BERKOWITZ A, HAO Z Z. Partly shared spinal cord networks forlocomotion and scratching[J]. Integrative and comparative biology,2011,51(6).
    [63]D'AVELLA A, BIZZI E. Shared and specific muscle synergies in naturalmotor behaviors[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2005,102(8).
    [64]CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns in humanwalking and running[J]. Journal of neurophysiology,2006,95(6).
    [65]HUG F, TURPIN N A, COUTURIER A, et al. Consistency of muscle synergiesduring pedaling across different mechanical constraints[J]. Journal ofneurophysiology,2011,106(1).
    [66]IVANENKO Y P, GRASSO R, ZAGO M, et al. Temporal components of the motorpatterns expressed by the human spinal cord reflect foot kinematics[J].Journal of neurophysiology,2003,90(5).
    [67]SCHOLZ J P, SCH NER G. The uncontrolled manifold concept: identifyingcontrol variables for a functional task[J]. Experimental Brain Research,1999,126(3).
    [68]Scholz, J.P., Sch ner, G.,&Latash, M.L.. Identifying the controlstructure of multijoint coordination during pistol shooting[J].Experimental Brain Research,2000(135).
    [1] LATASH M L, GORNIAK S, ZATSIORSKY V M. Hierarchies of synergies inhuman movements[J]. Kinesiology,2008,40(1):29-38.
    [2] MARK L. LATASH. Synergy [M]. Oxford University Press,2008.
    [3]郝红,徐常青,张新平.基于非负矩阵分解的航拍图像信息提取[J].浙江农林大学学报,2012,1.
    [4]林辉杰,严波涛,许崇高等.基于函数型数据分析技术的运动协调量化方法应用研究[J].体育科学,2012,(9).
    [5]林辉杰,严波涛,刘占锋, et al.运动协调的定量方法以及在专项技术分析领域的研究进展[J].体育科学,2012,32(3):81-91.
    [6]王琨,张俊峰,周静等.我国高水平女子铁饼运动员掷铁饼肌肉用力特征的分析[J].中国体育科技,2010(5).
    [7]王乐军,黄勇,龚铭新等.10s全力蹬踏自行车运动过程中股直肌sEMG活动特征研究[J].体育科学,2010,(11).
    [8] HUG F, TURPIN N A, GU VEL A, et al. Is interindividual variabilityof EMG patterns in trained cyclists related to different musclesynergies?[J]. Journal of Applied Physiology,2010,108(6).
    [9]MUCELI S, BOYE A T, D'AVELLA A, et al. Identifying representativesynergy matrices for describing muscular activation patterns duringmultidirectional reaching in the horizontal plane[J]. Journal ofneurophysiology,2010,103(3).
    [10]KRISHNAMOORTHY V. Muscle synergies during standing [T]: ThePennsylvania State University;2003.
    [11]LEE D D, SEUNG H. Learning the parts of objects by non-negative matrixfactorization[J]. Nature,1999.
    [12]SEUNG D, LEE L. Algorithms for non-negative matrix factorization[J].Advances in neural information processing systems,2001,13.
    [13]Chih-Jen Lin. Non-negative Matrix Factorization (NMF).http://www.csie.ntu.edu.tw/~cjlin/nmf/index.html.
    [14]TORRES-OVIEDO G, TING L H. Muscle synergies characterizing humanpostural responses[J]. Journal of neurophysiology,2007,98(4).
    [15] BOCKEM HL T, TROJE N F, D¨1RR V. Inter-joint coupling and joint anglesynergies of human catching movements[J]. Human movement science,2010,29(1):73-93.
    [16]孙有平,隋新梅,钱风雷, et al.基于sEMG的男子旋转推铅球运动员单支撑阶段肌肉用力特征研究[J].体育科学,2010,(1):44-50.
    [17]李厚林,苏明理,许崇高, et al.我国女子铁饼运动员李艳凤掷铁饼技术特征的研究[J].北京体育大学学报,2010,(07).
    [18]TRESCH M C, CHEUNG V C K, D'AVELLA A. Matrix factorization algorithmsfor the identification of muscle synergies: evaluation on simulated andexperimental data sets[J]. Journal of neurophysiology,2006,95(4).
    [19]王国伟,韩敬.我国优秀女子铁饼运动员宋爱民投掷铁饼技术的三维运动学分析[J].西安体育学院学报,2011,(01).
    [20]张良.我国优秀女子铁饼运动员最后用力阶段速度变化对成绩影响的相关分析[J].山东体育学院学报,2009,(02):78-80.
    [21]董海军,苏明理,韩敬, et al.国内外优秀女子铁饼选手旋转节奏及环节特征对比研究[J].山东体育学院学报,2010,(06):54-61.
    [22]NEIGHBOUR B. The Discus Technique[J]. Modern Athlete&Coach2009,47(2).
    [23]周学兵.江苏省优秀青少年男子铁饼运动员吴健投掷技术运动学分析及其技术训练方法的研究[T]:苏州大学;2005.
    [24]文超.田径运动高级教程[M].北京:人民体育出版社,2002.
    [25]BARTLETT R M. The biomechanics of the discus throw: A review[J].Journal of sports sciences,1992,10(5).
    [26]DAPENA J. New insights on discus throwing[J]. Track Technique,1993,125.
    [27]YU B, BROKER J, SILVESTER J. A kinetic analysis of discus throwingtechniques[J]. Sports Biomechanics,2002,1(1):25-46.
    [28] Anne shumway-cook等著,毕胜等译.运动控制的原理与实践[M].北京:人民体育出版社,2009,12.
    [29] KO Y G, CHALLIS J H, NEWELL K M. Learning to coordinate redundantdegrees of freedom in a dynamic balance task[J]. Human movement science,2003,22(1):47-66.
    [30] TEMPRADO J, DELLA-GRASTA M, FARRELL M, et al. A novice-expertcomparison of (intra-limb) coordination subserving the volleyballserve[J]. Human movement science,1997,16(5).
    [31] BRETIGNY P, SEIFERT L, LEORY D, et al. Upper-limb kinematics andcoordination of short grip and classic drives in field hockey[J]. Journalof Applied Biomechanics,2008,24(3).
    [32] SEIFERT L, LEBLANC H, CHOLLET D, et al. Inter-limb coordination inswimming: Effect of speed and skill level[J]. Human movement science,2010,29(1).
    [33] SAFAVYNIA S A, TORRES-OVIEDO G, TING L H. Muscle Synergies:Implications for Clinical Evaluation and Rehabilitation of Movement[J].Topics in spinal cord injury rehabilitation,2011,17(1).
    [34]LACQUANITI F, IVANENKO Y P, ZAGO M. Patterned control of humanlocomotion[J]. The Journal of Physiology,2012,590(10).
    [35]NEILSON P D, NEILSON M D. On theory of motor synergies[J]. Humanmovement science,2010,29(5).
    [36]TING L H, MCKAY J L. Neuromechanics of muscle synergies for postureand movement[J]. Current opinion in neurobiology,2007,17(6).
    [37]LATASH M L, SCHOLZ J P, SCHONER G. Toward a new theory of motorsynergies[J]. MOTOR CONTROL-CHAMPAIGN-,2007,11(3).
    [38]BOSGA J, MEULENBROEK R, SWINNEN S. Stability of inter-jointcoordination during circle drawing: Effects of shoulder-joint articularproperties[J]. Human movement science,2003,22(3).
