用户名: 密码: 验证码:
Glubam胶合竹梁试验研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球能源不断减少和世界节能减排思想的不断蔓延的国际大环境下,土木工程领域中的Glubam胶合竹梁从初步的“以竹代木”构想逐步发展成为涉及桥梁、房屋、大型场馆等各个方面的新型结构构件。在不发达国家的农村和乡镇里,Glubam胶合竹梁沿用了木结构的发展历程,不仅可以用来建造简易住宅和临时建筑,还成功应用到厂房、学校等公共建筑领域。
     Glubam胶合竹梁是参照胶合木工业技术,应用现代设计理念和工艺技术开发的一种新型承重构件。指接技术的引入使得竹梁的加工不受原材料尺寸的限制,并且使板材的对接更加紧密和牢固。指接胶合竹梁不同于其他形式的竹梁,具有加工简单、形式多样、维护简便等优点。在成功将指接胶合竹梁应用到现代竹结构单体房屋、竹结构活动房、现代竹结构人行桥梁和车行桥梁之后,常规的力学性能研究已经极大的限制了竹梁应用的推广,胶合竹的应力应变关系、指接节点失效模型、桥梁中竹梁的疲劳性能和竹梁弯剪荷载条件下的失效准则都是亟待解决的问题。本文对Glubam胶合竹梁的加工工艺、失效理论研究、基本物理力学性能、力学试验研究、工程应用等方面分别进行了阐述,具体工作如下:
     1.本文详细介绍了竹木结构的发展历程以及Glubam胶合竹梁的种类划分、加工工艺和工程应用,论述了新型竹材梁的研发现状和使用情况。通过两个典型的工程应用实例,展示了现代竹结构桥梁的构件加工、结构形式和设计方法。通过成桥试验和长期观测,分析了现代竹结构桥梁的安全性和耐久性,并结合相关规范对结构承载力进行验算。简单的成型技术、可观的经济性、良好的安全性以及丰富的原材料为Glubam胶合竹梁在桥梁中的推广和使用奠定了基础,也为改进胶合竹的结构性能研究和开发更优化的结构体系提供了参考。
     2.从失效准则基本理论出发,论述了各向异性材料的经典准则公式Tsai-Wu的参数和适应范围。结合Glubam胶合竹梁交织状构造和分层结构的特点,推算出Glubam胶合竹梁在平面应力状态下的一般失效公式,将复杂各向异性材料的三向应力问题转化为简单的平面应力问题。通过数值计算方法推导Glubam胶合竹梁在荷载(M,V)下的截面应力公式。对工程使用中四种胶合竹梁的受力情况进行分析,得到各自的极限承载力的计算公式。其中普通胶合竹梁忽略胶合层的不连续性,采用纯材料连续介质计算方法:指接胶合竹梁可将指接层和非指接层分别进行应力分析,然后利用力平衡关系算出中性轴位置,最后得出竹梁承载力。
     3.参考国内外相关文献,总结了有关胶合竹材的一系列试验成果,简单描述了其力学性能方面的特性及物理力学指标,为胶合竹梁的强度和刚度研究提供了基础的理论依据。参考木结构物理力学试验规范和美国NDS设计规范,引用胶合竹抗压、抗拉、抗弯和抗剪试验、胶合竹徐变试验、螺栓连接方式性能试验以及前人做的竹材干湿度试验,对胶合竹的整体性能进行阐述和分析,并通过回归拟合得到任意湿度条件下竹材的弹性模量计算公式。采用Burger模型对胶合竹梁的蠕变性能进行模拟,通过蠕变试验后的静力破坏试验以及回归拟合,可以得到Glubam胶合竹梁的蠕变变形计算公式。试验证明荷载的长期作用会在一定程度上降低竹梁的承载能力与非线性阶段的刚度。通过考虑含水率、材料变异、徐变、天然缺陷、应力集中等参数影响,对试验结果进行修正后得到Glubam胶合竹梁的容许设计应力。
     4.通过Glubam胶合竹梁静载试验,对比不同连接方式、叠合方式、FRP增强措施对竹梁承载力和刚度的影响,并基于几点基本假设,建立了竹胶合梁强度和挠度等计算公式。引入Glubam胶合竹梁的相关试验数据与计算结果进行对比,可以发现Glubam胶合竹梁的计算模型能够很好的估计构件的承载能力,为工程应用提供可靠的计算依据。在已建成的现代竹结构车行桥梁同批次产品中,随机抽取一组胶合竹梁试件进行试验。将200万次反复荷载试验后的试验组试件与对比组试件的试验结果进行对比后发现,胶合竹梁抗疲劳性能良好,能够满足桥梁设计的50年使用期限的基本要求。试验组试件的疲劳荷载在不超过设计荷载的条件下,试件刚度无明显下降。通过静载破坏试验的结果对比,发现疲劳试验对试件的极限强度有少许削弱。疲劳试验对Glubam胶合竹梁的刚度和强度的影响在锤击法激励的模态试验中得到了进一步的验证。
     本文通过对Glubam胶合竹梁进行一系列的试验研究后发现:Glubam胶合竹梁具有良好的抗弯能力和疲劳性能;其抗弯试验结果能够很好地验证其承载力计算公式,为竹结构桥梁的荷载计算提供重要依据;对Glubam胶合竹梁的试验分析和理论研究为胶合竹的推广和应用提供了可靠的学术参考,也为相关规范的编制和工程应用提供了依据。
Sustainability becomes the major concern of today's society. Glubam (glue laminated bamboo) has emerged in such background, derived from the primary idea-"replace wood using bamboo'". Now glubam is related to all the aspects of construction including bridges, buildings, pavilions. It has a wide application, not only used for simple houses and temporary buildings in underdeveloped rural areas, but also applied for public buildings such as factories and schools.
