用户名: 密码: 验证码:
果壳活性炭孔结构定向调控及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭由已石墨化的微晶炭和未石墨化的非晶质炭相互连接构筑成发达的多级孔隙结构和表面化学结构(表面官能团),被广泛应用于吸附分离、食品、医药、催化、电子、储能等几乎所有国民经济领域。随着科学技术的进一步发展,现代科学、工业、工程技术更需要孔径分布集中有序的炭材料,为此,实施准确调控活性炭多孔结构技术已成为活性炭制备技术的核心。开展活性炭孔径分布定向调控、应用及机理研究,不仅有助于活性炭制造理论体系的丰富和完善,而且有助于进一步拓展活性炭的专业应用途径。本研究以椰果壳、油茶果壳等生物质为原料,调制孔径分布均一的活性炭为研究对象,讨论了低浸渍比KOH法制备超大比表面积微孔活性炭的制备方法;较系统的研究了无活化剂热解自活化法、K2CO3催化炭化法、酚醛树脂原位聚合沉积法、商品椰壳活性炭浸渍Fe(NO3)3催化气化扩孔法、物理-化学联合活化法对孔结构定向调控制备孔分布非常集中的活性炭工艺,并探讨了工艺条件对有序孔结构的影响和调控机理;利用孔径-孔容测定仪、TG-MS、TG-DTG、FT-IR、SEM、XPS、XRD等一系列技术方法对活性炭孔结构进行表征;考察了调控得到的微孔型活性炭和中孔型活性炭在电化学、CO2吸附、放射性有机碘-131捕集、单宁酸吸附和甘油脱色脱臭中的应用效果。论文的主要研究内容和结构如下:
     1.微孔型超大比表面积活性炭的制备技术研究
     本文利用椰子壳的炭化产物(椰壳炭化料)为原料,以KOH为活化剂,通过调控活化剂与椰壳炭化料的混合比、活化温度及活化时间等因素,以较低的KOH浸渍比制备出比表面积巨大(3326m~2/g),孔径分布窄(孔径集中于1.5-2.5nm),吸附性能非常高(碘吸附值2779mg/g,亚甲基蓝吸附值570mg/g)的微孔型活性炭。研究表明,区别于鲜椰果壳原料,采用已除去大部分有机质的椰壳炭化料为起始原料,因其具有炭含量高、结构更稳定、细胞腔之间已初步形成孔道等特点,KOH药剂容易充分浸入,故以较少的药剂用量,创新干法混合和二阶段活化工艺,制备出微孔发达的超大比表面积活性炭。该产品在天然气储存和超级电容器电极材料领域有广阔的应用前景。
     2.热解自活化法制备微孔型椰壳活性炭的研究
     研究比较了几种果壳和木屑原料,在密闭反应器中,高温热解促使果壳结构重整和发生自活化反应,制备出微孔非常发达的活性炭,工艺过程不添加任何的活化气体或化学试剂,创新了一种微孔活性炭的清洁制备方法。在一定升温速率下,首先,系统升温至400℃,椰壳天然组织热解释放出大量热解气,气体中主要含有水蒸气、二氧化碳和一氧化碳,加上反应器中密封的空气和原料吸附的氧气,形成了混合活化气氛,并随着温度升高在密闭反应器内行成一定压力;其次,继续升高温度至800℃,椰壳内有机物发生芳构化反应,继续产生气体,组织结构重整。同时,由于密闭系统内存在一定压力,椰壳内的气体强制逸出时,对椰壳组织结构产生一定冲击,可以改善椰壳组织结构,从而促进高温自活化时活性炭微孔的形成与发展;再次,升温至反应终温900℃,高温下椰壳热解固体炭与椰壳原料自身产生的混合活化气体发生自活化反应造出发达的微孔,同时,密闭反应器内形成的微压力增加了自活化反应速率。本研究讨论了热解温度、热解时间、升温速率、环境密闭条件等因素对自活化热解气的组成、活性炭孔隙结构、比表面积、孔径分布、吸附性能的影响,探索了果壳类原料热解自活化造孔制备物理法活性炭的机理。这种新工艺非常方便,与常规的原料经炭化、活化制备物理法活性炭工艺比较,热解自活化实验只需1h,大大缩短了生产周期,提高了效率,节约了能耗;生产过程中不使用任何化学试剂,降低了环境污染和制备成本。因此,采用这种新工艺可以方便清洁、低成本的制备出微孔非常发达、高强度的椰壳活性炭,具有广阔的开发前景。
     3.添加K2CO3催化炭化调控活性炭微孔结构研究
     研究了油茶果壳添加钾盐,并控制催化炭化条件来发展油茶果壳活性炭的微孔结构。结果表明,钾盐对促进油茶果壳活性炭微孔结构的发展和比表面积的增加有明显效果。添加4%的K2CO3,炭化温度800℃并维持4h条件下,获得的活性炭具有非常发达的微孔结构,微孔率90.3%,碘吸附值971mg/g,亚甲基蓝吸附值75mg/g。TG-DTG分析表明,K元素对促进油茶果壳热解有明显催化作用,降低热解温度并使固体炭产率增加;XRD分析表明K元素对果壳炭化形成活性炭的特征微晶结构有明显促进作用。由此,可利用K盐的催化作用,在低于物理活化法1000℃高温下,控制热解反应条件,实现催化发展微孔并抑制高温扩孔,获得微孔型活性炭。本研究提供了催化炭化法制备微孔发达油茶果壳活性炭的新工艺,为开发低消耗、高得率和清洁化的微孔型活性炭生产方法提供了新的途径。
     4.通过酚醛树脂原位聚合沉积调控活性炭微孔结构研究
     以商品椰壳活性炭为基体,在孔隙内壁原位合成酚醛树脂聚合物,于惰性气氛中900℃下炭化沉积,调控活性炭微孔结构。活性炭样品以N2吸-脱附等温线、扫描电镜和吸附性能测试表征,并结合XRD、FT-IR等手段进行了机理研究。结果表明,商品椰壳活性炭经过聚合物炭化沉积,微孔容积和微孔率均显著增加,而中孔比率出现了明显下降。因为,苯酚分子具有三维结构,分子直径约0.69nm,按照吸附孔径是吸附质尺寸3倍左右的要求,苯酚难以进入微孔中,主要在中大孔内发生聚合反应。SEM分析表明,酚醛树脂聚合物经炭化后的残炭以芳环结构为主,有利于规整沉积于中大孔壁上,缩小孔径,得到微孔分布非常发达的活性炭。
     5.物理-化学法联合调控油茶果壳活性炭中孔结构研究
     研究了油茶果壳经水蒸气活化后,浸渍磷酸二次调孔对活性炭中孔结构调控的影响,制备出中孔非常发达的活性炭。实验结果显示:第一步水蒸气法制备油茶果壳活性炭以微孔为主,比表面积1076m~2/g;第二步以磷酸再活化,调整活性炭的中孔结构,比表面积明显增加至1608m~2/g,总孔容积由0.81cm3/g增加至1.17cm3/g,中孔比例由33%增加至61%,同时保持良好的颗粒强度。通过调控物理法活化工艺和磷酸浸渍比、再活化温度等工艺参数,可定向制备出具有丰富中孔结构的油茶果壳活性炭,并保持一定量原水蒸气法获得的微孔容积,这种特殊的孔隙结构可以满足复杂污染物的吸附要求。
     6.铁盐催化水蒸气活化调控商品活性炭的中孔结构研究
     本研究以普通的商品椰壳活性炭为原料,通过添加Fe盐催化水蒸气与微孔壁的碳元素反应实现扩孔,并控制活化反应温度和Fe盐浸渍量调控活性炭中孔比率。研究结果表明:普通的商品果壳活性炭添加Fe盐由水蒸气再活化,提高了活性炭的中孔率和总孔容积。添加商品椰壳活性炭质量比4%的Fe盐在850℃下活化30min,获得了中孔率90%,平均孔径集中于5nm的中孔型活性炭。但是,Fe盐添加量过大,易造成孔隙堵塞、总孔容积下降,因此,通过调整Fe盐添加量和活化温度可控制中孔结构定向发展。本方法在商品椰壳活性炭已存在的微孔基础上调制中孔,催化剂用量少,工艺方便,成本低。由此提供了一种由Fe盐催化水蒸气再活化调控发展商品果壳活性炭中孔结构的有效途径,可替代需消耗大量磷酸、氯化锌等化学药剂制备中孔型活性炭产品的传统工艺。
     7.微孔型活性炭和中孔型活性炭的几种应用研究
     在制备和调控出微孔型活性炭和中孔型活性炭的基础上,探讨了微孔椰壳活性炭的比电容性能、CO2饱和吸附容量及对放射性有机碘-131的吸附率;考察了中孔活性炭对单宁酸的吸附力和在甘油脱色脱臭中的应用效果。研究结果发现:
     (1)采用本研究制备的微孔型超级椰壳活性炭,以KOH溶液为电解质,其0.1A电流下的充放电比容量已经可以达到323.0F/g,较高超过了石油焦基电容器用活性炭的比电容量,并且,随着充放电电流密度增大至1A获得了较小的电化学容量衰减;
     (2)检测以热解自活化法制备的椰壳活性炭AC900的CO2吸附容量,其饱和吸附容量达到61.22mL/g,明显高于商品椰壳活性炭的CO2吸附容量36.58mL/g;
     (3)本实验热解自活化制备的椰壳活性炭对活度为2552Bq/L放射性甲基碘-131水溶液的吸附效率达到85.6%,添加微量0.1%的氯化银可以极大促进活性炭对较难吸附的有机态甲基碘-131的吸附,吸附效率达99.6%。日本原子能安全委员会规定的法定饮用水安全基准是300Bq/L,采用本实验制备的活性炭并添加AgCl可满足饮用水放射性碘-131污染净化需求;
     (4)国内外贸易中已将活性炭的单宁酸值作为水处理用活性炭的关键技术指标。单宁酸的相对分子质量1700,分子尺寸大,可以反映活性炭的中、大孔特征,适用于表征活性炭对液相大分子杂质的吸附能力。商品椰壳活性炭将单宁酸溶液质量浓度由20mg/L降至2mg/L需要1384mg/L的炭量,而采用本实验Fe盐催化活化得到的中孔发达的活性炭仅需141mg/L,显示出对单宁酸良好的吸附力;
     (5)本研究制备的油茶果壳中孔活性炭应用于黄色甘油粗品脱色中,90℃下恒温脱色脱臭可获得无色无臭的精制甘油,透光率(T)大于99.1%,满足食品级甘油的色度要求。应用结果表明,经过控制条件定向制备的活性炭获得了良好的应用效果。
A well-developed multi-level pore structure and surface chemical structure (surfacefunctional groups) is formed by graphitized microcrystalline carbon and non-graphitizedamorphous carbon in activated carbon. It has an extensive application in all fields likeadsorption, separation, food, medicine, catalyzing, electronics, storing energy and so on. Withthe development of science and technology, carbon materials with concentrated and orderedpore size will be more widely needed in modern science, industry and engineering. Therefore,it has been the core of preparation technology to regulate pore structure in activated carbon. Itnot only help to enrich and improve the theoretical system of activated carbon manufacturing,but also contributes to enlarge its practical approaches. Coconut shell and camellia shell wereused as raw materials in this research. Preparation methods using KOH as activating agent ofmicroporous activated carbon with ultra-high specific surface area were discussed. Pyrolysisactivation, catalytic carbonization and polymerization carbonization methods were applied toregulate micropores, catalytic oxidation and reactivation methods using chemical agents formesopores in activated carbon. Influence of controlled conditions to ordered pore structure andregulation mechanism was explored. Pore structure analyzer, TG-MS, FT-IR, SEM, TG-DTGand XPS are applied to characterize activated carbon’s pore structures. The regulated activatedcarbons’ applications in electrochemistry, adsorption of CO2, removal of radio iodine-131,adsorption of tannic acid and decolorization of glycerol were investigated. The main contentand structure of this paper are as follows:
     1. Preparation technology of microporous super activated carbon
     Carbide of coconut shell was used as raw material, KOH as activating agent in thisresearch. Microporous super activated carbon was obtained by controlling process parameters,like mixing ratio of KOH to carbide, activation temperature and activation duration. And itsBET specific surface area is3326m~2/g, with pores distributed between1.5-2.5nm. It also hasa very good adsorption property (Qiodine2779mg/g, QMB570mg/g). It is revealed that carbideas raw material instead of fresh coconut shell has higher carbon content, more stable structure,and channels between cell cavities are preliminary formed. KOH enters more easily, and lessdose of reagent would get microporous activated carbon with a high specific surface area. Theproduct has a promising prospect in the fields of natural gas storage and electrode materials forsuper-capacitor.