    [39]BERKOWITZ A, HAO Z Z. Partly shared spinal cord networks forlocomotion and scratching[J]. Integrative and comparative biology,2011,51(6).
    [40]D'AVELLA A, BIZZI E. Shared and specific muscle synergies in naturalmotor behaviors[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2005.
    [41] CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns inhuman walking and running[J]. Journal of neurophysiology,2006,95(6).
    [42]HUG F, TURPIN N A, COUTURIER A, et al. Consistency of muscle synergiesduring pedaling across different mechanical constraints[J]. Journal ofneurophysiology,2011.
    [1] LATASH M L, SCHOLZ J P, SCHONER G. Toward a new theory of motorsynergies[J]. Motor Control,2007,11(3).
    [2]LATASH M L, DANION F, SCHOLZ J F, et al. Approaches to analysis ofhandwriting as a task of coordinating a redundant motor system[J]. Humanmovement science,2003,22(2).
    [3]PREATONI E. Motor variability and skills monitoring in sports [C].2010;Marquette, MI, USA.
    [4]LATASH M L, LEVIN M F, SCHOLZ J P, et al. Motor control theories andtheir applications[J]. Medicina (Kaunas, Lithuania),2010,46(6).
    [5]Olafsdottir H, Zhang W, Zatsiorsky VM, Latash ML. Age-related changesin multifinger synergies in accurate moment of force production tasks[J].J Appl Physiol.2007.
    [6]WU J, MCKAY S, ANGULO-BARROSO R. Center of mass control andmulti-segment coordination in children during quiet stance[J].Experimental Brain Research,2009,196(3).
    [7]LATASH M L, ANSON J G. Synergies in health and disease: relations toadaptive changes in motor coordination[J]. Physical Therapy,2006,86(8).
    [8]KRISHNAMOORTHY V. Muscle synergies during standing [T]: ThePennsylvania State University;2003.
    [9]YEN J T, AUYANG A G, CHANG Y H. Joint-level kinetic redundancy isexploited to control limb-level forces during human hopping[J].Experimental Brain Research,2009,196(3).
    [10]BARTLETT R M. The biomechanics of the discus throw: A review[J].Journal of sports sciences,1992,10(5).
    [11]HAY J G, YU B. Critical characteristics of technique in throwing thediscus[J]. Journal of sports sciences,1995,13(2).
    [12]董文梅,李建臣.对我国优秀女子铁饼运动员肩、髋动作特征的研究[J].中国体育科技,2000,(05).
    [13]贾文彤,李建臣.我国优秀女子铁饼运动员旋转过程中身体重心变化的三维运动学分析[J].中国体育科技,2002,(07).
    [14]刘建国,崔冬雪,刘卫彬, et al.旋转掷铁饼技术中肩、髋、铁饼及人体重心的时空特征研究[J].中国体育科技,2004,(04).
    [15]王国伟,韩敬.我国优秀女子铁饼运动员宋爱民投掷铁饼技术的三维运动学分析[J].西安体育学院学报,2011,(01).
    [16]林辉杰,梁海丹,严波涛.国内外优秀女子铁饼运动员掷铁饼技术的比较研究[J].中国体育科技,2013,(01).
    [17]HUG F, TURPIN N A, GU VEL A, et al. Is interindividual variabilityof EMG patterns in trained cyclists related to different musclesynergies?[J]. Journal of Applied Physiology,2010,108(6).
    [18]HUG F, TURPIN N A, COUTURIER A, et al. Consistency of muscle synergiesduring pedaling across different mechanical constraints[J]. Journal ofneurophysiology,2011,106(1).
    [19]SAFAVYNIA S A, TORRES-OVIEDO G, TING L H. Muscle Synergies:Implications for Clinical Evaluation and Rehabilitation of Movement[J].Topics in spinal cord injury rehabilitation,2011,17(1):16-24.
    [20]WANG Y, ASAKA T, ZATSIORSKY V M, et al. Muscle synergies duringvoluntary body sway: combining across-trials and within-a-trialanalyses[J]. Experimental Brain Research,2006,174(4).
    [21]DANNA-DOS-SANTOS A, SLOMKA K, ZATSIORSKY V M, et al. Muscle modes andsynergies during voluntary body sway[J]. Experimental Brain Research,2007,179(4).
    [22]SCHOLZ J, SCH NER G, HSU W, et al. Motor equivalent control of thecenter of mass in response to support surface perturbations[J].Experimental Brain Research,2007,180(1).
    [23]WANG Y, ZATSIORSKY V M, LATASH M L. Muscle synergies involved inshifting the center of pressure while making a first step[J]. ExperimentalBrain Research,2005,167(2).
    [24]ROBERT T, ZATSIORSKY V M, LATASH M L. Multi-muscle synergies in anunusual postural task: quick shear force production[J]. ExperimentalBrain Research,2008,187(2).
    [25]ROBERT T, BENNETT B C, RUSSELL S D, et al. Angular momentum synergiesduring walking[J]. Experimental Brain Research,2009,197(2).
    [26]NEPTUNE R, MCGOWAN C. Muscle contributions to whole-body sagittalplane angular momentum during walking[J]. Journal of Biomechanics,2011,44(1):6-12.
    [27]LATASH M L, SCHOLZ J P, SCHONER G. Toward a new theory of motorsynergies[J]. MOTOR CONTROL-CHAMPAIGN-,2007,11(3).
    [28]ZHANG W, SCHOLZ J P, ZATSIORSKY V M, et al. What do synergies do?Effects of secondary constraints on multidigit synergies in accurateforce-production tasks[J]. Journal of neurophysiology,2008,99(2):.
    [29]RANGANATHAN R, NEWELL K M. Motor synergies: feedback and errorcompensation within and between trials[J]. Experimental Brain Research,2008,186(4).
    [30]GORNIAK S L, DUARTE M, LATASH M L. Do synergies improve accuracy?:A study of speed-accuracy trade-offs during finger force production[J].Motor control,2008,12(2).
    [31]DANNA-DOS-SANTOS A, DEGANI A M, LATASH M L. Flexible muscle modes andsynergies in challenging whole-body tasks[J]. Experimental BrainResearch,2008,189(2).
    [32]LEIGH S, YU B. The associations of selected technical parameters withdiscus throwing performance: A cross-sectional study[J]. SportsBiomechanics,2007,6(3).
    [33]LEIGH S, GROSS M T, LI L, et al. The relationship between discusthrowing performance and combinations of selected technicalparameters[J]. Sports Biomechanics,2008,7(2).
    [34]TSENG Y W, SCHOLZ J P, SCH NER G, et al. Effect of accuracy constrainton joint coordination during pointing movements[J]. Experimental BrainResearch,2003,149(3).
    [35]TOGO S, KAGAWA T, UNO Y. Motor synergies for dampening hand vibrationduring human walking[J]. Experimental Brain Research,2012.
    [36]BERNSTEIN, N.A.(1967). The Control and Regulation ofMovements[M]. London: Pergamon Press.
    [37]MAGILL R A,运动技能学习与控制.张忠秋等译.北京:中国轻工业出版社;2006.
    [38]毕胜,燕铁斌,王宁华.运动控制原理与实践.北京:人民卫生出版社;2009.
    [39]MARK L. LATASH. Synergy [M]. Oxford University Press,2008.
    [40]SAFAVYNIA S A, TORRES-OVIEDO G, TING L H. Muscle Synergies:Implications for Clinical Evaluation and Rehabilitation of Movement[J].Topics in spinal cord injury rehabilitation,2011,17(1):16-24.