     Based on the modern design concept, innovative construction technology and some industrial technologies for the wood, finger-joint Glubam beam has many advantages compared with other types of bamboo beams. For instance, it is easy to construct and to maintain, and it can have many different types. Finger-joint technology solves the dimension limitation of Glubam beam due to material. It has successfully been applied to the modern bamboo single house, bamboo prefabricated building, modern bamboo pedestrian bridge and modern bamboo vehicle Bridge. Since conventional knowledge for wood is not fully applicable to Glubam beam, deeper study such as stress strain relationship, node failure model, fatigue property for the bamboo beam in bridge and failure criterion of the bamboo beam under combination of bending and shear become the key topic for discussion. The basic physical and mechanical properties of the laminated bamboo, processing technology, engineering application, mechanics testing, failure theory of gluing bamboo beams are described in this thesis as follows.
     1. This thesis detailedly introduces the types division, processing technology and engineering application of Glubam beam. Depending on two typical examples of engineering application, a comprehensive display of component processing, bridge skeletion and design method is showed. Systematic safety analysis of the modern bamboo structure and durability of the bridges are verified by bridge test and long term observation. Then, the structure bearing capacity is carefully checked subject to the relevant codes. The Glubam bridge provides a substantial foundation for the application of Glubam beam with its advantages of simple molding technology, considerable economic performance, good safety and abundant raw materials.
     2. The section stress formula of Glubam beam under load (M. V) are described in the last chapter. Firstly, the situation of Glubam under bending moment and shear force is simplified; secondly, the formulas of stress distribution are displayed for pure bending and pure shear loading conditions. During the derivation, cross sectional conversion and equivalent method are employed to solve the shear stress distribution in finger-joint and the ultimate load of FRP beams. Based on the classical criterion formula Tsai-Wu failure criterion, the Glubam gluing bamboo is simplified as orthotropic materials and the general failure formula for Glubam beams under bending and shear loading is put forward. The feasible calculation model of FRP reinforced Glubam beam which bases on general structure network analysis is found
     3. This thesis briefly described the mechanical properties of Glubam which depend on the test results in related literature. Deriving from small clean specimen experiments, bolt connection tests and humidity tests, the overall performance of glue laminated bamboo were described and analyzed. What's more, the regression formulas under any humidity condition are also listed, and creep calculation formula of Glubam is obtained subject to the Burger model in48th literature. Comparing the test results, it can be seen that the creep action weaken the bearing capacity and nonlinear stiffness of Glubam beam.