     2. Preparation of microporous coconut shell activated carbon with pyrolytic self-activation
     A new clean method to prepare microporous activated carbon without any activating gasor reagents was created. Some kinds of shell and sawdust materials were pyrolyzed in a closedenvironment. Simultaneously structures of materials would reform, and self-activationoccurred. Firstly, a lot of gas was released by pyrolysis of natural tissue of coconut shell, whichcontained vapor, CO2and CO. Adding the air in the reactor and the raw material itselfadsorbed, mixing activating atmosphere was formed, and pressure may emerge with theincrease of temperature in the closed reactor. Secondly, because of the pressure, tissue structureof coconut shell would be impacted when the gas in tissue cell forced to escape. This couldimprove the tissue structure, and promote the form and development of micropore in activatedcarbon. Thirdly, pyrolytic product reacted with mixing activating atmosphere. At the same time,pressure in the reactor increased, which speeded up the self-activation reaction. No activatingreagents or vapor was used in this research. Influences of pyrolysis temperature, pyrolysisduration, increasing rate of temperature, and atmosphere to gas composition in self-activation,pore structure and adsorption properties of activated carbon were discussed. The pore-formingmechanism and kinetics of pyrolytic self-activation for preparing activated carbon withnutshell were studied, which could enrich the preparation and application system of activatedcarbon. The new process is very fast and easy. The pyrolytic self-activation experiment takesonly1h, which had greatly shortened the production cycle, improved efficiency, and savedenergy. Cost could be low, and environmental pollution could be less because of no chemicalreagents. Therefore, it has an extensive prospect of development to prepare coconut shellactivated carbon with well-developed micropore and high resistance at low cost using this newmethod conveniently and cleanly.
     4. Regulation of activated carbon micropores by catalytic carbonization with K2CO3
     Sylvite was added to develop the micropore structure and adsorption properties ofcamellia shell activated carbon by controlling parameters in catalytic carbonization. The resultsshowed that sylvite played an important role in the development of micropore structure andincrease of specific surface area. Activated carbon with developed micropores was obtained bycontrolling parameters as follows: adding4%K2CO3, activation temperature at800℃andlasting for4h, whose micropores were90.3%, Qiodine971mg/g and QMB75mg/g. It wasshowed by TG-DTG results that potassium could greatly catalyze pyrolysis reaction anddecrease temperature for pyrolysis. Coke yield increased at the same time. XRD results showedthat potassium helped to form microcrystalline structure of nutshell activated carbon. Therefore,microporous activated carbon could be obtained by physical activation below1000℃. This isa novel technology to prepare microporous nutshell activated carbon by catalytic carbonization method. And it will provide a new way for the exploration of microporous activated carbonwith low consumption, high yield and good cleanliness.
     5. Modification of activated carbon micropores by deposition of phenolic resin
     Coconut shell activated carbon bought was used as carrier. In-site synthesis of phenolicresin was finished in the pores of activated carbon. Carbonization deposition in an inertatmosphere at900℃was taken to regulate micropore structure of activated carbon. N2adsorption/desorption experiments, SEM and adsorption properties were detected tocharacterize the activated carbon samples, and XPS, FT-IR methods were used for mechanismresearch. It turned out that volume and quantities of micropores increased obviously, whileratio of mesopores decreased in coconut shell activated carbon after carbonization deposition.Polymer mainly enters mesopores and macropores. The carbon residue after carbonized isprimarily composed of aromatic ring structure, which forms graphitized microcrystallinearraying orderly in mesopores and macropores. Then mesopores and macropores transform intomicropores to get well-developed microporous activated carbon. Modified nutshell activatedcarbon has a much higher adsorption of CO2than that before modified. Thus, microporouscarbon materials for gas adsorption can be obtained by carbonization modified after in-sitepolymerization of phenolic resin.
     6. Regulation of camellia shell activated carbon mesopores by chemical method
     Camellia shell was impregnated with H3PO4after activated with vapor to research theefforts to control of mesopores in activated carbon. And activated carbon with abundantmesopores was obtained. Results showed that camellia shell activated carbon prepared byvapor activation under820℃was composed of63%micropores, and33%mesopores. TheBET specific surface area was1076m~2/g, total pore volume0.81cm3/g, QMB180mg/g, andQiodine1012mg/g. While, after the second activation using H3PO4under800℃, BET specificsurface area and total pore volume were increased up to1608m~2/g and1.17cm3/g,respectively. The proportion of mesopores were greatly increased from33%to61%,37%ofmicropores remained. QMBand Qiodineof the activated carbon also soared up to330mg/g and1326mg/g.
     7. Regulation of activated carbon mesopores by catalytic activation with molysite
     Nutshell activated carbon was used as raw materials. Molysite was added to catalyze thereaction of vapor and carbon on micropore wall in order to enlarge pores. Activationtemperature and additive amount of molysite could be controlled to regulate mesoporestructures of activated carbon. This method is based on micropores existed in activated carbon.And its consumption of catalyst and cost is very low. Therefore, an effective way to regulate nutshell activated carbon mesopores by second activation after vapor is proposed, which couldtake place of technologies that prepare activated carbon with chemical reagents like H3PO4andZnCl2. Results revealed that proportion of mesopores and total volume of nutshell activatedcarbon increased after adding molysite and the second activation. But excessive molysite couldresult in blocking the pores and reducing pore volume. Activation temperature and additiveamount of molysite could be controlled to regulate the development of pores. Mesoporousactivated carbon with90%mesopores whose average pore diameter is5nm was obtained byadding4%molysite under850℃activation for30min.
     8. Applications of microporous and mesoporous activated carbon
     Based on the preparation of regulated microporous and mesoporous activated carbon,capacitive character and adsorption of CO2and radioiodine of microporous activated carbonwere studied. Adsorption of tannic acid, decolorization and deodorization of glycerol weredetected to characterize mesoporous activated carbon. The results showed that0.1A chargeand discharge specific capacity of coconut shell activated carbon activated using KOH (KOH:carbon=3:1) under800℃for60min reached323.0F/g, much higher than that of petroleumcoke-based capacitor activated carbon. And smaller capacity decreased with the increase ofcurrent density. The CO2adsorption capacity of coconut shell activated carbon prepared bypyrolytic self-activation method marked AC900was61.22mL/g, more than that of coconutshell activated carbon (36.58mL/g). And AC900adsorption efficiency of I2-131whoseactivity is2552Bq/L reached86.5%, the value could rise up to99.6%by adding marginala0.1%AgCl. The statutory drinking water safety benchmark regulated by nuclear safetycommission of Japan is300Bq/L, and activated carbon prepared by the method in this researchhas reached the purity requirement. Tannic acid value is used as an important index ofactivated carbon using for water-treatment in trade. Because the size of tannic acid molecule isbig, it could reflect mesopores and macropores in activated carbon. The adsorption datashowed that1384mg/L coconut shell activated carbon bought in the market was needed todecrease the concentration of tannic acid from20mg/L to2mg/L However,141mg/Lmesoporous activated carbon AC-6-850that obtained by impregnating molysite and enlargingpores with vapor is enough to do that. Camellia shell mesoporous activated carbon prepared inchapter6was applied in decolorization of glycerol crude products. Refined glycerol productswhose transmittance is more than99.1%could be obtained under90℃, meeting the colorrequirement of food grade glycerol.