    [41]TING L H, MCKAY J L. Neuromechanics of muscle synergies for postureand movement[J]. Current opinion in neurobiology,2007,17(6).
    [42]SCHOLZ J P,SCH NER G,LATASH M L. Identifying the control structureof multijoint coordination[J]. Experimental Brain Research,2000.
    [43]LATASH M L. Stages in learning motor synergies: A view based on theequilibrium-point hypothesis[J]. Human movement science,2010,29(5).
    [44]YANG J F, SCHOLZ J P, LATASH M L. The role of kinematic redundancyin adaptation of reaching[J]. Experimental Brain Research,2007,176(1):54-69.
    [45]ASAKA T, WANG Y, FUKUSHIMA J, et al. Learning effects on muscle modesand multi-mode postural synergies[J]. Experimental Brain Research,2008,184(3).
    [46]王倩.影响铁饼飞行远度因素的定量分析[J].广州体育学院学报,2010,30(005):83-85.
    [47]LEIGH S, LIU H, HUBBARD M, et al. Individualized optimal releaseangles in discus throwing[J]. Journal of Biomechanics,2010,43(3).
    [48]BARTLETT R. Movement coordination and movement variability[J].Sports Biomechanics,2007,6(2).
    [49]PREATONI E. Motor variability and skills monitoring in sports [C].2010; Marquette, MI, USA.
    [50]WILSON C, SIMPSON S E, VAN EMMERIK R, et al. Coordination variabilityand skill development in expert triple jumpers[J]. Sportsbiomechanics/International Society of Biomechanics in Sports,2008,7(1).
    [51]GITTOES M, WILSON C. Intralimb joint coordination patterns of thelower extremity in maximal velocity phase sprint running[J]. Journal ofApplied Biomechanics,2010,26(2).
    [52]MULLINEAUX D, UHL T. Coordination-variability and kinematics ofmisses versus swishes of basketball free throws[J]. Journal of sportssciences,2010,28(9)
    [53]PREATONI E, FERRARIO M, DON¨¤G, et al. Motor variability in sports:A non-linear analysis of race walking[J]. Journal of sports sciences,2010,28(12).
    [1]毕长年,张健,宋君来.对掷铁饼旋转技术的转动力分析[J].首都体育学院学报,2001,(01):56-60.
    [2]毕胜,燕铁斌,王宁华.运动控制原理与实践.北京:人民卫生出版社;2009.
    [3]陈学华,林越南.铁饼投掷技术中的衔接技术[J].南京体育学院学报,2001,(03):90-92.
    [4]邓磊.重剑运动员“弓步刺”动作协调性的非线性动力学特征研究[T]:上海体育学院;2010.
    [5]丁晗.基于函数型数据分析的高中学习成绩评价与预测[T]:东北师范大学;2009.
    [6]董海军,苏明理,韩敬, et al.国内外优秀女子铁饼选手旋转节奏及环节特征对比研究[J].山东体育学院学报,2010,(06):54-61.
    [7]董海军,苏明理,王琨.我国女子铁饼优秀运动员过渡和最后用力阶段技术动力学及运动学的特征[J].体育学刊,2010,(03):70-76.
    [8]董海军,苏明理,严波涛, et al.我国优秀女子铁饼运动员旋转节奏—结构特征的研究[J].天津体育学院学报,2009,(02).
    [9]董海军,苏明理,严波涛, et al.亚洲冠军宋爱民掷铁饼技术结构特征的运动学探析[J].首都体育学院学报,2009,(04).
    [10]董文梅,李建臣.对我国优秀女子铁饼运动员肩、髋动作特征的研究[J].中国体育科技,2000,(05).
    [11]范秦海,崔冬雪,刘建国, et al.我国女子铁饼运动员旋转阶段环节技术指标的三维运动学分析[J].山东体育学院学报,2005,(04).
    [12]范秦海,董斌.我国优秀女子铁饼选手最后用力技术对成绩影响的指标分析[J].北京体育大学学报,2007,(07).
    [13]范秦海,杨银田.我国女子铁饼运动员最后用力阶段技术分析[J].体育科研,2006,(02):78-79.
    [14]郭丽钦.国内外优秀男子铁饼运动员6项素质指标对比分析[J].体育科学研究,2001,(02):61-63.
    [15]郝红,徐常青,张新平.基于非负矩阵分解的航拍图像信息提取[J].浙江农林大学学报,2012,1.
    [16]贾文彤,李建臣.我国优秀女子铁饼运动员旋转过程中身体重心变化的三维运动学分析[J].中国体育科技,2002,(07).
    [17]靳刘蕊.函数性主成份分析的思想,方法及应用[J].统计与决策,2010,(001):15-18.
    [18]雷福民,权德庆.主成分分析和因子分析在体育科学研究中应用方法的探析[J].西安体育学院学报,2008,(4).
    [19]李宝宅,刘素兰,李瑞先.国内外优秀铁饼运动员最后用力技术的对比分析[J].武汉体育学院学报,2003,(02):80-82.
    [20]李厚林,苏明理,许崇高, et al.女子铁饼运动员马雪君掷铁饼技术特点与未来突破点的研究[J].西安体育学院学报,2010,(06).
    [21]李厚林,苏明理,许崇高, et al.我国女子铁饼运动员李艳凤掷铁饼技术特征的研究[J].北京体育大学学报,2010,(07).
    [22]李建臣,王新泽.对李少杰掷铁饼技术的三维运动学分析[J].中国体育科技,2001,(10).
    [23]李建臣,肖涛.我国优秀女子铁饼选手旋转阶段肩髋饼速度变化的三维运动学特征[J].广州体育学院学报,2003,(05):69-70.
    [24]林辉杰,严波涛,刘占锋, et al.运动协调的定量方法以及在专项技术分析领域的研究进展[J].体育科学,2012,32(3):81-91.
    [25]林辉杰,严波涛,许崇高等.基于函数型数据分析技术的运动协调量化方法应用研究[J].体育科学,2012,(9).
    [26]林辉杰,梁海丹,严波涛.国内外优秀女子铁饼运动员掷铁饼技术的比较研究[J].中国体育科技,2013,(01).
    [27]刘建国,崔冬雪,刘卫彬, et al.旋转掷铁饼技术中肩、髋、铁饼及人体重心的时空特征研究[J].中国体育科技,2004,(04).
    [28]刘建国,赵毅博,崔冬雪, et al.数字化铁饼三维信息采集系统的研制与实验[J].中国体育科技,2009,(06):17-20.
    [29]刘宇.生物力学在运动控制与协调研究中的应用[J].体育科学,2010,(11):62-73.
    [30]骆建,罗刚.投掷铁饼旋转过程中下肢动作不同走向的作用[J].成都体育学院学报,2006,(05):63-67.
    [31]马勇占.我国优秀铁饼运动员专项力量指标与专项成绩的PLS1模型[J].天津体育学院学报,2005,(01):25-27.
    [32]毛娟.隐含波动率的函数型数据分析[T]:武汉理工大学;2008.
    [33]孟银凤,梁吉业,原曦曦.函数性数据分析中的主成分分析[J].山西大学学报:自然科学版,2011,34(1):21-25.
    [34]曲爱丽.基于函数型数据分析的沪深权证市场研究[T]:厦门大学;2009.