     4. Undering some basic assumptions, the strength and deflection calculation formula of Glubam beam are established through static tests, and the calculated results match experimental results well. It can be seen from the test results that the vertical bolt reinforcement measures in a certain extent reinforced the stiffness and strength of Glubam beam, while the FRP measures increased the bearing capacity of bamboo beam and the damage often occurred in compression area. Randomly selecting two group of specimens in the same batches of products which were used in vehicle bridge for the fatigue tests, it is obtained that the fatigue resistance performance of gluing bamboo beam is so good that contents the basic design requirement for50years servation. When the fatigue loads do not surpass the design value, the rigidity of test specimens does not descrease. Depend on the static test results-it is found that the fatigue tests slightly weaken the ultimate strength of the specimens. Hammer method of modal test has been further verified the fatigue effect on the stiffness and intensity of Glubam ejuine bamboo beam.
     To sum up.(?) is obvious that the Giubam beam has many advantages such as eminent mechanical properties, innovative design method of Glubam beam progress, economical and practical value. The experimental research and theoretical analysis of Glubam beam provide a reliable academic reference for promotion and application of bamboo, but also a data set for establishing and updating design codes and guidelines for future engineering applications.
引文
[1]胡鞍钢.全球气候变化与中国绿色发展.科学中国人,2010,3:30-34
    [2]苏晓岚.人类活动对全球气候环境的影响.新疆气象,2001,5(24):45-46
    [3]金乐琴,刘瑞.低碳经济与中国经济发展模式转型.经济问题探索,2009,1:84-87
    [4]周海宾,费本华,任海青.中国木结构建筑的发展历程.山西建筑,2005,31(21):10-11
    [5]陈国.现代竹结构房屋的试验研究及工程应用:[湖南大学博士学位论文].长沙:湖南大学,2011,16-18
    [6]Michael A. Ritter. Timber Bridge. Engineering Management Series EM7700-8. Washington, DC:U.S. Department of Agriculture, Forest Service.1992,944-955
    [7]Wacker, James P., Crawford, Douglas M. Extending service life of timber bridges with preservatives. Technical Memorandum of Public Works Research Institute.2003,3920:81-89
    [8]邹伟初.广州古代造桥历史概述.广东史志,2004,1:42-46
    [9]樊承谋,王永维,潘景龙.木结构.北京:高等教育出版社,2009,1-5
    [10]何敏娟,Frank Lam.北美“轻型木结构”住宅建筑的特点.结构工程师,2004,1:1-5
    [11]刘雁,张建新,周宝国.现代木结构建筑及其在中国的发展前景初探.江苏建筑,2005,101:5-10
    [12]张齐生,姜树海.重视竹材化学利用开发竹炭应用技术.南京林业大学学报(自然科学版),2002,26(1):1-4
    [13]吴彩东,蒋卫平.大力开发竹资源缓解我国木材供需矛盾.湖南林业科技,2009,36(1):70-72
    [14]Lionel Jayanetti.建筑用竹:现状与用途.生态毒理学报,2004,26(3):64-65
    [15]林爱芳.客家传统竹家具的特色与开发价值.龙岩学院学报,2006,24(1):55-57
    [16]何晓琴.中国传统竹家具的文化特征.世纪竹藤通讯,2006,4(2):42-45
    [17]林青.我国木筷、竹筷进出口市场亮点频闪.国际木业,2009, 9:34-35
    [18]郑娟.竹工艺品的审美价值.温州大学学报,2002,4:41-43
    [19]冯玉然,常加伦.竹叶石膏汤为主治疗流行性出血热34例.河南中医药学刊,2000,15(6):52-53.