引文
[1] R. C. Sun. Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier Science Ltd,2010,78-79.
    [2] D. Mohan, C. U. Pittmanjr, P. H. Steele. Pyrolysis of wood/biomass for bio-oil: A critical review. Energyand Fuels,2006,20(3):848-889.
    [3]蒋剑春.活性炭应用技术与理论.北京:化学工业出版社,2010,23-24.
    [4] OECD Organisation for Economic Co-operation and Development.Biotechnology for clean industrialproducts and processes. Source OECD Industry, Services and Trade,2010,106.
    [5] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Orfao. Modification of the surface chemistryof activated carbons. Carbon.1999,37(9):1379-1389.
    [6] G. G. Stavroppulos, A. A. Zabaniotou. Production and characterization of activated carbons fromolive-seed waste residue. Microporous Mesoporous Material,2005,82(1-2):79-85.
    [7] K. Legrouria, A. E. Khouy, M. Ezzine, et al. Production of activated carbons from a new precursormolasses by activation with sulphuric acid. J Hazard Mater,2005,118(1-2):259-263.
    [8] J. Pattanayak,K. Mondal,S. Mathew,et al.A parametric evaluation of the removal of As(Ⅴ) and As(Ⅱ)by carbon based adsorbents. Carbon,2000,(38):589-596.
    [9] L. Wang.Application of activated carbon derived from waste bamboo culms for the adsorption of azodisperse dye: Kinetic, equilibrium and thermodynamic studies. J Environ Manage,2012(102):79-87.
    [10] M. M. S. Balathanigal, W. G. Shim,M. J. Lee, et al.Adsorption isotherms of benzene and toluene oncorn grain-based carbon monolith at(303.15,313.15and323.15)K. J Chem Eng Data,2008,3(53):732-736.
    [11] L. L. Guo, L. X. Zhang, J. M. Zhang, et al. Hollow mesoporous carbon spheres-an excellent bilirubinadsorbent Electronic supplementary information (ESI) available: The experimental section, SEMimages, TEM images, N2adsorption–desorption curves of the samples, bilirubin dynamic absorptioncurves and UV-vis absorption curves. Chemical Communications,2009,2009(40):6071-6073.
    [12] R. Azargohar. Production of activated carbon and its catalytic application for oxidation of hydrogensulphide. The University of Saskatchewan,2009,41.
    [13] G. P. Wu, T. S. Jeong, C. H. Won, et al. Production and characterization of activated carbon derivedfrom brewer’s yeast, orean Journal of Chemical Engineering,2010,27(5):1476-1482.
    [14] Y. Q. Liu, L. L. He, X. F. Lu, et al. Transmission electron microscopy study of the microstructure ofcarbon/carbon composites reinforced with in situ grown carbon nanofibers. Carbon,2012,50(7):2424-2430.
    [15] P. J. F. Harris, Z. Liu, K. Suenaga.Imaging the structure of activated carbon using aberration correctedTEM.Journal of Physics: Conference Series,2010,241(1):012050.
    [16] B. D. Zdravkov, J. J. ermák, M. efara, et al. Pore classification in the characterization of porousmaterials: A perspective.2007,5,(2):385-395.
    [17] D.F. Aloko, G. A. Adebay. Production and Characterization of Activated Carbon from AgriculturalWaste (Rice-husk and Corn-cob).Journal of Engineering and Applied Science,2007,2(2):440-444.
    [18] H. D. Do, D. D. Do. Effect of pore size distribution on the surface diffusivity in activated carbon:Hybrid Dubinin-Langmuir isotherm.Adsorption: Journal Of The International AdsorptionSociety,1995,1(4):291-301.
    [19] C. J. Fackler, N. Xiang. Bayesian parameter estimation for porous material characterization. Journal ofthe Acoustical Society of America,2011,129(4):2585.
    [20] K. Hammes, R. J. Smernik, J. O. Skjemstad, et al. Characterisation and evaluation of referencematerials for black carbon analysis using elemental composition, color, BET surface area and13C NMRspectroscopy. Applied Geochemistry,2008,23(8):2113-2122.
    [21] F. Rodriguez-Reinoso, Activated carbon. Phoenix Lieb press,2009,59-61.
    [22] T. Enoki, M. Suzuki, M. Endo. Graphite intercalation compoundand applications. London: Oxford UnivPress,2003,12.
    [23] K. Nishikawa. Pore structure analyses of carbons by small-angle X-ray scattering//Yasuda E, InagakiM, et a1. Carbon Alloys. Amsterdam: Elsevier,2003:175-188.
    [24] N. Iwashita, C. R. Park, H. Fujimoto, et al. Specification for a standard procedure of X-ray diffractionmeasurements on carbon materials, Carbon,2004,42:701-714.
    [25] E. Bourelle, M.Inagaki, Y. Kaburagi, et al. The hillock formation on the basal plane of graphite due toion interaction. Synth Met,2002,125(2):239-248.
    [26] K. Oshida, K. Kogiso, K.Matsubayashi, et al. Analysis of pore structure of activated carbon fibers usinghigh resolution transmission electron microscopy and image processing. J Mater Res,1995,10(10):2507-25l7.
    [27] M. Inagaki, N.Saji, M. Toyoda, et al. Pore development during exfoliation of natural graphite, TANSO,2004,215:258-264.
    [28] K. Oshida, N. Ekinaga, M. Endo, et a1. Pore analysis of isotropic graphite using image processing ofoptical micrographs. TANSO,1996,173:142-147.
    [29] T. Y. Zhang. Preparation and characterization of carbon molecular sieves and activated carbons. KansasState University,2004,13-15.
    [30] C. Y. Lee. Problems involved in simulating the flash carbonization process.Ohio University,1987,4-6.
    [31] H. S. Kose. The effects of physical factors on the adsorption of synthetic organic compounds byactivated carbons and activated carbon fibers. Clemson University,2010,7-10.
    [32] K. Haubner, J. Murawski, P. Olk, et al. The route to functional graphene oxide. Chemphyschem,2010,11(10):2131-2139.