    [35]申荣芳,李建臣.对我国女子铁饼优秀运动员的技术分析[J].广州体育学院学报,2002,(02):63-65+68.
    [36]宋祺鹏,毛德伟,贾刚, et al.山东省优秀铁饼运动员动作技术诊断[J].山东体育学院学报,2009,(11):61-63.
    [37]孙有平,隋新梅,钱风雷, et al.基于sEMG的男子旋转推铅球运动员单支撑阶段肌肉用力特征研究[J].体育科学,2010,(001):44-50.
    [38]田径项目奥运攻关课题组.国家田径集训队女子铁饼技术诊断[J].天津体育学院学报,2000,(02):35-38.
    [39]佟贵锋.对我国优秀男子铁饼运动员投掷技术的运动学分析[J].体育科学,2000,(01):47-50+54.
    [40]王长生.运动元认知理论体系的初步构建及在运动情境中实验研究的设想[J].西安体育学院学报,2005,22(5).
    [41]王锋,游江波.我国优秀女子铁饼运动员最后用力阶段肩、髋速度变化特征分析[J].山东体育学院学报,2009,(10):80-82+90.
    [42]王广楠.我国优秀男子铁饼运动员旋转技术中肩髋线角度与身体重心移动速度的三维运动学分析[J].山东体育科技,2010,(01):22-25.
    [43]王国伟,韩敬.我国优秀女子铁饼运动员宋爱民投掷铁饼技术的三维运动学分析[J].西安体育学院学报,2011,(01).
    [44]王鹏,严波涛,韩敬, et al.我国优秀女子铁饼运动员旋转技术风格研究[J].山东体育学院学报,2009,(12):61-65+68.
    [45]王文胜,魏轶林.对青少年铁饼运动员最后用力阶段左侧支撑技术的研究[J].沈阳体育学院学报,2010,(03).
    [46]王效红.对我国优秀女子铁饼运动员的技术运动学特征及其专项能力指标的分析[T]:北京体育大学;2005.
    [47]王效红,张英波.我国优秀女子铁饼运动员投掷过程中铁饼的运动学特征分析[J].武汉体育学院学报,2007,(03):42-46.
    [48]王新坤,崔朋涛.优秀男子铁饼运动员掷铁饼最后用力阶段非投掷臂速度变化的运动学分析[J].沈阳体育学院学报,2010,(02):92-94.
    [49]魏瑾琴.第十届世青赛女子铁饼最后用力技术的运动学分析[T]:山西大学;2008.
    [50]闻扬,杜力萍.掷铁饼项目技术与力学特性的研究[J].武汉体育学院学报,2003,(03):51-52+58.
    [51]邢爱兰,李强.对高水平铁饼运动员技术训练中存在的问题及对策研究[J].南京体育学院学报(自然科学版),2008,(04):55-56.
    [52]许崇高.“元动作"及其元认知[J].西安体育学院学报,2001,8(1).
    [53]许崇高,郑建华.跑跳类田径技能“元动作”分析及其学习的类比迁移问题[J].西安体育学院学报,2006,23(2).
    [54]杨年峰.人体运动协调规律及其参数化描述[T].北京:清华大学;2001.
    [55]岳敏,朱建平.基于函数型主成分的中国股市波动研究[J].统计与信息论坛,2009,24(003):52-56.
    [56]张春莲,金效宁,曹旗.浅谈掷铁饼技术的整体性[J].田径,2002,(07):29.
    [57]张良.我国优秀女子铁饼运动员最后用力阶段身体重心运动节奏特征分析[J].天津体育学院学报,2009,(03).
    [58]张良.我国优秀女子铁饼运动员最后用力阶段速度变化对成绩影响的相关分析[J].山东体育学院学报,2009,(02):78-80.
    [59]张良,赵春英.孙太凤掷铁饼旋转节奏特征分析[J].北京体育大学学报,2009,(01).
    [60]张英波,佟海青.对我国优秀女子铁饼选手最后用力技术的运动学分析[J].体育科学,2000,(06):84-85+89.
    [61]赵毅博.数字化铁饼三维信息采集系统的研制与检测[T]:河北师范大学;2008.
    [62]周学兵.江苏省优秀青少年男子铁饼运动员吴健投掷技术运动学分析及其技术训练方法的研究[T]:苏州大学;2005.
    [63]周学兵,陈东.吴健铁饼投掷技术的运动学分析[J].山东体育学院学报,2006,(02):69-71+75.
    [64]ANDERSON D, SIDAWAY B. Coordination changes associated with practice of a soccerkick[J]. Research quarterly for exercise and sport,1994,65(2):93-99.
    [65]ASAKA T, WANG Y, FUKUSHIMA J, et al. Learning effects on muscle modes andmulti-mode postural synergies[J]. Experimental Brain Research,2008,184(3).
    [66]BANJA T. Kinematics and aerodynamics parameters on paralympic discus throw [C].2007, Ouro Preto–Brazil.
    [67]BARTLETT R. Movement coordination and movement variability[J]. SportsBiomechanics,2007,6(2).
    [68]BARTLETT R, WHEAT J, ROBINS M. Is movement variability important for sportsbiomechanists?[J]. Sports biomechanics/International Society of Biomechanics inSports,2007,6(2).
    [69]BARTLETT R M. The biomechanics of the discus throw: A review[J]. Journal ofsports sciences,1992,10(5).
    [70]BERKOWITZ A, HAO Z Z. Partly shared spinal cord networks for locomotion andscratching[J]. Integrative and comparative biology,2011,51(6):890-902.
    [71]BIANCHI L, ANGELINI D, ORANI G, et al. Kinematic coordination in human gait:relation to mechanical energy cost[J]. Journal of neurophysiology,1998,79(4).
    [72]BIZZI E, D’AVELLA A, SALTIEL P, et al. Book Review: Modular Organization ofSpinal Motor Systems[J]. The Neuroscientist,2002,8(5).
    [73]BLACK D, RILEY M, MCCORD C. Synergies in intra-and interpersonal interlimbrhythmic coordination[J]. Motor control,2007,11(4).
    [74]BOCKEM HL T, TROJE N F, D¨1RR V. Inter-joint coupling and joint angle synergiesof human catching movements[J]. Human movement science,2010,29(1):73-93.
    [75]BOSCO G. Principal Component Analysis of Electromyographic Signals: AnOverview[J]. Open Rehabilitation Journal,2010,3.
    [76]BOSGA J, MEULENBROEK R, SWINNEN S. Stability of inter-joint coordination duringcircle drawing: Effects of shoulder-joint articular properties[J]. Human movementscience,2003,22(3):297-320.
    [77]BRETIGNY P, SEIFERT L, LEORY D, et al. Upper-limb kinematics and coordinationof short grip and classic drives in field hockey[J]. Journal of Applied Biomechanics,2008,24(3).
    [78]BURGESS-LIMERICK R, ABERNETHY B, NEAL R. Relative phase quantifies interjointcoordination[J]. Journal of Biomechanics,1993,26(1):91-94.
    [79]BYADARHALY K V, PERDOOR M C, MINAI A A. A modular neural model of motorsynergies[J]. Neural Networks,2012.
    [80]CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns in human walkingand running[J]. Journal of neurophysiology,2006,95(6).
    [81]CAPPOS S. Developing discus technique[J]. Long and Strong Throwers Journal,2005,8(2):34-36.
