用户名: 密码: 验证码:
天然植物基多孔炭材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种介于传统电容器和电池之间的新型储能器件,它具有比传统电容器更高的比能量,比电池更高的比功率。电极材料是决定超级电容器性能的关键因素,因此相关的研究工作一直是该领域的研究热点。
     本论文系统地研究了植物基多孔活性炭的制备、表面改性及其作为炭基双电层电容器电极材料的电化学性能。首次研究了用微波法自制的纳米氧化铁与植物基活性炭组成的非对称超级电容器的电化学性能。综合运用扫描电镜(SEM)、X射线衍射(XRD)、低温氮气吸附、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)等技术手段对活性炭材料和纳米氧化铁颗粒的结构及表面性质进行分析表征,通过恒流充放电、循环伏安、交流阻抗等方法研究了活性炭材料和氧化铁材料的电化学性能。探讨了电极材料的结构及表面性质对其电化学性能的影响。主要研究结果如下:
     首次以苎麻纤维为原料,采用ZnCl2一步活化法在短时间、低温条件下制备出具有高比表面积、高收率的微孔型活性炭纤维材料。系统考察了ZnCl2/原料纤维浸渍比、活化温度和活化时间对苎麻基活性炭纤维结构、表面性质及电容性能的影响。在最优工艺条件下制备的苎麻基活性炭纤维具有超过1600 m2/g的比表面积,孔径集中分布在0.5~2 nm,其在30wt.% KOH水溶液中具有高达253 F/g的放电比电容、良好的功率性能和循环性能。
     以椰壳、杏壳基活性炭为原料,采用浓硝酸对活性炭进行表面氧化改性。研究表明氧化处理后活性炭的比表面积和孔容虽有减小,但炭表面的含氧官能团数量大幅增加,其中羟基的增幅最明显。由羟基产生的赝电容对活性炭材料比容量的提高贡献最大;同时表面含氧官能团的增多对活性炭材料的大电流密度放电性能也有较大改善。
     首次采用以微波法制备的氧化铁纳米颗粒为正极材料,椰壳基活性炭为负极材料,组装成非对称电容器,并深入研究了其电化学行为。研究表明,与椰壳基活性炭电容器相比,氧化铁/活性炭非对称电容器具有较高的工作电压,可达1.2 V;能量密度可达9.25 Wh/kg,提高了53.4%。循环寿命测试结果表明非对称电容器具有稳定的充放电性能。
Supercapacitor is a new device for electric energy storage. It has not only much more energy than conventional capacitors, but also much higher power density than batteries. Electrode material is one of the most important components of supercapacitor. It is a key factor influencing the performance of supercapacitor. The research and development of electrode materials have been the focus in the recent years.
     In this dissertation, the preparation, modification and electrochemical performance of plant-based porous activated carbon (AC) were studied in detail. In addition, Fe3O4 nano-particles, prepared by microwave method, were used as the electrode material of hybrid supercapacitor together with AC for the first time. The electrochemical properties of the hybrid capacitor were studied. The properties of ACs and Fe3O4 nano-particles were investigated by modern instruments, such as SEM, XRD, N2 adsorption, FTIR, XPS and so on. The performance of the resultant electrode materials and testing supercapacitors were tested by electrochemical measurements through constant current charge-discharge, cyclic voltammogram, impedance spectrum etc. The relationship between the structure and surface properties of electrode materials and its electrochemical performance was studied. In this paper, main works were done as following:
     Microporous activated carbon fibers (ACFs) with high surface area and high yield were successfully prepared by chemical using ramee as raw materials and ZnCl2 as activating agents. The activation was carried under low temperature and short activation time. The effects of activation parameters on the structure, surface and capacity properties of ACFs were systematically studied. The results showed that the ACF, which specific area is more than 1600 m2/g, pore size distributes in 0.5~2 nm and specific capacitance can reach to 253 F/g in 30wt.% KOH, can be produced under optimal condition. In addition, it also showed good power and cyclic properties.
     Apricot shell-based AC and coconut shell-based AC were modified by concentrated nitric acid. The results showed that after modification, the specific area and pore volume of ACs decreased while the content of oxygen functional groups, especially which of hydroxyl, increased obviously. The contribution of hydroxyl to the specific capacitance of AC is the most among all of functional groups. At the same time, the increase of functional group content is also benefit to the improvement of capacitance at high current density.
