用户名: 密码: 验证码:
油茶耐弱光生理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶泛指山茶属(Camellia)植物中含油率较高的各油茶物种,在我国有悠久的栽培历史,目前对油茶的研究集中在育种、栽培等方面,在国内外对油茶光合生理的研究不多。本文在对普通油茶(C. oleifera)、广宁红花油茶(C.semiserrata)、博白大果油茶(C.gigantocarpa)、日本红山茶(C.japonica)、南荣油茶(C.nanyongensis)、香花油茶(C.osmantha Ye CX)等6个油茶物种和普通油茶中选育的岑软2号、岑软3号、岑软24号、湘林86号、长林4号、赣190号6个无性系光合特性研究的基础上,通过覆盖遮荫材料对不同强度(60%、75%、90%)遮荫处理下5个油茶物种(普通油茶、广宁红花油茶、博白大果油茶、南荣油茶,香花油茶)和5个油茶优良无性系(岑软2号、岑软3号、岑软24号、湘林86号、赣190号)苗期光合及生长特性进行调查,并通过模拟高大乔木下的自然荫蔽环境对广西(岑软3号)、湖南(湘林86号)和江西(赣190号)选育的优良无性系成年植株在弱光胁迫下的光合及生长发育特性进行研究,旨在为油茶复层栽培提供理论依据。研究结果如下:
     (1)不同油茶物种、普通油茶不同无性系光合特性存在差异。不同油茶物种日平均净光合速率由大到小依次为普通油茶>香花油茶>博白大果油茶>广宁红花油茶>日本红山茶>宛田红花油茶,其中日平均净光合速率最高的普通油茶达到7.24μmol·m-2·s-1,而最低的宛田红花油茶日平均净光合速率为3.73μmol·m-2·s-1,仅为普通油茶的51.52%。参试普通油茶不同无性系日平均净光合速率最大为湘林86号,达到6.86μmol·m-2·s-1,最小的岑软2号仅为3.97μmol·m-2·s-1,是湘林86号的57.87%。日平均净光合速率由大到小依次排列为湘林86号>岑软24号>长林4号>岑软3号>赣190号>岑软2号。
     (2)在模拟光辐射条件下,不同油茶物种最大净光合速率在8.4~10.5μmol·m-2·s-1之间,其中普通油茶最高,宛田红花油茶最低;普通油茶的光补偿点仅为15.50μmol·m-2·s-1,利用弱光的能力强,其次是香花油茶和日本红山茶,宛田红花油茶、广宁红花油茶和博白大果油茶利用弱光能力较差;分布在低纬度地区的香花油茶光饱和点最高,最耐强光,分布在高纬度地区的日本红山茶光饱和点最低,利用强光的能力最差。参试油茶无性系中,最大净光合速率在5.8~11.4μmol·m-2·s-1之间,岑软3号最高,岑软2号最低;赣190号光补偿点为16.36μmol·m-2·s-1,利用弱光能力最强,岑软2号和长林4号利用弱光能力较差;岑软3号光饱和点为537.86μmol·m-2·s-1,利用强光的能力最强,赣190号利用强光的能力最差,光饱和点仅为383.55μmol·m-2·s-1。
     (3)9月底、10月初,未遮荫条件下的参试油茶物种苗期、普通油茶无性系苗期和成年期净光合速率日变化曲线有单峰型和双峰型,其中油茶物种博白大果油茶苗期,普通油茶无性系岑软24号苗期以及湘林86号成年期为单峰曲线,剩余油茶物种普通油茶、香花油茶、广宁红花油茶和宛田红花油茶苗期,普通油茶无性系岑软2号、岑软3号、湘林86号、赣190号苗期,以及普通油茶无性系岑软3号、赣190号成年期均为双峰曲线。但随着遮荫强度的增大,所有参试油茶物种苗期、普通油茶无性系苗期和成年期净光合速率日变化曲线均为单峰型。在60%-90%遮荫条件下所有参试油茶物种苗期、普通油茶无性系苗期和成年期日平均净光合速率均低于对照,但日平均净光合速率与对照的比值都大于相对应遮荫条件下光合有效辐射与对照的比值,表明在60%~90%遮荫条件下参试的所有油茶物种、普通油茶无性系叶片捕捉弱光进行光合作用的能力增强。
     (4)油茶物种广宁红花油茶、普通油茶、宛田红花油茶、香花油茶苗期,普通油茶无性系岑软2号、岑软3号、湘林86号苗期,以及普通油茶无性系岑软3号、湘林86号、赣190号成年期在60%-90%遮荫下叶片叶绿素a、叶绿素b和类胡萝卜素含量都显著增加;油茶物种博白大果油茶以及普通油茶无性系岑软24号和赣190号在75%~90%遮荫下叶片叶绿素a、叶绿素b和类胡萝卜素也显著高于对照。弱光下促进了叶片叶绿素和类胡萝卜素的合成与其在遮荫条件下利用弱光进行光合作用的能力增强的变化趋势相一致。在弱光下,参试油茶物种以及普通油茶无性系苗期Qchlb/Qchla增大幅度不明显,叶绿素合成过程中并没有优先合成叶绿素b,但除油茶物种普通油茶外,剩余油茶物种以及普通油茶无性系Qchl/Qcar都显著高于对照,叶绿素增大幅度都要大于类胡萝卜素,叶片色素合成中优先合成了叶绿素。而普通油茶无性系成年期中,除90%遮荫条件下的赣190号Qchl/Qcar显著高于对照外,其余遮荫处理Qchl/Qcar没有显著增大,优先合成叶绿素的趋势不明显,而75%和90%遮荫处理的3个参试油茶无性系以及60%遮荫处理的湘林86号和赣190号叶片Qchlb/Qchla明显增大,叶绿素合成中优先合成了叶绿素b,从而更好的捕捉散射光。
     (5)苗期,参试油茶物种中博白大果油茶和广宁红花油茶耐弱光能力最强,90%遮荫下不仅对其根、茎和叶片的生长没有抑制,且60%强度遮荫下促进了根系的生长;普通油茶和香花油茶也有较强的耐弱光能力,各遮荫处理对其根、茎和叶片的生长都没有影响,宛田红花油茶苗期相对耐弱光能力较差,60%遮荫处理下的宛田红花油茶根系生长受到明显抑制。参试普通油茶不同油茶无性系中,岑软2号和赣190号苗期耐弱光能力最强,各遮荫处理不仅对其根、茎、叶的生长没有抑制作用,且部分强度遮荫处理促进了植株的营养生长;岑软24号耐弱光能力也较强,虽然90%遮荫条件下根系生长受到抑制,但部分遮荫处理却却促进了茎和叶片的生长;岑软3号和湘林86号苗期耐弱光的能力相对较差,75%遮荫处理会明显抑制根系的生长。