    [20]岳永德,操海群,汤锋.竹提取物的化学成分及其利用研究进展.安徽农业大学学报,2007,34(3):328-333
    [21]杨校生.国内外竹子化学利用及其研究概括.林业科技通讯,1997,7:34-35
    [22]周建钟.冯炎龙,刘力.竹青竹黄的化学成分及综合利用.林产化工通讯.2003(37)2:8-10
    [23]崔敏,殷亚方,姜笑梅.竹材制浆造纸技术研究与应用现状.竹子研究汇刊.2010,(29)1:1-5
    [24]陈绪和.中国竹浆造纸向何处去.中国林业,2008,19:22-23
    [25]徐超武.竹炭纤维的制备和产品开发.广西轻工业,2011,1:93-95
    [26]贺水清.竹炭与竹醋的应用现状及其产业发展趋势.2007,34(1):47-48
    [27]赵仁杰,陈哲,张建辉.中国竹材人造板的科技创新历程与展望.人造板通讯,2004,2:3-5
    [28]赵仁杰 邓介凡.竹席复合板的研制.林业科技开发,1990,1:10-14
    [29]韩健.竹帘胶合板力学性能与主要相关因素间的关系研究.建筑人造板,1996,3:12-16
    [30]赵仁杰.竹帘胶合板的科技创新与发展方向.人造板通讯,2003,5:8-11
    [31]李武,张占宽,李伟光.毛竹材弧形竹片干燥特性研究.木材工业,2010(24):3:10-12
    [32]栾风艳.竹片展平工艺与设备.林业机械与木工设备,2007(35)5:51-52
    [33]王朝晖,江泽慧.竹质人造板标准现状与前景分析.世界竹藤通讯,2003,1(3):1-6
    [34]喻云水.混凝土模板用复合竹碎料板工艺研究.中南林学院学报1997,17(4):70-74
    [35]唐永裕.竹碎料板生产技术.竹子研究汇刊,1998,17,(1):10-13
    [36]张明刚,姬宁,于智顺.指接板生产工艺研究.安徽农业科学,2011,39(10):5866-5867
    [37]陈绪和.王正.竹胶合梁制造及在建筑中的应用.世界竹藤通讯,2005,3(3):18-20
    [38]周泉,佘立永,肖岩.装配式竹结构房屋受火试验研究与模拟分析.建筑结构学报,2011,32(7):60-65
    [39]Yang.R.Z.. Yan, X.. and She. L. Y.. Mechanical properties of glue laminated bamboo sheets. In:12th International Conference on Non-Conventional Materials and Technologies CD-ROM. Cairo:Cairo University.2010:23-25
    [40]杨瑞珍.胶合竹材力学性能及螺栓连接件性能的研究与应用:[湖南大学硕士学位论文].长沙:湖南大学,2009,16-33
    [41]喻云水.湿状态下竹胶合板模板力学性能与数值模拟研究:[中南林业科技大学博士学位论文].长沙:中南林业科技大学、2006.25-45
    [42]程亮.重组竹材制造技术的研究:[内蒙古农业大学硕士论文].内蒙古:农业大学,2009,55-89
    [43]许卫群.考虑横截面塑性区域扩展的竹木复合夹芯梁弯曲变形的理论研究.浙江林学院学报,2008,25(1):11-15
    [44]朱一辛,程丽美,关明杰.竹木复合板水平剪切强度的研究.西北林学院学报,2006,21(6):180-182
    [45]魏洋,蒋身学,李国芬.FRP筋增强竹梁的力学性能试验研究.见:第六届全国FRP学术交流会论文集,郑州,2009,327-331
    [46]佘立永.装配式现代竹结构房屋设计与研究:[湖南大学硕士论文].长沙:湖南大学,2009,1-10
    [47]Y. Xiao. Flexural behavior of FRP reinforced glubam beams. In:Advanced In FRP Compostes In Civil Engineering, Beijing:CICE-2010,2010,144-147
    [48]Y.Xiao, Q.Zhou. Design and Construction of Modern Bamboo Bridges. Journal of Bridge Engineering,2010,15(5):533-541
    [49]喻云水,杨宝.竹胶合板模板蠕变特性研究.林业科技,2008,33(2):47-50.