     Iron oxide nanoparticles, prepared by microwave method, was used as anode material of the hybrid supercapacitor for the first time, in which coconut shell-based activated carbon was used as cathode material. The electrochemical performances of the hybrid supercapacitor were studied. The results showed that the asymmetric capacitor has an operating voltage of 1.2 V and energy density up to 9.25 Wh/kg, 53.4% higher than the coconut shell-based activated carbon double-layer capacitor. At the same time, the asymmetric capacitor also showed stable cycle performance.
引文
[1] Jurewicz K., Vix G. C., Frackowiak E., et al., Capacitance properties of ordered porous carbon materials prepared by a templating procedure, Journal of Physics and Chemistry of Solids, 2004, 65 (2-3): 287~293.
    [2] Gamby J., Taberna P. L., Simon P., et al., Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors, Journal of Power Sources, 2001, 101 (1): 109~116.
    [3] Bockris J. O. M., Reddy A. K. N., Modern Electrochemistry, New York, Plenum Press, 1970.
    [4] Becker H. L., Low voltage electrolytic capacitor , US Patent: 2800616, 1957.
    [5] Nishino A., Development and current status of electric double-layer capacitors [A]. Proceedings volume 93-23, the symposium on new sealed rechargeable batteries and supercapacitors, Pennington N J: The Electrochemical Society Inc., 1993: 1~14.
    [6] Spamaay M. J., The electric double layer, Sydney: Pergamon Press Pty. Ltd., 1972: 4~6.
    [7] Matsumoto M., Electrical phenomena at interface: fundamentals, measurements, and applications, Surfactant science series, New York: Marcel Dekker, Inc., 1998, 76: 87~99.
    [8] Pandolfo A. G., Hollenkamp A. F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, 157 (1): 11~27.
    [9] Sarangapani S., Tilak B V, Chen C P, Materials for electrochemical capacitors, J. Electrochem. Soc., 1996, 143 (11): 3791~3799.
    [10] Zheng J. P., Cygan P. J., Jow T. R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 1995, 142 (8): 2699~2703.
    [11] Zheng J. P., Jow T. R., Jia Q. X., et al., Proton insertion into ruthenium oxide film prepared by pulsed laser deposition, J. Electrochem. Soc., 1996, 143 (3): 1068~1070.
    [12] Gurunathan K., Murugan A. V., Marimuthu R., et al., Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices, Materials Chemistry and Physics, 1999, 61 (3): 173~191.
    [13] Arbizzani C., Mastragostino M., Meneghello L., Polymer-based redoxsupercapacitors: A comparative study, Electrochim. Acta, 1996, 41 (1): 21~26.
    [14]唐致远,徐国祥,电子导电聚合物在电化学电容器中的应用,化工进展,2002,21(9):652~655.
    [15] An K. H., Kim W. S., Park Y. S., et al., Supercapacitors using single-walled carbon nanotube electrodes, Adv. Mater. 2001, 13 (7): 497~500.
    [16] Kim C., Kim J. S., Kim S. J., et al., Supercapacitors prepared from carbon nanofibers electrospun from polybenzimidazol, J. Electrochem. Soc. 2004, 151 (5): A769~773.
    [17] Mikhail E. K., Ryan C. C., William M. A., et al., Spinning solid and hollow polymerfree carbon nanotube fibers, Adv. Mater. 2005, 17 (5):614~617.
    [18] Brousse T., Toupin M., Belanger D., A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc., 2004, 151 (4): A614~A622.
    [19] Endo M., Kim Y. J., Takeda T., et al., Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte , J. Electrochem. Soc., 2001, 148 (10): A1135~A1140.
    [20] Boos D. L., Electrolytic capacitor having carbon electrode, US Patent: 3536093, 1970.
    [21] Trasatti S., Bugganca G., Ruthenium dioxide: a new interesting electrode material, solid state structure and electrochemical behavior, J. Electroanal. chem., 1971, 29 (4): 1~5.
    [22] Nishino A., Development and current status of electric double-layer capacitors, Proceedings volume 93-23, the symposium on new sealed rechargeable batteries and supercapacitors, Pennington N J: The Electrochemical Society Inc., 1993.1~14.
    [23]南俊民,杨勇,林祖庚,电化学电容器及其研究进展,电源技术,1996,20(4):152~156.