    [82]CARPINELLA I, CRENNA P, RABUFFETTI M, et al. Coordination between upper-andlower-limb movements is different during overground and treadmill walking[J].European Journal of Applied Physiology,2010,108(1):71-82.
    [83]CHANG R, VAN EMMERIK R, HAMILL J. Quantifying rearfoot-forefoot coordinationin human walking[J]. Journal of Biomechanics,2008,41(14).
    [84]CHERON G, BENGOETXEA A, DAN B, et al. Multi-joint coordination strategies forstraightening up movement in humans[J]. Neuroscience letters,1998,242(3).
    [85]CHIU C H. Estimating the Optimal Release Conditions for World Record Holdersin Discus[J]. International Journal of Sport and Exercise Science,2009,1(1):9-14.
    [86]CROWTHER R G, SPINKS W L, LEICHT A S, et al. Intralimb coordination variabilityin peripheral arterial disease[J]. Clinical biomechanics,2008,23(3).
    [87]CROWTHER R G, SPINKS W L, LEICHT A S, et al. Lower limb movement variabilityin patients with peripheral arterial disease[J]. Clinical biomechanics,2008,23(8).
    [88]DAFFERTSHOFER A, LAMOTH C J C, MEIJER O G, et al. PCA in studying coordinationand variability: a tutorial[J]. Clinical biomechanics,2004,19(4).
    [89]DANDEKAR S, ALES J, CARNEY T, et al. Methods for quantifying intra-andinter-subject variability of evoked potential data applied to the multifocal visualevoked potential[J]. Journal of neuroscience methods,2007,165(2).
    [90]DANNA-DOS-SANTOS A, DEGANI A M, LATASH M L. Flexible muscle modes and synergiesin challenging whole-body tasks[J]. Experimental Brain Research,2008,189(2).
    [91]DANNA-DOS-SANTOS A, SLOMKA K, ZATSIORSKY V M, et al. Muscle modes and synergiesduring voluntary body sway[J]. Experimental Brain Research,2007,179(4).
    [92]DAPENA J. New insights on discus throwing[J]. Track Technique,1993.
    [93]D'AVELLA A, BIZZI E. Shared and specific muscle synergies in natural motorbehaviors[J]. Proceedings of the National Academy of Sciences of the United Statesof America,2005,102(8).
    [94]DAVIDS K, LEES A, BURWITZ L. Understanding and measuring coordination andcontrol in kicking skills in soccer: Implications for talent identification andskill acquisition[J]. Journal of sports sciences,2000,18(9).
    [95]DE RUGY A, RIEK S, OYTAM Y, et al. Neuromuscular and biomechanical factorscodetermine the solution to motor redundancy in rhythmic multijoint arm movement[J].Experimental Brain Research,2008,189(4).
    [96]DECOUFOUR N, PUDLO P, BARBIER F, et al. Variations in expert rower coordinationwhen rate increases on ergometer concept2(R)[J]. Computer Methods in Biomechanicsand Biomedical Engineering,2008,11:79-80.
    [97]DELEO A T, DIERKS T A, FERBER R, et al. Lower extremity joint coupling duringrunning: a current update[J]. Clinical biomechanics,2004,19(10).
    [98]DIBERARDINO III L A, POLK J D, ROSENGREN K S, et al. Quantifying complexity andvariability in phase portraits of gait[J]. Clinical biomechanics,2010,25(6).
    [99]DIERKS T A, DAVIS I. Discrete and continuous joint coupling relationships inuninjured recreational runners[J]. Clinical biomechanics,2007,22(5).
    [100]DON¨¤G, PREATONI E, COBELLI C, et al. Application of functional principalcomponent analysis in race walking: an emerging methodology[J]. Sportsbiomechanics/International Society of Biomechanics in Sports,2009,8(4).
    [101]DONKER S, BEEK P, WAGENAAR R, et al. Coordination between arm and leg movementsduring locomotion[J]. Journal of motor behavior,2001,33(1):86-102.
    [102]DOUNSKAIA N. Control of Human Limb Movements: The Leading Joint Hypothesis andIts Practical Applications[J]. Exercise and Sport Sciences Reviews,2010,38(4).
    [103]ENGSBERG J, VAN EMMERIK R, ROSS S, et al. Use of relative phase as a measureof motor control at the ankle in persons with cerebral palsy: a preliminary study[J].Journal of Applied Biomechanics,2008,24(4).
    [104]FARMER S E, PEARCE G, STEWART C. Developing a technique to measure intra-limbcoordination in gait: Applicable to children with cerebral palsy[J]. Gait&posture,2008,28(2).
    [105]FINCH A, ARIEL G. Ginematic comparison of the best and worst throws of the topmen's discus performers at1996atlanta olympic games [J]. Track Technique,2010.
    [106]FORNER-CORDERO A, LEVIN O, LI Y, et al. Principal component analysis of complexmultijoint coordinative movements[J]. biological cybernetics,2005,93(1):63-78.
    [107]FUNATO T, AOI S, OSHIMA H, et al. Variant and invariant patterns embedded inhuman locomotion through whole body kinematic coordination[J]. Experimental BrainResearch,2010,205(4):497-511.
    [108]GITTOES M, WILSON C. Intralimb joint coordination patterns of the lowerextremity in maximal velocity phase sprint running[J]. Journal of AppliedBiomechanics,2010,26(2).
    [109]GIZZI L, NIELSEN J F, FELICI F, et al. Impulses of activation but not motormodules are preserved in the locomotion of subacute stroke patients[J]. Journal ofneurophysiology,2011,106(1).
    [110]GLAZIER P S, DAVIDS K. The problem of measurement indeterminacy in complexneurobiological movement systems[J]. Journal of Biomechanics,2009,42(16).
    [111]GORNIAK S L, DUARTE M, LATASH M L. Do synergies improve accuracy?: A study ofspeed-accuracy trade-offs during finger force production[J]. Motor control,2008,12(2).
    [112]GUEGUEN N, CHARBONNEAU M, ROBERT G, et al. Inter-segmental coordination: Motorpattern in humans stepping over an obstacle with mechanical ankle joint friction[J].Journal of Biomechanics,2005,38(7).
    [113]HADDAD J, VAN EMMERIK R, WHEAT J, et al. Relative phase coordination analysisin the assessment of dynamic gait symmetry[J]. Journal of Applied Biomechanics,2010,26(1).
    [114]HAMILL J, HADDAD J, MCDERMOTT W. Issues in quantifying variability from adynamical systems perspective[J]. Journal of Applied Biomechanics,2000,16(4).
    [115]HARRISON A, RYAN W, HAYES K. Functional data analysis of joint coordinationin the development of vertical jump performance[J]. Sports Biomechanics,2007,6(2).
    [116]HASSON C J, CALDWELL G E, VAN EMMERIK R E A. Changes in muscle and jointcoordination in learning to direct forces[J]. Human movement science,2008,27(4).
    [117]HAY J G, YU B. Critical characteristics of technique in throwing the discus[J].Journal of sports sciences,1995,13(2).
    [118]HEIDERSCHEIT B. Movement variability as a clinical measure for locomotion[J].Journal of Applied Biomechanics,2000,16(4).
    [119]HEIDERSCHEIT B, HAMILL J, VAN EMMERIK R. Variability of stride characteristicsand joint coordination among individuals with unilateral patellofemoral pain[J].Journal of Applied Biomechanics,2002,18(2).
    [120]HEIDERSCHEIT B C, HAMILL J, VAN EMMERIK R E A. Q-angle in fuences on thevariability of lower extremity coordination during running[J]. Medicine and Sciencein Sports and Exercise,1999,31.