    [50]崔国强,张玉坤.当代国内人行天桥建设的几个趋向.建筑学报,2005.2:70-71
    [51]余凤翔.城市人行天桥设计上几个问题的探讨.城市道桥与防洪,2004,2期:29-32
    [52]杨士全,唐虎翔.景观桥梁设计.上海:同济大学出版社,2003,58-77
    [53]范立础,顾安邦.桥梁工程.北京:人民出版社,2000,99-110
    [54]伊藤学.桥梁造型.北京:人民交通出版社,1998,33-50
    [55]戴志中,郑圣峰.城市桥空间.南京:东南大学出版社.2003.9,88-94
    [56]廖顺痒.人行天桥设计与施工.上海:同济大学出版社.1995,7-15
    [57]Brody, J.. Richard, A., Sebesta, K., Wallace, K., Hong, Y., Lopez Anido, R.. Davids, W. and Landis. E.. FRP-Wood-Concrete Composite Bridge Girders. In: Structures Congress 2000-Advanced Technology in Structural Engineering. Philadelphia, PA. ASCE Press.2000.88-91
    [58]Brungraber. R.. Gutkowski. R., Kindya. W., Mc Williams. R..Timber Bridges: Part of the Solution for Rural America. Transportation Research Record. 1986.1106:131-139.
    [59]Ahmadi. B. H.. and Saka. M. P.. Behavior of composite timber concrete floors. J. Struct. Eng..1993.119(11):3111-3130
    [60]American Association of State Highway and Transportation Officials (AASHTO). (1996). Standard specifications for highway bridges,16th Ed., Washington. D.C.216-270
    [61]Y. Xiao, B. Shan. R.Z. Yang. Design and construction of glubam bridges. International Symposium on Life-Cycle Performance of Bridges and Structures, 2010.371-377.
    [62]杨会峰.刘伟庆.FRP增强胶合木梁的受弯性能研究.建筑结构学报,2007,28(1):64-71
    [63]杨会峰,刘伟庆,邵劲松.FRP加固木梁的受弯性能研究.建筑结构学报,2008,11(5):591-596
    [64]刘伟庆,杨会峰.工程木梁的受弯性能试验研究.建筑结构学报,2008,29(1):90-95
    [65]Moody, R.; Falk, R.; and Williamson, T.. Strength of Glulam Beams-Volume Effects. In:Proceedings of the 1990 International Timber Engineering Conference, Tokyo,1990,1,176-182
    [66]吕雁,程赫明,俞斌.竹胶合板矩形梁力学性能的研究.四川建筑科学研究,2006.32(6):177-182
    [67]范钦珊,王琪.工程力学.北京:高等教育出版社.2002,55-80
    [68]纪竹盛.刘福江.船舶力学.复合材料层板屈曲开裂非线性失效准则,2003,7(2):84-88
    [69]美国材料试验协会,疲劳试验及数据统计分析之有关术语的标准定义(ASTM E206-72).1972:1-8
    [70]陈传尧.断裂与疲劳.武汉:华中科技大学出版社,2002,8-15
    [71]M. Avalos, I. Alvarez-Armas, A.F. Armas. Dynamic strain aging effects on low-cycle fatigue of AISI 430F. Materials Science and Engineering, 2009,1(7):513-514