    [24]王晓峰,解晶莹,孔祥华,等,“超电容”电化学电容器研究进展,电源技术,2001,25(增刊):166~170.
    [25]田艳红,付旭涛,吴伯荣,超级电容器用多孔碳材料的研究进展,电源技术,2002,26(6):466~479.
    [26]桂长清,新型贮能单元超级电容器,电池工业,2003,8(4):163~165.
    [27]夏熙,刘洪涛,一种正在迅速发展的贮能装置—超电容器,电池工业,2004,9(3):115~120.
    [28]夏熙,刘洪涛,一种正在迅速发展的贮能装置—超电容器,电池工业,2004,9(4):181~188.
    [29]王建立,刘文华,碳基电化学电容器及其研究进展,电源技术,2000,24(1): 57~59.
    [30] Portet C., Taberna P.L., Simon P., et al., Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications, Electrochim. Acta, 2004, 49 (6): 905~912.
    [31] Saliger R., Fischer C., Herta C., et al., High surface area carbon aerogels for supercapacitors, J. Non-Crystalline Solids, 1998, 225 (1), 81~85.
    [32] Babel K., Jurewicz K., Electrical capacitance of fibrous carbon composites in supercapacitors,Fuel Processing Technology, 2002, (77-78): 181~189.
    [33]马仁志,魏秉庆,徐才录,等,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8):7~10.
    [34] Du C. S., Pan N., High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition, Nanotechnology, 2006,17 (21): 5314~5318.
    [35] Zhu Y. D., Hu H. Q., Li W. C., et al., Cresol–formaldehyde based carbon aerogel as electrode material for electrochemical capacitor, J. Power Sources, 2006,162 (1): 738~742.
    [36] Gallegos A. K. C., Rincon M. E., Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells, J. Power Sources, 2006, 162 (1): 743~747.
    [37] Du C. S., Pan N., Supercapacitors using carbon nanotubes films by electrophoretic deposition, J. Power Sources, 2006, 160 (2): 1487~1494.
    [38] Pandolfo A. G., Hollenkamp A. F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, 157 (1): 11~27.
    [39] Weng T., Teng H., Characterization of high porosity carbon electrodes derived from mesophase pitch for elecrtric double-layer capacitors. J. Electrochem. Soc., 2001, 148 (4): A368~373.
    [40] Kobe K. A., Osaka T. K., Suita Y. I., Double layer capacitor with high capacitance carbonaceous material electrodes. U.S. Patent: 5430606, 1995.
    [41] Wu F. C., Tseng R. L., Hu C. C., et al., Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors, J. Power Sources, 2005, 144 (1): 302~309.
    [42]李晶,赖延清,刘业翔,超级电容器碳电极材料的制备及性能,电池,2006,36(5):332~334.
    [43] Thomas E. R., Denisa H. J., Zhu Z., et al., Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochemistry Communications, 2008, 10 (10): 1594~1597.
    [44]杨裕生,曹高萍,电化学电容器用多孔炭的性能调节,电池,2006,36(1):34~36.
    [45]刘洪波,常俊玲,张红波,双电层电容器高比表面积活性炭的研究,电子元件与材料,2002,21(2):19~22.
    [46]孟庆函,李开喜,宋燕,等,石油焦基活性碳电极电容特性研究,新型炭材料,2001,16(4):18~21.
    [47]黄小文,谢忠巍,曲晓光,等,酚醛树脂热裂解碳为电极的双电层电容器的电化学特性,高等学校化学学报,2002,23(4):1444~1446.
    [48] Ruiz V., Blanco C., Raymundo E., et al., Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors, Electrochim. Acta, 2007, 52 (15): 4969~4973.
    [49]黄小文,谢忠巍,曲晓光,等,以食糖热裂解碳为电极的双电层电容器的电化学特性,高等学校化学学报,2002,23(2):291~293.
    [50] Kim Y. J., Lee B. J., Suezaki H., Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon, 2006, 44 (8): 1592~1595.
    [51]肖长发,活性碳纤维及其应用,高科技纤维与应用,2001,26(4):27~31.
    [52] Tanahashi I., Yoshida A., Nishino A., Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors, Carbon, 1990, 28 (4): 477~482.
    [53] Yoshida A., Tanahashi I., Nishino A., Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 1990, 28 (5): 611~615.
    [54] Kim C., Choi Y., Lee W., et al., Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions, Electrochimica Acta, 2004, 50 (2-3): 883-887.