    [121]HUBBARD M, CHENG K B. Optimal discus trajectories[J]. Journal of Biomechanics,2007,40(16).
    [122]HUG F, TURPIN N A, COUTURIER A, et al. Consistency of muscle synergies duringpedaling across different mechanical constraints[J]. Journal of neurophysiology,2011,106(1).
    [123]HUG F, TURPIN N A, GU VEL A, et al. Is interindividual variability of EMGpatterns in trained cyclists related to different muscle synergies?[J]. Journal ofApplied Physiology,2010,108(6).
    [124]IRWIN G, KERWIN D G. Inter-segmental co-ordination of high bar progressions[J].Journal of Sports Sciences,2004,22.
    [125]IRWIN G, KERWIN D G. Biomechanical similarities of progressions for thelongswing on high bar[J]. Sports biomechanics/International Society of Biomechanicsin Sports,2005,4(2).
    [126]IRWIN G, KERWIN D G. Inter-segmental coordination in progressions for thelongswing on high bar[J]. Sports Biomechanics,2007,6(2).
    [127]IVANENKO Y P, DOMINICI N, CAPPELLINI G, et al. Development of pendulum mechanismand kinematic coordination from the first unsupported steps in toddlers[J]. Journalof Experimental Biology,2004,207(21).
    [128]IVANENKO Y P, GRASSO R, ZAGO M, et al. Temporal components of the motor patternsexpressed by the human spinal cord reflect foot kinematics[J]. Journal ofneurophysiology,2003,90(5).
    [129]IVANENKO Y P, POPPELE R E, LACQUANITI F. Five basic muscle activation patternsaccount for muscle activity during human locomotion[J]. The Journal of Physiology,2004,556(1).
    [130]IVANENKO Y P, POPPELE R E, LACQUANITI F. Motor control programs and walking[J].The Neuroscientist,2006,12(4).
    [131]JARIC S, LATASH M L. Learning a motor task involving obstacles by a multi-joint,redundant limb: two synergies within one movement[J]. Journal of Electromyographyand Kinesiology,1998,8(3).
    [132]J RG P. A QUESTION OF BALANCE: THE IMPORTANCE OF BALANCE&CONTROL IN THE DISCUSTHROW.[J]. Modern Athlete&Coach2006,44(3).
    [133]KAMINSKI T. The coupling between upper and lower extremity synergies duringwhole body reaching[J]. Gait&posture,2007,26(2).
    [134]KAMM K, THELEN E, JENSEN J L. A dynamical systems approach to motordevelopment[J]. Physical Therapy,1990,70(12).
    [135]KAO J C, RINGENBACH S D R, MARTIN P E. Gait transitions are not dependent onchanges in intralimb coordination variability[J]. Journal of motor behavior,2003,35(3).
    [136]KAO P, FERRIS D. The effect of movement frequency on interlimb coupling duringrecumbent stepping[J]. Motor control,2005,9(2).
    [137]KAUTZ S A, BOWDEN M G, CLARK D J, et al. Comparison of motor control deficitsduring treadmill and overground walking poststroke[J]. Neurorehabilitation andNeural Repair,2011,25(8).
    [138]KLOUS M, MIKULIC P, LATASH M L. Two aspects of feedforward postural control:anticipatory postural adjustments and anticipatory synergy adjustments[J]. Journalof neurophysiology,2011,105(5).
    [139]KNICKER A. Kinematic characteristics of the discus throw[J]. Modern Athleteand Coach,1992,30(1):3-6.
    [140]KO Y G, CHALLIS J H, NEWELL K M. Learning to coordinate redundant degrees offreedom in a dynamic balance task[J]. Human movement science,2003,22(1):47-66.
    [141]KRISHNAMOORTHY V. Muscle synergies during standing [T]: The Pennsylvania StateUniversity;2003.
    [142]KRISHNAMOORTHY V, LATASH M L, SCHOLZ J P, et al. Muscle modes during shiftsof the center of pressure by standing persons: effect of instability and additionalsupport[J]. Experimental Brain Research,2004,157(1):18-31.
    [143]KURZA M J, STERGIOUB N. Effect of normalization and phase angle calculationson continuous relative phase[J]. Journal of Biomechanics,2002,35.
    [144]LACQUANITI F, IVANENKO Y P, ZAGO M. Patterned control of human locomotion[J].The Journal of Physiology,2012,590(10).
    [145]LATASH M L. Stages in learning motor synergies: A view based on theequilibrium-point hypothesis[J]. Human movement science,2010,29(5).
    [146]LATASH M L, ANSON J G. Synergies in health and disease: relations to adaptivechanges in motor coordination[J]. Physical Therapy,2006,86(8).
    [147]LATASH M L, DANION F, SCHOLZ J F, et al. Approaches to analysis of handwritingas a task of coordinating a redundant motor system[J]. Human movement science,2003,22(2).
    [148]LATASH M L, GORNIAK S, ZATSIORSKY V M. Hierarchies of synergies in humanmovements[J]. Kinesiology,2008,40(1):29-38.
    [149]LATASH M L, LEVIN M F, SCHOLZ J P, et al. Motor control theories and theirapplications[J]. Medicina (Kaunas, Lithuania),2010,46(6).
    [150]LATASH M L, SCHOLZ J P, SCHONER G. Toward a new theory of motor synergies[J].MOTOR CONTROL-CHAMPAIGN-,2007,11(3).
    [151]LATASH M L, SCHOLZ J P, SCH NER G. Motor control strategies revealed in thestructure of motor variability[J]. Exercise and Sport Sciences Reviews,2002,30(1).
    [152]LEE D D, SEUNG H. Learning the parts of objects by non-negative matrixfactorization[J]. Nature,1999.
    [153]LEIGH S, GROSS M T, LI L, et al. The relationship between discus throwingperformance and combinations of selected technical parameters[J]. SportsBiomechanics,2008,7(2).
    [154]LEIGH S, LIU H, HUBBARD M, et al. Individualized optimal release angles indiscus throwing[J]. Journal of Biomechanics,2010,43(3).
    [155]LEIGH S, YU B. The associations of selected technical parameters with discusthrowing performance: A cross-sectional study[J]. Sports Biomechanics,2007,6(3).
    [156]LEIRDAL S, ROELEVELD K, ETTEMA G. Coordination Specificity in Strength andPower Training[J]. International journal of sports medicine,2008,29(3).
    [157]LI L, CALDWELL G E. Coeff cient of cross correlation and the time domaincorrespondence[J]. Journal of Electromyography and Kinesiology,1999.
    [158]LI L, VAN DEN BOGERT E C H, CALDWELL G E, et al. Coordination patterns of walkingand running at similar speed and stride frequency[J]. Human movement science,1999,18(1).
    [159]LI Z M. Functional degrees of freedom[J]. Motor control,2006,10(4).
    [160]MAGILL R A,运动技能学习与控制.张忠秋等译.北京:中国轻工业出版社;2006.
    [161]MAH C D, HULLIGER M, LEE R G, et al. Quantitative analysis of human movementsynergies: constructive pattern analysis for gait[J]. Journal of motor behavior,1994,26(2):83-102.
    [162]MARONSKI R. Optimal distance from the implement to the axis of rotation inhammer and discus throws[J]. Journal of Biomechanics,1991,24(11):999-1005.