    [72]John I. McCool. Statistical error in crack growth parameters deduced from dynamic fatigue tests. International Journal of Fatigue.2004,26:1207-1215
    [73]才庆魁.金属疲劳断裂理论.沈阳:东北工学院出版社,1989:88-115
    [74]Arnold N. To wo. Martin P. Ansell. Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre-thermosetting resin composites. Composites Science and Technology.2008,68:925-932
    [75]申宏伟.林吉忠,穆恩生、生.疲劳失效寿命概率分布的连续模型.中国铁道科学.2001.3:86-90
    [76]姜封国.王振清.白丽丽.静载和疲劳荷载共同作用下结构可靠性优化设计 哈尔滨工程大学学报,2012,1:67-71
    [77]陈亚东.浅析桥梁使用现状质量测评与加固技术.科技信息,2011,35:0231-0231
    [78]邵旭东.桥梁现状动态识别的试验研究.土木工程学报,1993,3:40-46
    [79]张玉民.农村公路现状及建设远景发展目标.交通世界,2010,7:179-180
    [80]牛鹏志.CFL增强RC梁抗弯疲劳性能研究:[华南理工大学博士学位论文],广州:华南理工大学,2006:1-15
    [81]刘传乐.CFRP预应力筋RPC梁的抗疲劳性能研究:[湖南大学硕士学位论文],长沙:湖南大学,2009:2-11
    [82]张慎伟,王有志,张其林.芳纶纤维布层数对加固梁疲劳性能的影响.建筑材料学报,2006,3:302-306
    [83]张建玲.缓粘结部分预应力混凝土梁疲劳性能试验研究:[大连理工大学博士学位论文],大连:大连理工大学,2006:1-18
    [84]何敏娟,陈俊岭,刘慧群.中国农村住宅现状及木结构的发展前景.建筑技术,2009,40(10):940-942
    [85]谢力生.日本木结构的发展历程与现状.木材工业,2009,23(3):20-23
    [86]Christian Odin Clorius. Fatigue In Wood. Danmark:Danmarks Tekniske University,2002,55-89
    [87]William G. Davids, Edwin Nagy, and Matthew C.Richie. Fatigue Behavior of Composite-Reinforced Glulam Bridge Girders, journal of bridge engineering, 2008:183-191
    [88]NDS. National Design Specification for Wood Construction, Washington, D.C: American Wood Council,1997:1-20
    [89]N.Plevris, T. Triantafillou. FRP-reinforced wood as a structural material. Journal of Materials in Civil Engineering,1992,4(3):300-317
    [90]Pooley, B.D.. Reinforced glued laminated timber. American Society of Civil Engineering,1996,66(9):50-53.
    [91]Richie, M.. Fatigue behavior of FRP-reinforced Douglas-fir glued laminated bridge girders:[Master Degree Thesis], Orono.'University of Maine,2003,7-15
    [92]Tsai K.T. and M.P. Ansell. The fatigue properties of wood in flexure. Journal of Materials Science,1990,25:865-878
    [93]Hong, Y.. Fatigue of wood-FRP interface:Experimental Characterization and Performance Limits:[Master Degree Thesis], Orono:University of Maine. 2003:8-20.