    [55] Lee J. G., Kim J. Y., Kim S. H., Effects of microporosity on the specific capacitance of polyacrylonitrile-based activated carbon fiber, J. Power Sources, 2006, 160 (2): 1495~1500.
    [56] Hsieh C. T., Teng H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 2002, 40 (5): 667~674.
    [57] Kim J. H., Sharma A. K., Lee Y. S., Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors, Materials Letters, 2006, 60 (13-14): 1697~1701.
    [58] Tanahashi I., Yoshida A., Nishino A., Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors, J. Electochem. Soc, 1990, 137 (10): 3052~3057.
    [59] Xu B., Wu F., Chen S., et al, Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors, Electrochimica Acta, 2007, 52: 4595~4598.
    [60] Toyoda M., Tani Y., Soneda Y., Exfoliated carbon fibers as an electrode forelectric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte, Carbon, 2004, 42 (14): 2833~2837.
    [61] Wang K. P., Teng H., The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 2006, 44 (15): 3218~3225.
    [62] Hsieh C. T., Teng H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fibrics, Carbon, 2002, 40 (5): 667~674.
    [63] Yamashita A., Minoura S., Miyake T., et al., Modification of functional groups on ACF surface and its application to electric double layer capacitor electrode, Tanso, 2004, 214: 194~201.
    [64] Momma T., Liu X., Osaka T., et al., Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Sources, 1996, 60 (2): 249~253.
    [65] Miura K., Nakagawa H., Okamoto H., Production of high density activated carbon fiber by a hot briquetting method , Carbon, 2000, 38 (1): 119~125.
    [66] Nakagawa H., Shudo A. Miura K., High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes, J. Electrochem. Soc, 2000, 147 (1): 38~42.
    [67]邓梅根,电化学电容器电极材料研究:[博士学位论文],合肥,中国电子科技大学,2005.
    [68] Pekala R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater Sci., 1989, 24 (9): 3221~3227.
    [69]孟庆函,刘玲,宋怀河,等,炭气凝胶为电极的超级电容器的研究,功能材料,2004, 35(4):457~459.
    [70] Celzard A., Collas F., MarêchéJ F., et al., Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance, J. Power Sources, 2002, 108, (1-2): 153~162.
    [71] Pekala R. W., Farmer J. C., Alviso C. T., et al., Carbon aerogels for electrochemical applications , J. Non-Crystalline Solids, 225 (1): 74~80.
    [72] Li W. C., Reichenauer G., Fricke J., Carbon aerogels derived from cresol- resorcinol-formaldehyde for supercapacitors, Carbon, 2002, 40 (15): 2955~2959.
    [73] Mayer S. T., Method of low pressure and/or evaporation srying of aerogel, WO Patent 94/22943, 1994.
    [74] Tamon H., Ishizaka H., Yamamoto T., et al., Preparation of mesoporous carbon by freeze drying, Carbon, 1999, 37 (12): 2049~2055.
    [75] Tamon H., Ishizaka H., Yamamoto T., et al., Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors, Carbon, 2000, 38 (7): 1099~1105.
    [76] Yamamoto T., Nishimura T., Suzuki T., et al., Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying, J. Non-Crystalline Solids, 2001, 288 (1-3): 46~55.
    [77] Conway B. E., Transition from“supercapacitor”to“battery”behavior in electrochemical energy storage, J. Electrochem. Soc., 1991, 138 (6): 1539~1548.
    [78] Iijima S., Helical microtubules of graphic carbon, Nature, 1991, 354: 56~62.
    [79] Niu C., Sichel E. K., Hoch R., High power electrochemical capacitors based on carbon namotube electrodes, Appl. Phys. Lett., 1997, 70 (11):1480~1482.
    [80] Frackowiak E., Metenier K., Bertagna V., et al., Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 2000, 77 (15): 2421~2423.
    [81]马仁志,魏秉庆,许才录,等,基于纳米炭管的超级电容器,中国科学(E), 2000,84(7):1186~1188.
    [82]马仁志,魏秉庆,许才录,等,应用于超级电容器的纳米炭管电极的几个特点,清华大学学报(自然科学版),2000,40(8):7~10.
    [83] Jiang Q., Qu M. Z., Zhou G. M., et al., A study of activated carbon nanotubes as electrochemical supercapacitors electrode materials, Materials letters. 2002, 57 (4): 988~991.