    [33] X. Feng, N. Dementev, W. Feng. Detection of low concentration oxygen containing functional groupson activated carbon fiber surfaces through fluorescent labeling. Carbon,2006,144(7):1203-1209.
    [34] A. M. Kalijadis, M. M. Vukcevi, Z. M. Jovanovi, et al. Characterisation of surface oxygen groups ondifferent carbon materials by the Boehm method and temperature-programmed desorption. Journal ofthe Serbian Chemical Society,2011,76(5):757-768.
    [35] A. J. Fletcher, Y. Uygur, K. M.Thoma, Role of surface functional groups in the adsorption kinetics ofwater vapor on microporous activated carbons. The Journal of Physical Chemistry C,2007,111(23):8349-8359.
    [36] R. Okayama, Y. Amano, M. Machida. Effect of nitrogen species on an activated carbon surface on theadsorption of Cu(II) ions from aqueous solution. TANSO,2010,2010(242):45-50.
    [37] E. Deliyanni, T. J.Bandosz. effect of carbon surface modification with dimethylamine on reactiveadsorption of NOx. Langmuir,2011,27(5):1837-1843.
    [38] D. Wang, E. McLaughlin, R. Pfeffer, et al. Adsorption of organic compounds in vapor, liquid, andaqueous solution phases on hydrophobic aerogels. Industrial&Engineering ChemistryResearch,2011,50(21):12177-12185.
    [39] J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. AdvancedMaterials,2006,18(16):2073-2094.
    [40] A. Macias-Garcia, M. A. Diaz-Diez, V. Gomez-Serrano, et al. Preparation and characterization ofactivated carbons made up from different woods by chemical activation with H3PO4. Smart Materialsand Structures,2003,12(6):N24-N28.
    [41] M. Inagaki, T. Nishikawa, K. Oshida, et a1. Air oxidation of carbon spheres II. Micropore development.Ads Sci Tech,2006,24(1):55-64.
    [42] Y. Sanada, M. Suzuki, K. Fujimoto. Activated Carbon. Version7, Tokyo: Koudansha Scientific Press,1992,212-214.
    [43] F. B. Su, X. S. Zou, L. Lv, et a1. Synthesis and characterization of microporous carbons templated byammonium form zeolite Y. Carbon,2004,42:2821-2831.
    [44] F. Gaslaln, J. Parmentier, V. P. Valtchev, et a1. First zeolite carbon replica with a well resolved X-raydiffraction pattern. Chem Commun,2006,2006:991-993.
    [45] T. Morishita, Y. Soneda, T. Tsumura, et al. Preparation of porous carbons from thermo plasticprecursors and their performance for electric double layer capacitors. Carbon,2006,44(12):2360-2367.
    [46] T. Ohba, K. Kaneko. Internal surface area evaluation of carbon Nano tube with GC-MC simulation-assisted N2adsorption.J Phys Chem B,2002,l06:7171-7176.
    [47] T. Morishita, K.Ishihara, M. Kato, et a1. Mesoporous carbons prepared from mixtures of magnesiumcitrate with poly(vinyl alcohol).TANSO,2007,226:19-24.
    [48] T. Morishita, K. lshihara, M. Kato, et a1. Preparation of a carbon with a2nm poresize and of a carbonwith a bi-modal pore size distribution. Carbon,2007,45(1):209-211.
    [49] D. W. Wang, F. Li, H. M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials forasymmetric supercapacitor. J Power Sources,2008,185:1563-1568.
    [50] H. Tamon, H. Ishizaka, T. Yamamoto, et al. Preparation of mesoporous carbon by freeze drying.Carbon,1999,37(12):2049-2055.
    [51] H. Tamon, H. Ishizaka, Porous characterization of carbon aerogels. Carbon,1998,36:1397-1399.
    [52] Y. Hanzawa, K. Kaneko, R. W. Pekala, et a1. Activated carbon aerogels]. Langurnir,1996,12(26):6167-6169.
    [53] H. Tamon, H. Ishizaka, I. Suzuki. Extended abstract//International symposium on carbon. Tokyo: TheCarbon Society of Japan,1998:152.
    [54] H. Tamon, H. Ishizaka, T. Yamamoto, et a1. Influence of freeze-drying conditions on the mesoporosityof organic gels as carbon precursors. Carbon,2000,38:1099-1105.
    [55] T. Yamamoto, T. Nishimura, T. Suzuki, et al. Effect of drying conditions on mesoporosity of carbonprecursors prepared by sol-ge1poly condensation and freeze drying.carbon,2001,39:2374-2376.
    [56] T. Yamamoto, T. Nishimura, T. Suzuki, et a1. Effect of drying method on mesoporosity ofresorcinol-formaldehyde dry gel and carbon gel. Drying Tech,2001,19:1319-1333.
    [57] Y. Tao, H. Kanoh, K. Kaneko. Uniform mesopore-donated deolite Y using carbon aerogel templating. JPhys Chem B,2003,107:10974-10976.
    [58] D. Hulicova, K. Hosoi, S. Kuroda, et a1. Carbon nanotubes prepared by spinning and carbonizing finecore-shell polymer microspheres. Adv Mater,2002,14:452-455.
    [59]包丽颖,吴锋,徐斌等.聚合物共混法制备超级电容器用多孔炭材料.北京理工大学学报,2007(9):828-831.
    [60] Y. X. Wang, S. H. Tan, D. L. Jiang. Preparation of porous carbon using polymerization-ependent phaseseparation technique. Journal of Materials Science Letters,2003,22(19):1343-1345.
    [61] T. Takeichi, Y. Yamazaki, T. Fukui, et al. Preparation and characterization of porous carbonized films bythe pyrolysis of pyrolysis (urethane—imide) films. TANSO,2000:388-394.
    [62] J. Chmiola, G. Yushin, R. Dash, et a1. Effect of pore size and surface area of carbide derived carbons onspecific capacitance. J Power Sources,2006,158:765-772.
    [63] R. Pedicini, A. Saccà, A. Carbone, et al. Hydrogen storage based on polymeric material. InternationalJournal of Hydrogen Energy,2011,36(15):9062-9068.
    [64] N. Karatepea, I. Orbakb, R. Yavuz. et al, Sulfur dioxide adsorption by activated carbons having differenttextural and chemical properties. Fuel,2008,87(15-16):3207-3215.
    [65] Edited by Winston Harrington and Virginia McConnell. Controlling automobile air pollution.2007,177-179.
    [66] China Oil&Gas Report-Q12011.China Oil&Gas Report,2011.