    [94]J. M. Gere, S. P. Timoshenko. Mechanics of Materials. Boston:PWS Publishing Company.1997:3-34
    [95]H. Sekine, B. Yah, T. Yasuho. Numerical simulation study of fatigue crack growth behavior of cracked aluminum panels repaired with a FRP composite patch using combined BEM/FEM. Engineering Fracture Mechanics. 2005,72(16):2549-2563
    [96]Forest Products Laboratory. Wood Handbook-Wood as an Engineering Material. Madison:U.S.Department of Agriculture.1999:463-464
    [97]Janssen. J. J. A.. Designing and Building with Bamboo. Eindhoven:Technical University of Eindhoven,2000:2-14
    [98]Tien S Chang, Clyde E Kesler. Fatigue behavior of reinforcedconcrete beams. ACI Journal Proceedings,1958,55(8):245-254
    [99]Susanto Teng, Wei Ma, Fang Wang. Shear strength of concrete deep beams under fatigue. ACI Structural Journal,2000,97(4):572-580
    [100]Sanayei M., McClain J. A. S., Wadia-Fascetti S.,Santini E. M.. Parameter estim-ation incorporating modal data and boundary conditions. Journal of Structural Engineering,1999,125(9):1048-1055
    [101]P.Guillaume, P. Verboven, S. Vanlandiut et al. A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator. In:Proceedings of IMAC 21, the International Modal Analysis Conference, Kissimmee, USA, 2003:25-37
    [102]Peeters B.,P. Guillaume, H. Van der Auwaerer, B. Cauberghe, P.Verboven and J. Leuridan. Automotive and Aerospace Applications of the LMS PolyMAX Modal Parameter Estimation Method. Proceedingsof IMAC 22,Dearborn,, MI,USA, January 2004:88-101
    [103]P. Dallard, A. J. Fitzpatrick, A. Flint et al. The London millennium footbridge. Structural Engineer.2001,79 (22):17-33
    [104]Ellingwood B. R.. Tallin A. Structural serviceability:Floor vibrations. Journal of Structural Engineering.1984,110(2):401-418
    [105]IS02631-2(1989). Evaluation of human exposure to whole-body vibration-Part 2 Continuous and shock.induced vibration in buildings(1 to 80Hz). In:IS02631/2. 1989
    [106]ANSI A58.1-1982. Minimum Design Loads for Buildings and Other Structures. USA:American National Standards Institute.1982:5-19
    [107]Tadro. G. Provisions for Using FRP in the Canadian Highway Bridge Design. ACI.Concrete International:Design and construction.2000.22(7):42-46
    [108]Burgoyne C. J.. Aberfeldy bridge-an Advanced Textile Reinforced Footbridge. TxchTextil Symposium, Frankfurt,1993:1-18
    [109]Matsushita H., Tokumitsu Y.. A study on compressive fatigue strength of concrete considered survival probability. Proceeding of JSCE,1972,198:127-138
    [110]Balaguru P. N.. Analysis of prestressed concrete beams for fatigue loading. Journal of the Prestressed Concrete Institute,1981,26(3):70-94
    [111]Sparks P. R... The influence of rate of loading and material variability on the fatigue characteristics of concrete. ACI Pubilcation SP—75,1982:331-343
    [112]Hohnen J. O.. Fatigue of concrete by constant and variable amplitude loading. Fatigue Strength of Concrete Structuers, ACI Pubilcation SP-75,1982:71-11
    [113]蒋邦海,张若棋.一种碳纤维织物增强复合材料应变率相关的各向异性强度准则.爆炸与冲击,2006,4:333-338
    [114]黄霞,汤文辉,蒋邦海.平面应变各向异性本构关系及在应力波传播模拟中的应用.爆炸与冲击,2010,4:383-389
    [115]刘德学.挤压变形力的数值分析及模拟方法研究:[兰州理工大学博士学位论文],兰州:兰州理工大学,2009:1-15
    [116]肖岩,杨瑞珍,单波等.结构用胶合竹力学性能试验研究.建筑结构学报,2012,11:150-157
    [117]周泉,肖岩.现代竹结构车行桥梁的建造与研究.见:第18届全国结构工程学术会议.北京:中国力学学会,2009:516-522(Ⅲ)
    [118]城市人行天桥与人行地道技术规范CJJ 69-1995.中国建筑工业出版社,1996:8-20
    [119]混凝土结构设计规范GB 50010-2010.中国建筑工业出版社,2010:88-100
    [120]公路桥涵设计通用规范JTG D60-2004.人民交通出版社,2004:28-29
    [121]公路桥梁抗风设计规范JTG-T D60-01-2004.人民交通出版社,2004:33-42
    [122]木结构设计规范GB50005-2003.中国建筑工业出版社,2004:26-37
    [123]城市桥梁设计准则CJJ 11-93.中国建筑工业出版社,1993:44-51
    [124]内河通航标准GBJ 139—90.人民交通出版社,1990:21-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700