    [84] Frackowiak E., Jurewicz K., Szostak K., et al., Nanotubular materials as electrodes for supercapacitors, Fuel Processing Technology, 2002, 77-78: 213~219.
    [85] Park J. H., Ko J. M., Park O. O., Carbon nanotube/RuO2 nanocomposite electrode for supercapacitor, J. Electrochem. Soc., 2003, 150 (7): A864~A867.
    [86] Kinoshita K., Carbon: electrochemical and physicochemical properties, New York: Kodansa Press, 1988.
    [87] Sing K. S. W., Everett D. H., Haul R. A. W., et al., Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity, Pure&Appl. Chem., 1985, 57 (4): 603~619.
    [88] Salitra G., Soffer A., Eliad L., et al., Carbon electrodes for double-layer capacitors I .Relations between ion and pore dimensions, J. Electrochem. Soc., 2000, 147 (7): 2486~2493.
    [89] Soffer A., Folman M., The electrical double layer of high surface porous carbon electrode, J. Electroanal. Chem., 1972, 38 (1): 25~43.
    [90] Koresh J., Soffer A., Stereoselectivity in ion eIectroadsorption and in double-layer charging of molecular sieve carbon electrodes, J. Electroanal. Chem., 1983, 147 (1-2): 223~234.
    [91] Shi H., Activated carbons and double layer capacitance, Electrochimica Acta, 1996, 41 (10): 1633~1639.
    [92] Lin C., Ritter J. A., Popov B. N., Correlation of double-layer capacitance with thepore structure of sol-gel derived carbon xerogels, J. Electrochem. Soc., 1999, 146 (10): 3639~3643.
    [93] Endo M., Kim Y. J., Takeda T., et al., Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte, J. Electrochem. Soc., 2001,148 (10): A1135~A1140.
    [94] Endo M., Kim Y. J., Ishii K., et al., Structure and application of various saran-based carbons to aqueous electric double-layer capacitors, J. Electrochem. Soc., 2002, 149 (11): A1473~A1480.
    [95] Qu D.Y., Shi H., Studies of activated carbons used in double-layer capacitors, J. Power Sources, 1998, 74 (1): 99~107.
    [96] Sarangapani S., Tilak B. V., Chen C. P., Materials for electrochemical capacitors, J. Electrochem. Soc., 1996, 143 (11): 3791~3799.
    [97] Hsieh C. T., Teng H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 2002, 40 (3): 667~674.
    [98] Kim C. H., Pyun S. I., Shin H. C., Kinetics of double-layer charging/discharging of activated carbon electrodes-Role of surface acidic functional groups, J. Electrochem. Soc., 2002, 149 (2): A93~A98.
    [99] Lozano-Castello D., Cazorla-Amoros D., Linares-Solano A., et al., Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte, Carbon, 2003, 41 (9): 1765~1775.
    [100] Rychagov A. Y., Urisson N. A., Yu M. V., Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor, Russian Journal of Electrochemistry, 2001, 37 (11): 1172~1179.
    [101] Qu D.Y., Studies of the activated carbons used in double-layer supercapacitors, J. Power Sources, 2002, 109 (2): 403~411.
    [102]文越华,曹高萍,程杰,等,纳米孔玻态炭—超级电容器的新型电极材料,新型炭材料,2003,18(3):219~224.
    [103] Ishikawa M., Sakamoto A., Morita M., et al., Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double layer capacitance, J. Power Sources, 1996, 60 (2): 233~238.
    [104] Nian Y. R., Teng H., Nitric Acid Modification of activated carbon electrodes for improvement of electrochemical capacitance, J. Electrochem.Soc., 2002, 149 (8): A1008~A1014.
    [105] Nian Y. R., Teng H., Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors, J. Electroanal.Chem., 2003, 540:119~127.
    [106] Yoshida A., Tanahashi I., Nishino A., Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers,Carbon, 1990, 28 (5): 611~615.
    [107] Nakamura M., Nakanishi M., Yamamoto K., Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors, J. Power Sources, 1996, 60 (2): 225~231.
    [108] Lim J. H., Choi D. J., Kim H. K., et al., Thin film supercapacitors using a sputtered RuO2 electrode, J. Electrochem. Soc., 2001, 148 (3): A275~278.
    [109] Tongchang L., Pell W. G., Conway B. E., Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochimica Acta, 1997, 42 (23-24): 3541~3552.