    [163]MAYCOCK J, BL SING B, BOCKEM HL T, et al. Motor synergies and objectrepresentation in virtual and real grasping [C].2010.
    [164]MICERA S, CARPANETO J, POSTERARO F, et al. Characterization of upper armsynergies during reaching tasks in able-bodied and hemiparetic subjects[J].Clinical biomechanics,2005,20(9).
    [165]MILLER R, CHANG R, BAIRD J, et al. Variability in kinematic coupling assessedby vector coding and continuous relative phase[J]. Journal of Biomechanics,2010,43(13).
    [166]MILOVANOVIC I, POPOVIC D B. Principal Component Analysis of Gait KinematicsData in Acute and Chronic Stroke Patients[J].2012.
    [167]MORASSO P. Neural mechanisms of synergy formation[J]. Human movement science,1992,11(1-2).
    [168]MORASSO P, CASADIO M, MOHAN V, et al. A neural mechanism of synergy formationfor whole body reaching[J]. biological cybernetics,2010,102(1):45-55.
    [169]MUCELI S, BOYE A T, D'AVELLA A, et al. Identifying representative synergymatrices for describing muscular activation patterns during multidirectionalreaching in the horizontal plane[J]. Journal of neurophysiology,2010,103(3).
    [170]MULLINEAUX D. Methods for quantifying the variability in data [C].
    [171]MULLINEAUX D, CLAYTON H, GNAGEY L. Effects of Offset-Normalizing Techniqueson Variability in Motion Analysis Data[J]. Journal of Applied Biomechanics,2004,20(2).
    [172]MULLINEAUX D, UHL T. Coordination-variability and kinematics of misses versusswishes of basketball free throws[J]. Journal of sports sciences,2010,28(9).
    [173]MULLINEAUX D R, BARTLETT R M, BENNETT S. Research design and statistics inbiomechanics and motor control[J]. Journal of sports sciences,2001,19(10).
    [174]NEIGHBOUR B. The Discus Technique.[J]. Modern Athlete&Coach2009,47(2)
    [175]NEIGHBOUR B. The Discus Technique.[J]. Modern Athlete&Coach2009,47(3).
    [176]NEIGHBOUR B. The Discus Technique.[J]. Modern Athlete&Coach2009,47(1).
    [177]NEILSON P D, NEILSON M D. Motor maps and synergies[J]. Human movement science,2005,24(5).
    [178]NEILSON P D, NEILSON M D. On theory of motor synergies[J]. Human movementscience,2010,29(5).
    [179]NEPTUNE R, MCGOWAN C. Muscle contributions to whole-body sagittal plane angularmomentum during walking[J]. Journal of Biomechanics,2011,44(1):6-12.
    [180]NEPTUNE R R, CLARK D J, KAUTZ S A. Modular control of human walking: a simulationstudy[J]. Journal of Biomechanics,2009,42(9).
    [181]NEWELL K M, SLIFKIN A B, editors. The nature of movement variability;1998.
    [182]OJANEN T, RAUHALA T, H KKINEN K. Strength and power profiles of the lower andupper extremities in master throwers at different ages[J]. The Journal of Strength&Conditioning Research,2007,21(1).
    [183]PERDOOR M C. A Neural Model for Motor Synergies [T]: University of Cincinnati;2010.
    [184]PETERS B T, HADDAD J M, HEIDERSCHEIT B C, et al. Limitations in the use andinterpretation of continuous relative phase[J]. Journal of Biomechanics,2003,36(2).
    [185]POHL M B, MESSENGER N, BUCKLEY J G. Forefoot, rearfoot and shank coupling:effect of variations in speed and mode of gait[J]. Gait&posture,2007,25(2).
    [186]POLK J D, SPENCER-SMITH J, DIBERARDINO L, et al. Quantifying variability inphase portraits: Application to gait ontogeny[J]. Infant Behavior and Development,2008,31(2).
    [187]PREATONI E. Motor variability and skills monitoring in sports [C].2010;Marquette, MI, USA.
    [188]PREATONI E, FERRARIO M, DON¨¤G, et al. Motor variability in sports: Anon-linear analysis of race walking[J]. Journal of sports sciences,2010,28(12).
    [189]PUTNAM C. A segment interaction analysis of proximal-to-distal sequentialsegment motion patterns[J]. Medicine&Science in Sports&Exercise,1991,23(1).
    [190]RAMSAY J O. Functional data analysis: Wiley Online Library,2006.
    [191]RANGANATHAN R, NEWELL K M. Motor synergies: feedback and error compensationwithin and between trials[J]. Experimental Brain Research,2008,186(4).
    [192]ROBERT T, BENNETT B C, RUSSELL S D, et al. Angular momentum synergies duringwalking[J]. Experimental Brain Research,2009,197(2).
    [193]ROBERT T, ZATSIORSKY V M, LATASH M L. Multi-muscle synergies in an unusualpostural task: quick shear force production[J]. Experimental Brain Research,2008,187(2).
    [194]RODACKI A, FOWLER N, BENNETT S. The Effect of Postural Variations in MovementCo-Ordination During Plyometric Rebound Exercises[J]. Journal of AppliedBiomechanics,2001.
    [195]RODRIGUEZ T, BUCHANAN J, KETCHAM C. Identifying Leading Joint Strategies ina Bimanual Coordination Task: Does Coordination Stability Depend on Leading JointStrategy?[J]. Journal of motor behavior,2009,42(1):49-60.
    [196]RYAN W, HARRISON A, HAYES K. Functional data analysis of knee joint kinematicsin the vertical jump[J]. Sports Biomechanics,2006,5(1).
    [197]SABATINI A M. Identif cation of neuromuscular synergies in natural upper-armmovements[J]. biological cybernetics,2001.
    [198]SAFAVYNIA S A, TORRES-OVIEDO G, TING L H. Muscle Synergies: Implications forClinical Evaluation and Rehabilitation of Movement[J]. Topics in spinal cord injuryrehabilitation,2011,17(1):16-24.
    [199]SALESSE R, TEMPRADO J, SWINNEN S. Interaction of neuromuscular, spatial andvisual constraints on hand-foot coordination dynamics[J]. Human movement science,2005,24(1):66-80.
    [200]SANDERS R. Kinematics, coordination, variability, and biological noise in theprone flutter kick at different levels of a "learn-to-swim" programme[J]. Journalof sports sciences,2007,25(2).
    [201]SANGER T D. Human arm movements described by a low-dimensional superpositionof principal components[J]. The Journal of Neuroscience,2000,20(3).
    [202]SCHOLZ J, SCH NER G, HSU W, et al. Motor equivalent control of the center ofmass in response to support surface perturbations[J]. Experimental Brain Research,2007,180(1).
    [203]SCHOLZ J P. Dynamic pattern theory——some implications for therapeutics[J].Physical Therapy,1990,70(12).
    [204]SCHOLZ J P. Organizational principles for the coordination of lifting[J]. Humanmovement science,1993,12(5).
    [205]SCHOLZ J P, SCH NER G. The uncontrolled manifold concept: identifying controlvariables for a functional task[J]. Experimental Brain Research,1999,126(3).
    [206]SCHONER G, KELSO J. Dynamic pattern generation in behavioral and neuralsystems[J]. Science,1988.
    [207]SEAY J, HADDAD J, VAN EMMERIK R, et al. Coordination variability around thewalk to run transition during human locomotion[J]. Motor control,2006,10(2).