    [67] K. Yuji, O. Hidetoshi, K. Shizuo,et al. The modification of pore size in activated carbon fibers bychemical vapor deposition and its effects on molecular sieve selectivity. Carbon,1998,36(4):377-382.
    [68] C. Bouchelta, M. S. Medjram, M. Zoubida, et al. Effects of pyrolysis conditions on the porous structuredevelopment of date pits activated carbon. Journal of Analytical and Applied Pyrolysis,2012,94:215-222.
    [69] C. S. Vimal, D. M. Indra, M. M. Indra. Adsorption of toxic metal ions onto activated carbon: Study ofsorption behaviour through characterization and kinetics. Chemical Engineering and Processing,2008,47(8):1269-1280.
    [70] R. M. Lapus. Activated charcoal for pediatric poisonings: the universal antidote. Current Opinion inPediatrics,2007,19(2):216-222.
    [71] R. V. Ramanujan, S. Purushothama, M. H. Chia.Processing and characterization of activated carboncoated magnedc particles for biomedical applications. Materials Science and Engineering: C,2007,27(4):659-664.
    [72] A. Hagiwara, T. Takahashi, S. Kondoh, et al. Targeting chemotherapy with activated carbon particlesadsorbing anti-cancer drugs. Gan To Kagaku Ryoho,1988,15(4Part2-1):1038-1042.
    [73] M. Abe, M. Takahashim, Ono k, et a1. Japan gastric trials in intraoperative radiation thempy. Int JRadiat Oncol Biol PHYS.1988,15(6):1431-1433.
    [74] C. R. Esterkin, A. C. Negro, O. M. Alfano. et a1. Air pollution remediation in n fixed bed photoeatalytic reactor coated with TiO2.AI ChE J,2005,5l(8):2298-2310.
    [75] C. H. Ao, S. C. Lee, J. Z. Yu, et al.Photo degradation offormal dehyde by photo eatalystTiO2:effects onthe presences of NO, SO2and VOCs.Appl Catal B:Environ,2004(54):41-50.
    [76] H. L. Yu, K. L. Zhang, C. Rossi.Theoretical study on photocatalytic oxidation of VOCs using nano-Ti02photocatalyst. Journal of Photochemistry and Photobiology A:Chemistry,2007(188):65-73.
    [77] S. Narayanasamy, M. Manickavasakam, S. Meenakshisundaram. Characterization of AC–ZnO catalystand its photocatalytic activity on4-acetylphenol degradation. Catalysis Communications,2008,9(2):262-268.
    [78]立本英机,安部郁夫.活性炭的应用技术.高尚愚译.南京:东南大学出版社,2002,61-64.
    [79] M. Inagaki, T. Suwa. Pore structure analysis of exfoliated graphite using image processing of scanningelectron micrographs.Carbon,2001,39:915-920.
    [80] C. B. Roop, M. Goyal. Activated carbon adsorption. Boca Raton: Taylor and Francis/CRC, Press,2005,22-23.
    [81] N. Lwashita, C. R. Park, H. Fujimoto, et a1. Specification for a standard procedure of X-ray diffractionmeasurements on carbon materials. Carbon,2004,42:701-714.
    [82] X. Q. Wang, J. S.Lee, C. Tsouris, et al. Preparation of mesoporous activated carbons for electrosorptionof ions from aqueous solutions. Journal of Materials Chemistry,2010,20(22):4602-4608.
    [83] Y. Sun,P. A. Webley, Preparation of activated carbons from corncob with large specific surface area bya variety of chemical activators and their application in gas storage. Chemical Engineering Journal,2010,162(3):883-892.
    [84] J. Yang, K. Q. Qiu. Development of high surface area mesoporous activated carbons from herb residues.Chemical Engineering Journal,2011,167(1):148-154.
    [85] J. Xia, S. Kagawa, N. Wakao, et al. Production of activated carbon from bagasse (waste) of sugarcanegrown in Brazil. J. Chem. Eng. Jan.1998,31(66):987-990.
    [88] Y. Sun, P. A. Webley. Preparation of activated carbons with large specific surface areas from biomasscorncob and their adsorption equilibrium for methane, carbon dioxide, nitrogen, and hydrogen. Industrial&Engineering Chemistry Research,2011,50(15):9286-9294.
    [89] Y. P. Guo, S. F. Yang, K. F. Yu, et al. The preparation and mechanism studies of rice husk based porouscarbon. Materials Chemistry and Physics2002,74(3):320–323.
    [90] Z. Hu, M. P. Srinivasan, Preparation of high-surface-area activated carbons from coconut shell,Microporous and Mesoporous Materials,1999,27:11-18
    [91] D. Lozano-Castello, M. A. Lillo-Rodenas, Cazorla-Amoros D, Linares-Solano A. Preparation ofactivated carbons from Spanish anthracite:1. Activated by KOH. Carbon,2001,39:741-79.
    [92] Y. Chen, L. J. Zhou, Y. Z. Hong, et al. Preparation of high-surface-area activated carbon from coconutshell fibers. Carbon,2010,48(10):3005.
    [93] A. H. Darmst, C. Roy, S. Kaliaguine, et al. Solid state13C NMR spectroscopy and XRD studies ofcommercial and pyrolytic carbon blacks. Carbon,2000,38:1279-1287.
    [94] A. C. Lua, J. Guo. Microporous oil-palm-shell activated carbon prepared by physical activation forgas-phase adsorption. Langmuir,2001,17(22):7112-7117.
    [95] E. Lorenc-Grabowska, G. Grazyna, S. Gryglewicz. Development of mesoporosity in activated carbonsvia coal modification using Ca-and Fe-exchange. Microporous and MesoporousMaterials,2004,76(1-3):193-201.
    [96] F. R. Li, H. H. Yi, X. L. Tang, et al. Adsorption of carbon dioxide on coconut shell activated carbon.Wuhan: Management and Service Science (MASS),2010International Conference on,2010.
    [97] K. Schaeffer, R. Potwora. Coconut shell versus bituminous coal activated carbon. Water Conditioning&Purification Magazine,2008,50(6).
    [98]陈名霞,钱铭熙,李飞. CO2的活化机理进展.天然气化工:C1化学与化工,1994(1):50-55.
    [99] S. Sanada, M. Suzuki, Fujimoto K. Activated Carbon. Version7. Tokyo: Kouda-nsha Press,1992,159.
    [100] K. Piotr, F. Sylwester, A. G. Piotr, et al. Carbon dioxide adsorption-induced deformation ofmicroporous carbons. The Journal of Physical Chemistry C,2010,114(11):5126-5133.