    [110] Hu C. C., Chang K. H., Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: effects of the chloride precursor transformation, J. Power Sources, 2002, 112 (2): 401~409.
    [111] Fang Q. L., Evans D. A., Roberson S. L., et al., Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc, 2001, 148 (8): A833~837.
    [112] Jow T. R., Zheng J. P., Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J. Electrochem. Soc., 1998, 145 (1): 49~52.
    [113] Cao F., Prakash J., Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors, J. Power Sources, 2001, 92 (1-2): 40~44.
    [114] Jeong Y. U., Manthiram A., Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors, J. Electrochem. Soc., 2001, 148 (3): A189~193.
    [115] Yokoshima K., Sugimoto W., Murakami Y., et al., Investigation on the redox behavior of rutile-type Ti1-xVxO2, Electrochemistry, 2005, 73 (12): 1026~1029.
    [116] Sugimoto W., Shibutani T., Murakami Y., et al., Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors, electrochemical and solid-state letters, 2002, 5 (7): A170~172.
    [117] Sugimoto W., Ohnuma T., Murakami Y., et al., Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors, Electrochemical and Solid-State Letters, 2001, 4 (9): A145~147.
    [118] Lee H. Y., Goodenough J. B., Supercapacitor behavior with KCl electrolyte, J. Solid State Chemistry, 1999, 144 (1): 220~223.
    [119] Lee H. Y., Goodenough J. B., Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution, J. Solid State Chemistry, 1999, 148 (1): 81~84.
    [120]闪星,张密林,纳米氧化镍在超大容量电容器中的应用,功能材料与器件学报,2002,8(1):35~39.
    [121]王晓峰,孔祥华,刘庆国,等,高分子聚合物超电容器研究,电子元件与材料,2001,19(5):24~27.
    [122]王晓峰,孔祥华,新型氧化镍超电容器电极材料的研究,无机材料学报,2001,16(5):815~820.
    [123] Liu K. C., Anderson M. A., Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc., 1996, 143 (1): 124~130.
    [124]闪星,董国君,景晓燕,等,新型超大容量电容器电极材料—纳米水合MnO2的研究,无机化学学报,2001,17(5):669~674.
    [125] Pang S. C., Anderson M. A., Chapman T. W., Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc., 2000, 147 (2): 444~450.
    [126] Pang S. C., Anderson M. A., Novel electrode materials for ultracapacitors: structural and electrochemical properties of sol-gel-derived manganese dioxide thin films, Mat. Res. Symp. Proc., 2000, 575: 415~421.
    [127]刘献明,张校刚,CoAl双氢氢化物作超级电容器的电极材料,电源技术,2003,27(3):315~317.
    [128]刘献明,张校刚,包淑娟,等,掺钴MnO2电极的电化学电容行为研究功能材料与器件学报,2003,9(3):267~271.
    [129] Choi D., Blomgren G. E., Kumta P. N., Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater., 2006, 18 (9): 1178~1182.
    [130] Kudo T., Ikeda Y., Watanabe T., et al., Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 2002, (152-153): 833~841.
    [131]张丹丹,姚宗干,大容量高储能密度电化学电容器的进展,电子元件与材料,2000,19(1):34~37.
    [132] Rajendra P. K., Munichandraiah N., Fabrication and evaluation of 450 F electrochemical redox supercapacitors using inexpensive and high-performance, polyaniline coated, stainless-steel electrodes, J. Power Sources, 2002, 112 (2): 443~451.
    [133] Rajendra P. K., Munichandraiah N., Potentiodynamically deposited polyaniline on stainless steel, J. Electrochem. Soc., 2002, 149 (11): A1393~1399.
    [134] Florence F., Pascal G., Dominique V., et al., Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization, J. Electrochem. Soc., 2002, 149 (1): A1~A8.
    [135] Hu C. C., Chu C. H., Electrochemical and textural characterization of iridium-doped polyaniline films for electrochemical capacitors, MaterialsChemistry and Physics, 2000, 65 (3): 329~338.
    [136] Ingram M. D., Staesche H., Ryder K. S.,‘Ladder-doped’polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors, J. Power Sources, 2004, 129 (1): 107~112.
    [137] Ferraris J. P., Eissa M. M., Brotherston I. D., et al., Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications, Chem. Mater, 1998, 10 (11): 3582~3535.