    [208]SEIFERT L, DELIGNIERES D, BOULESTEIX L, et al. Effect of expertise on butterflystroke coordination[J]. Journal of sports sciences,2007,25(2).
    [209]SEIFERT L, LEBLANC H, CHOLLET D, et al. Inter-limb coordination in swimming:Effect of speed and skill level[J]. Human movement science,2010,29(1).
    [210]SEUNG D, LEE L. Algorithms for non-negative matrix factorization[J]. Advancesin neural information processing systems,2001,13.
    [211]SHIM J K, PARK J. Prehension synergies: principle of superposition andhierarchical organization in circular object prehension[J]. Experimental BrainResearch,2007,180(3).
    [212]SHINOHARA M, SCHOLZ J P, ZATSIORSKY V M, et al. Finger interaction duringaccurate multi-finger force production tasks in young and elderly persons[J].Experimental Brain Research,2004,156(3).
    [213]SIDAWAY B, HEISE G, SCHOENFELDER-ZOHDI B. Quantifying the variability ofangle-angle plots[J]. Journal of Human Movement Studies,1995,29(4).
    [214]SPARROW W, LAY B, O DWYER N. Metabolic and attentional energy costs of interlimbcoordination[J]. Journal of motor behavior,2007,39(4).
    [215]STERNAD D. Debates in dynamics: A dynamical systems perspective on action andperception[J]. Human movement science,2000,19(4).
    [216]ST-ONGE N, DUVAL N, YAHIA L, et al. Interjoint coordination in lower limbs inpatients with a rupture of the anterior cruciate ligament of the knee joint[J]. KneeSurgery, Sports Traumatology, Arthroscopy,2004,12(3).
    [217]ST-ONGE N, FELDMAN A. Interjoint coordination in lower limbs during differentmovements in humans[J]. Experimental Brain Research,2003,148(2).
    [218]TEMPRADO J, DELLA-GRASTA M, FARRELL M, et al. A novice-expert comparison of(intra-limb) coordination subserving the volleyball serve[J]. Human movementscience,1997,16(5).
    [219]TEPAVAC D, FIELD-FOTE E. Vector coding: a technique for quantification ofintersegmental coupling in multicyclic behaviors[J]. Journal of AppliedBiomechanics,2001,17(3).
    [220]TING L H, MCKAY J L. Neuromechanics of muscle synergies for posture andmovement[J]. Current opinion in neurobiology,2007,17(6).
    [221]TODOROV E, GHAHRAMANI Z. Analysis of the synergies underlying complex handmanipulation [C].2004. IEEE.
    [222]TOGO S, KAGAWA T, UNO Y. Motor synergies for dampening hand vibration duringhuman walking[J]. Experimental Brain Research,2012:1-10.
    [223]TORRES-OVIEDO G, TING L H. Muscle synergies characterizing human posturalresponses[J]. Journal of neurophysiology,2007,98(4).
    [224]TRESCH M C, CHEUNG V C K, D'AVELLA A. Matrix factorization algorithms for theidentification of muscle synergies: evaluation on simulated and experimental datasets[J]. Journal of neurophysiology,2006,95(4).
    [225]TRESCH M C, JARC A. The case for and against muscle synergies[J]. Currentopinion in neurobiology,2009,19(6).
    [226]TRICON V, LE PELLEC-MULLER A, MARTIN N, et al. Balance control and adaptationof kinematic synergy in aging adults during forward trunk bending[J]. Neuroscienceletters,2007,415(1):81-86.
    [227]TSENG Y, SCHOLZ J, VALERE M. Effects of movement frequency and joint kineticson the joint coordination underlying bimanual circle drawing[J]. Journal of motorbehavior,2006,38(5):383-404.
    [228]TSENG Y W, SCHOLZ J P, SCH NER G, et al. Effect of accuracy constraint on jointcoordination during pointing movements[J]. Experimental Brain Research,2003,149(3).
    [229]TYTELL E. DO MUSCLE SYNERGIES ACTUALLY WORK?[J]. Journal of ExperimentalBiology,2009,212(15).
    [230]VAN ANTWERP K, BURKHOLDER T, TING L. Inter-joint coupling effects on musclecontributions to endpoint force and acceleration in a musculoskeletal model of thecat hindlimb[J]. Journal of Biomechanics,2007,40(16).
    [231]VAN EMMERIK R, VAN WEGEN E. On variability and stability in human movement[J].Journal of Applied Biomechanics,2000.
    [232]VAN SOEST A, VAN GALEN G. Coordination of multi-joint movements: Anintroduction to emerging views[J]. Human movement science,1995,14(4-5):391-400.
    [233]VERNAZZA-MARTIN S, MARTIN N, MASSION J. Kinematic synergy adaptation tomicrogravity during forward trunk movement[J]. Journal of neurophysiology,2000,83(1).
    [234]WANG Y, ASAKA T, ZATSIORSKY V M, et al. Muscle synergies during voluntary bodysway: combining across-trials and within-a-trial analyses[J]. Experimental BrainResearch,2006,174(4).
    [235]WANG Y, ZATSIORSKY V M, LATASH M L. Muscle synergies involved in shifting thecenter of pressure while making a first step[J]. Experimental Brain Research,2005,167(2):196-210.
    [236]WHEAT J, MULLINEAUX D R, BARTLETE R M, et al. Quantifying variability incoordination during running [C].2002; Caceres-Extremadura-Spain.
    [237]WILSON C, SIMPSON S E, VAN EMMERIK R, et al. Coordination variability and skilldevelopment in expert triple jumpers[J]. Sports biomechanics/International Societyof Biomechanics in Sports,2008,7(1):2.
    [238]WU J, MCKAY S, ANGULO-BARROSO R. Center of mass control and multi-segmentcoordination in children during quiet stance[J]. Experimental Brain Research,2009,196(3).
    [239]YAMADA N. Nature of variability in rhythmical movement[J]. Human movementscience,1995,14(3).
    [240]YANG J F, SCHOLZ J P, LATASH M L. The role of kinematic redundancy in adaptationof reaching[J]. Experimental Brain Research,2007,176(1):54-69.
    [241]YAO F, M LLER H G, CLIFFORD A J, et al. Shrinkage estimation for functionalprincipal component scores with application to the population kinetics of plasmafolate[J]. Biometrics,2003,59(3).
    [242]YEN J T, AUYANG A G, CHANG Y H. Joint-level kinetic redundancy is exploitedto control limb-level forces during human hopping[J]. Experimental Brain Research,2009,196(3).
    [243]YOUNG M, LI L. Determination of critical parameters among elite female shotputters[J]. Sports Biomechanics,2005,4(2).
    [244]YU B. THE BIOMECHANICS OF THE BIOMECHANICS OF THROWING DISCUS [C].2007.
    [245]YU B, BROKER J, SILVESTER J. A kinetic analysis of discus throwing techniques[J].Sports Biomechanics,2002,1(1):25-46.
    [246]ZAJAC F. Understanding muscle coordination of the human leg with dynamicalsimulations[J]. Journal of Biomechanics,2002,35(8).
    [247]ZEHR E, DUYSENS J. Regulation of arm and leg movement during human locomotion[J].The Neuroscientist,2004,10(4).
    [248]ZHANG W, SCHOLZ J P, ZATSIORSKY V M, et al. What do synergies do? Effects ofsecondary constraints on multidigit synergies in accurate force-production tasks[J].Journal of neurophysiology,2008,99(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700