    [101] P. K. Rai, A. Bhatt, V. Kumar, et al. Development of technique for preparation of activated carbonspheroids from coal-based pitch. Kanpur: Conference on Carbon and Carbon Materials: Recent Trends;2003;
    [102] C. S. Diana, J. Azevedoa, S. Cássia, Araújoa, B. N. Moisés, et al. Microporous activated carbonprepared from coconut shells using chemical activation with zinc chloride. Microporous andMesoporous Materials,2007,100(1-3):361-364.
    [103] Z. Hu, M. P. Srinivasan, Y. Ni. Novel activation process for preparing highly microporous andmesoporous activated carbons. Carbon2001,39(6):877–86.
    [104] K.Sun, J. C. Jiang. Preparation and characterization of activate carbon from rubber-seed shell byphysical activation with steam. Biomass&Bioenergy,2010,34:539–44.
    [105] Y. B. Ji, T. H. Li, L. Zhu, et al. Preparation of activated carbons by microwave heating KOH activation.Applied Surface Science,2007,254(2):506-512.
    [106] J. X. Chen, N. N. Xia, T. X. Zhou, et al. Mesoporous Carbon Spheres: Synthesis, Characterization andSupercapacitance. International Journal of Electrochemical Science,2009,4(8).
    [107] W. K. Zhu, W. L. Song, W. G. Lin. Catalytic gasification of char from co-pyrolysis of coal and biomass.Fuel Processing Technology,2008, Article in Press(Article in Press, Corrected Proof-Note to users):460-466.
    [108]孙康,蒋剑春,何跃等.油茶果壳基活性炭的制备及其中孔结构调控研究.林产化学与工业,2010,6:24-28.
    [109] A. H. Lu, J. T. Zheng. Study of Microstructure of High-Surface-Area Polyacrylonitrile ActivatedCarbon Fibers. Journal of Colloid and Interface Science,2001,236(2):369–374
    [110] J. Lee, J. Kim, T. Hyeon. Recent progress in the synthesis of porous carbon materials. AdvancedMaterials,2006,18(16):2073-2094.
    [111] H. Jankowska, A. Swiatkowski, J. Choma. Active carbon.New York: Ellis Horwood,1991,412-415.
    [112] S. H. Yoon, M. O. Seung, C. Lee. Direct template synthesis of mesoporous carbon and its applicationto supercapacitor electrodes. Materials Research Bulletin,2009,44(8):1663-1669.
    [113] H. Shen, E. Liu, X. X. Xiang, et al. A novel activated carbon for supercapacitors. Materials ResearchBulletin,2012,47(3):662-666.
    [114]胡淑宜,黄碧中.酚醛树脂浸渍木粉DTA/TG曲线解析.林产化学与工业,2000(20):47-51.
    [115] R. K. Sharma, P. Bhardwaj, R. Negi. Identification characterization and utilization of unigene derivedmicrosatellite markers in tea (Camellia sinensis L.). BMC Plant Biology,2009,9(Special):1-24.
    [116] Patrick, W. John. Porosity in carbons: characterisation and applications. Edward Arnold,1995,6-7.
    [117]孙康,蒋剑春,张天健等.水蒸气法制备橡胶籽壳活性炭的研究.林产化学与工业,2006,26(2):41-43.
    [118] N. Henry, N. George, S. Wayne, et al. New trace capacity test method needed for future activatedcarbon applications. Water Conditioning&Purification Magazine,2009,51(6):22-27.
    [119] H. Pauwels, J. C. Baubron, P. Freyssinet, et al. Sorption of metallic compounds on activated carbon:application to exploration for concealed deposits in southern Spain. Journal of GeochemicalExploration,1999,66(1):115-133.
    [120] R. J. Andrews. Activated carbon fibers and carbon fiber composites for environmental applications.University of Kentucky,1999,15-16.
    [121] Azargohar, Ramin. Production of activated carbon and its catalytic application for oxidation ofhydrogen sulphide. Canada: The University of Saskatchewan,2009,13-15.
    [122] W. Li, L. b. Zhang, J. H. Peng, et al. Preparation of high surface area activated carbons from tobaccostems with K2CO3activation using microwave rad. Industrial Crops and Products,2008,27(3):341-347.
    [123] K. Y. Foo, B. H. Hameed. Preparation of oil palm (Elaeis) empty fruit bunch activated carbon bymicrowave-assisted KOH activation for the adsorption of methylene blue. Desalination,2011,275(1-3):302-305.
    [124] F. Ma’an, Alkhatib, A. M. Suleyman, O. A. Jeminat. Optimization of activated carbon production fromempty fruit bunch fibers in one-step steam pyrolysis for cadmium removal from aqueous solution. TheEnvironmentalist,2011,31(4):349-357.
    [125] M. J. Lazaro, M. E. Galvez, S. Artal, et al. Preparation of steam-activated carbons as catalyst supports.Journal of Analytical and Applied Pyrolysis,2007,78(2):301-315.
    [126] A. T. Christopher, E. Wayne, Marshall, H. Lynda. Wartelleb, et al. Steam-or carbon dioxide-activatedcarbons from almond shells: physical, chemical and adsorptive properties and estimated cost ofproduction. Bioresource Technology,2000,75(3):197-203.
    [127] González, F. Juan, Encinar, M. José, González-García, M. Carmen, et al. Preparation of activatedcarbons from used tires by gasification with steam and carbon dioxide. Applied Surface Science,2006,252(17):5999-6004.
    [128] F. Matthew, Tennant, W. David, Mazyck. Steam-pyrolysis activation of wood char for superior odorantremoval. Carbon,2003,41(12):2159-2202.
    [129] W. Z. Shen, J. T. Zheng, Z. F. Qin, et al. The effect of temperature on the mesopore development incommercial activated carbon by steam activation in the presence of yttrium and cerium oxides. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2003,229(1-3):55.
    [130] W. Z. Shen, J. T.Zheng, Y. L. Zhang, et al. Preparation of mesoporous carbon from commercialactivated carbon with steam activation in the presence of cerium oxide. Journal of Colloid and InterfaceScience,2003,264(2):467-473.
    [131] J. M. Rosas, J. Bedia, J. Rodríguez-Mirasol, et al. HEMP-derived activated carbon fibers by chemicalactivation with phosphoric acid. FUEL,2009,88(1):19-26.
    [132] K. Wilson, H. Yang, C. W. Seo, et al. Select metal adsorption by activated carbon made from peanutshell. Bioresource Technology,2006,97(18):2266-2270.