    [138] Chen W. C., Wen T. C., Teng H., Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochimica Acta, 2003, 48 (6): 641~649.
    [139] Liu T., Sreekumar T. V., Kumar S., et al., SWNT/PAN composite film-based supercapacitors, Carbon, 2003, 41 (12): 2440~2442.
    [140] Jurewicz K., Delpeux S., Bertagna V., et al., Supercapacitors from nanotubes/polypyrrole composites, Chemical Physics Letters, 2001, 347 (1-3): 36~40.
    [141] Sikha G., White R. E., Popov B. N., A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system, J. Electrochem. Soc., 2005, 152 (8): A1682~A1693.
    [142] Wang Y. G., Cheng L., Xia Y. Y., Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, J. Power Sources, 2006, 153 (1): 191~196.
    [143] Amatucci G. G., Badway F., Pasquier A. D., et al., An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc., 2001, 148 (8): A930~939.
    [144] Wang H. Y., Yoshio M., Graphite, a suitable positive electrode material for high-energy electrochemical capacitors, Electrochemistry Communications, 2006, 8 (9): 1481~1486.
    [145] Yoshio M., Nakamura H., Wang H. Y., Novel megalo-capacitance capacitor based on graphitic carbon cathode, Electrochemical and Solid State Letters, 2006, 9 (12): A561~A563.
    [146] Wang Y. G., Xia Y. Y., Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds, J. Electrochem. Soc., 2006, 153 (2): A450~454.
    [147] Wang Y. G., Luo J. Y., Wang C. X., et al., Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds, J. Electrochem. Soc., 2006, 153 (8): A1425~1431.
    [148] Rouquerol F., Rouqerol J., Sing K., Adsorption by powders and porous solids. London: Academic Press, 1999, 165~179.
    [149] Sing K. S., Adsorption methods for the characterization of porous materials, J.Coll. Int. Sci., 1998, 76 (1): 3~11.
    [150]严继民,张启元,高敬琮,吸附与凝聚:固体的表面与孔,北京:科学出版社,1986:150~161.
    [151] Terzyk A. P., Gauden P. A., Kowalczyk P., What kong of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation, Carbon, 2002, 40 (15): 2879~2886.
    [152] Korili S., Gil A., A., On the application of various methods to evaluate the microporous properties of activated carbons, Adsorption, 2001, 7 (3): 249~264.
    [153] Gavalda S., Kaneko K., Thomson K. T., et al, Molecular modeling of carbon aerogels, Colloids and Surfaces A, 2001, 187 (187-188): 531~538.
    [154] Ryu Z., Zheng J., Wang M, et al, Characterization of pore size distributions on carbonaceous adsorbents by DFT, Carbon, 1999, 37 (8): 1257~1264.
    [155] Jiachang Zhao,Chunyan Lai,Yang Dai et al.Pore structure control of mesoporous carbon as supercapacitor material, Materials Letters, 2007, 61 (23-24): 4639-4642.
    [156] Suarez-Garcia F., Martinez-Alonso A., Tascon J. M. D., Activated carbon fibers from Nomex by chemical activation with phosphoric acid, Carbon, 2004, 42 (8-9): 1419~1426.
    [157]罗益锋,碳纤维研究开发现状,新型炭材料,1991,31(3-4):11~20.
    [158]周德凤,赵艳玲,马越,等,掺杂ZnCl2对酚醛树脂热解炭材料结构与性能的影响,化学学报,2004,62(14):1333~1338.
    [159]张彩香,王焰新,闫喜凤,黄姜素生产纤维渣制备活性炭的研究,煤炭转化,2005,28(3):50~54.
    [160] Williams P. T., Reed A. R., Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste, Biomass and Bioenergy, 2006, 30 (2): 144~152.
    [161] Subramanian V., Luo C., Stephan A. M., et al., Supercapacitors from Activated Carbon Derived from Banana Fibers, J. Phys. Chem. C, 2007, 111 (20): 7527~7531.
    [162]杨淑蕙,邱玉桂,谭国民,等,植物纤维化学,北京:中国轻工业出版社,2001.
    [163] Ahmadpour A., Do D. D., The preparation of activated carbon from Macadamia nutshell by chemical activation, Carbon, 1997, 35 (12): 1723~1732.