    [133] M. Soleimani, T. Kaghazchi. Agricultural waste conversion to activated carbon by chemical activationwith phosphoric acid, Chemical Engineering and Technology,2007,30(5):649-654.
    [134] M. A. Nahil, P. T. Williams. Pore characteristics of activated carbons from the phosphoric acidchemical activation of cotton stalks. Biomass and Bioenergy,2012,37:142-149.
    [135] F. Al-Qaessi, L. Abu-Farah. Activated Carbon Production from Date Stones Using Phosphoric Acid.Energy Sources. Part A: Recovery, Utilization and Environmental Effects,2010,32(14):1316-1325.
    [136] Enes Eayan. Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnutshell: An optimization study on removal of Cu2+from aqueous solution. Journal of Supercritical Fluids,2006,37(1):213-218.
    [137] B. H. Von, R. E. De. Method of producing activated carbon particles from spent granular organicion-exchangeres resin. US6184177,2001.
    [138] B. Inamullah, Q. Khadija, R. A. Kazi, et al. Preparation and characterisation of chemically activatedalmond shells by optimization of adsorption parameters for removal of chromium vi from aqueoussolutions. International Journal of Chemical and Biomolecular Engineering,2008,1(3):212-216
    [139] H. Tamai, S. Kojima, M. Ikeuchi, el al. Preparation of mesoporous activated carbon fibers and theiradsorption properties. Tanso,1996,175:243-248.
    [140]张引枝,樊彦贞,贺福等.添加剂种类对活性炭纤维中孔结构的影响.炭素技术,1997,4:4-l1.
    [141] J. Ozaki,N. Endo, W. Ohizumi, et a1.Novel preparation method for the production of mesoporouscarbon fiber from a polymer blend. Carbon, l997,35:1031-1033.
    [142] H. Tamon, H. Ishizaka, T. Suzuki, Extended abstracts, in: International Symposium on Carbon, TheCarbon Society of Japan, Tokyo, Japan,152,1998
    [143] K. Karaegawa, H. Yoshida. Preparation and characterization of swelling porous carbon beads. Carbon,1997,35(5):631-639.
    [144] J. D. Atkinson, M. E. Fortunato, S. A. Dastgheib, et al. Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis. Carbon,2011,49(2):587-598.
    [145] Sterk, J. Laura. Soft-templating synthesis and adsorption properties of phenolic resin-basedmesoporous carbons in the presence of metal salts. Kent State University,2010,104-105.
    [146] B. K. Guo, X. G. Sun, S. Dai. One-step synthesis of mesoporous carbon for lithium-ion batteries withhigh capacity and rate capability. Boston:220th ECS Meeting,2011.
    [147] S. J. Kim, S. B. Han, Y. W. Lee, et al. synthesis of mesoporous carbon nanomaterials for lithium-ionbatteries. Seattle:221st ECS Meeting,2012.
    [148] B. Margandan, H. Pushparaj, G. Mani. A direct synthesis of mesoporous carbon supported MgOsorbent for CO2capture. Fuel,2011,90(4):1662-1667.
    [149] Y. K. Lv, Y. L.Feng, L. H. Gan, et al. Synthesis of Co-containing mesoporous carbon foams using anew cobalt-oxo cluster as a precursor. Journal of Solid State Chemistry,2012,185:198-205.
    [150] X. C. Chen, K. Kierzek, Z. W. Jiang, et al. Synthesis, growth mechanism, and electrochemicalproperties of hollow mesoporous carbon spheres with controlled diameter. Journal of PhysicalChemistry C,2011,115(36):17717-17724.
    [151] J. Lahaye, J. Dentzer, Soulard P and Ehrburger P. Fundamental issues in control of carbon gasificationreactivity, Kluwer, Netherlands1991,143.
    [152]郝丽娜,解强,李兰廷等,金属盐催化制备煤基中孔活性炭的研究,炭素技术,2008,27(4):26-29.
    [153] S. E. Skrabalak, K. S. Suslick. Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am.Chem. Soc,2006,128(39):12642-12643.
    [154] B. J. Kim, Y. S. Lee, S. J. Park. Gas control by metal nanoclusters-supported porous carbon nanofibers.Solid State Phenomena,2007,119:5-8.
    [155] C. Martin, L. Jing, B. Chen, et al. Development of metal-impregnated, single-walled carbon nanotubesfor toxic gas contaminant control in advanced life support systems. Vancouver, British Columbia:33rdInternational Conference on Environmental Systems (ICES),2003.
    [156] G. Elodie, Rodrigues, A. C. Sónia, Carabineiro, X. W. Chen, et al. Selective oxidation of glycerolcatalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry. Catalysis Letters,2011,141(3):420-431.
    [157] A. Yoshida, I. Tanahashi, Takeuchi, et al. An Electric Double-Layer Capacitor with activated carbonfiber electrodes. Components, Hybrids and Manufacturing Technology, IEEE Transactions on,1987,10(1):100-102.
    [158] H. Tamai, M. Kunihiro, M. Morita, et al. Mesoporous activated carbon as electrode for electric doublelayer capacitor. Journal of Materials Science,2005,40(14):3703-37.
    [159] W. Donald, Kirk, J. Charles. Activated carbon in double layer capacitors. Honolulu:214th ECSMeeting,2008,1102-1109.
    [160] R. Zhang, B. Zhou, Q. G. Guo, et al. Effect of particle size of activated carbon on rate performance ofelectric double layer capacitors. Shanghai: Materials for Renewable Energy&Environment (ICMREE),2011International Conference.
    [161] M. Ramani, B. S. Haran, R. E.White, et al. Studies on activated carbon capacitor materials loaded withdifferent amounts of ruthenium oxide. Journal of Power Sources,2001,93(1):209-214.
    [162]邓洪贵,霍素敏,葛明等.沥青基球状活性炭对CO2的吸脱附性能研究.炭素技术,2010,2(29):1-5.
    [163] V. K. Gupta, B. Gupta, A. Rastogi, et al. Pesticides removal from waste water by activated carbonprepared from waste rubber tire. Water Research,2011,45(13):4047-4055.
    [164] J. Torres-Perez, C. Gerente, Y. Andres. Conversion of agricultural residues into activated carbons forwater purification: Application to arsenate removal. Journal of Environmental Science and Health, PartA: Toxic/Hazardous Substances and Environmental Engineering,2012,47(8):1173-1185.
    [165] C. Kalkan. Evaluation of Biological Activated Carbon (BAC) process in wastewater treatmentsecondary effluent for reclamation purposes. Desalination,2011,265(1-3):266-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700