    [164] Williams Paul T., Reed A. R., et al., High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste, Appl. Pyrolysis 2004, 71 (2): 971~986.
    [165] Puziy A. M., Poddubnaya O. I., Martinez-Alonso A., et al., Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties,Carbon, 2002, 40 (9): 1493~1505.
    [166] Zuo S., Gao S., Yuan X., et al., Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis, Journal of Forestry Research, 2003, 14 (1): 75~79.
    [167] Xie C., Application of IR in chemistry and medical chemistry, Beijing: Science Publishing House, 1987.
    [168] Jia G., Aik C. L., Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous polltants, Materials Letters, 2002, 55 (5): 334~339.
    [169]卢涌泉,邓振华,实用红外光谱解析,北京:电子工业出版社,1989.
    [170]黄晓华,张相育,吉青,等,应用分子力学研究表面吸附能的可行性,计算机与应用化学,2007,24(3):37~379.
    [171] Olivier J. P., The determination of surface energetic heterogeneity using model isotherms calculated by density functional theory, The Fifth International Conference on the Fundamentals of Adsorption, Pacific Grove, CA, 1995.
    [172] Randin J., Yeager E.,Differential capacitance study on the based plane of stresss-annealed pyrolytic graphite, J. Electroanal. Chem., 1972, 36 (2): 257~276.
    [173] Randin J., Yeager E., Differential capacityance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes, J. Electroanal. Chem., 1975, 58 (2): 313~322.
    [174]庄新国,杨裕生,杨冬平,等,表面官能团对活性炭性能的影响,电池,2003,33 (4):199~202.
    [175] Eliad L, Salitra G, Soffer A, et al,Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions, J. Phys. Chem B, 2001, 105 (29): 6880~6887.
    [176] Koresh J., Soffer A., StereoseIectivity in ion electroadsorption and in double-layer charging of molecular sieve carbon electrodes, J. Electroanal. Chem., 1983, 147 (1-2): 223~234.
    [177] Gouérec P., Talbi H., Miousse D., et al., Preparation and modification of polyacrylonitrile microcellular foam films for use as electrodes in supercapacitors, Journal of The Electrochemical Society, 2001, 148 (1): 94~101.
    [178] Qiao W., Korai Y., Mochida I., et al., Preparation of an activated carbon artifct: oxidative modification of coconut shell-based carbon to improve the strength, Carbon, 2002, 40 (3): 351~358.
    [179]侯朝辉,高比表面积中孔炭材料的制备及其双电层电容性能研究:[博士学位论文],湖南,中南大学,2004.
    [180]贺福,碳纤维及其复合材料,北京:科学出版社,1997. 113~114.
    [181] Zielke U., Hüttinger K. J., Hoffman W. P., Surface-oidized carbon fibers: surface structure and chemistry, Carbon, 1996, 34 (8): 983~998.
    [182]王晓峰,孔祥华,刘庆国,等,氧化镍超电容器及氧化镍表面“准电容”现象的研究,功能材料,2002,33(5):513~517.
    [183] Cottineau T., Toupin M., Delahaye T., et al., Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A, 2006, 82 (4): 599~606.
    [184] Takei T., Yoshimura K., Yonesaki Y., et al., Preparation of polyaniline/ mesoporous silica hybrid and its electrochemical properties, J. Porous Materials, 2005, 12 (4): 337~343.
    [185] Zheng J. P., Jow T R., A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc., 1995, 142 (1): L6~L8.
    [186] Grupioni A. A. F., Lassali T. A. F., Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2-based electrode, J. Electrochem. Soc., 2001, 148 (9): A1015~A1022.
    [187] Skowronski J. M., Jurewicz K., Positive electrode for galvanic cells prepared by anodization of CrO3-graphite intercalation compounds in aqueous sulfuric acid, J. Power Sources, 1993, 45 (3): 379.
    [188] Wu N. L., Nanocrystalline oxide supercapacitors, Mater. Chem. Phys., 2002, 75 (1-3): 6~11.
    [189] Wu N. L., Wang S.Y., Han C. Y., et al., Electrochemical capacitor of magnetite in aqueous electrolytes, J. Power Sources, 2003, 113 (1): 173~178.
    [190] Wang S. Y., Ho K. C., Kuo S. L., et al., Investigation on capacitance mechanisms of Fe3O4 Electrochemical Capacitors, J. Electrochem. Soc., 2006, 153 (1): A75~A80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700