     (6)对参试普通油茶无性系成年期植株遮荫22个月后调查表明,岑软3号和湘林86号在90%遮荫条件下以及赣190号在60%~90%遮荫条件下枝条的生长都朝着更有利于捕捉光的方向发展,同时,90%遮荫处理还促进了湘林86号和赣190号叶片朝着捕捉光的方向生长,但各遮荫处理下的3个无性系叶片N、P、K元素的含量与对照都没有显著差异。在60%遮荫条件下,岑软3号能正常花芽分化、座果,且果实质量和油脂组分与对照都没有显著差异,赣190号虽然花芽数量、座果数量以及油脂组分与对照都没有显著性差异,但果实膨大却受到抑制,而湘林86号花芽分化和座果都显著低于对照;虽然,75%和90%遮荫处理后的岑软3号、湘林86号和赣190号果实油脂组分与对照差异不显著,但花芽分化和座果都受到明显抑制。成年期,普通油茶3个无性系耐弱光能力由大到小依次为岑软3号>赣190号>湘林86号。
     (7)苗期试验表明,不同油茶物种以及普通油茶无性系都具有较强的耐弱光能力,博白大果油茶、广宁红花油茶、普通油茶、香花油茶,以及普通油茶无性系岑软2号和赣190号可以在90%以下遮荫(10月初日平均光合有效辐射为61.83μmol·m-2·s-1)条件下正常生长;岑软24号在75%(10月初日平均光合有效辐射为178.87μmol·m-2·s-1)以下遮荫条件下能正常生长;而岑软3号和湘林86号也能在60%(10月初日平均光合有效辐射为311.91μmol·m-2·s-1)以下遮荫条件下生长。普通油茶无性系成年期耐弱光能力相对较弱,75%(9月30日日平均光合有效辐射为193.25μmol·m-2·s-1)以上遮荫条件下岑软3号、湘林86号和赣190号花芽分化和座果受到抑制,但岑软3号在60%(9月30日平均光合有效辐射为280.72μmol·m-2·s-1)遮荫条件下能正常生长、发育,赣190号也能正常开花,座果。
With a long cultivation history in China, oil-tea camellia is a general reference to a section of species that are relatively high in oil content in genus Camellia. Research on Camellia was mainly concentrated in the fields of conventional breeding and cultivation measures for a long time, yet few studies were conducted on photosynthetic physiology in China and overseas. For the purpose of providing theoretical basis for compound cultivation, based on the photosynthetic properties of six camellia species (C. oleifera, C. vietnamensis, C. gigantocarpa, C. japonica, C. semiserrata, and C. osmantha) and six clones selected from C. oleifera (Cenruan2, Cenruan3, Cenruan24, Xianglin86, Changlin4and Gan190), investigation was carried out on photosynthetic and growth properties during seedling stage of five camellia species (C. oleifera, C. vietnamensis, C. gigantocarpa, C. semiserrata, C. osmantha) and five superior clones (Cenruan2, Cenruan3, Cenruan24, Xianglin86and Gan190) under three levels of light intensity treatments (60%,75%and90%), and studies were done on photosynthetic and growth properties of selected superior clones from Guangxi (Cenruan3), Hunan (Xianglin86) and Jiangxi (Gan190) at adult stage under the condition of low-light stress by simulating a natural shading environment under high arbor trees. Research results are as follows:
     (1) There were differences in photosynthetic properties among different camellia species and different clones of C. oleifera. The order of daily average net photosynthetic efficiency of different camellia species was C. oleifera>C. osmantha-> C. gigantocarpa> C. vietnamensis> C. japonica> C. polyodonta. The daily average net photosynthetic efficiency of C.oleifera was the highest, at7.24μmol·m-2·s-1, and C.polyodonta was the lowest, at3.72μmol·m-2·s-1, merely taking up51.52%of C. oleifera. Among the tested C. oleifera clones, photosynthetic properties of Xianglin86was the highest, at6.86μmol·m-2·s-1, Cenruan2was the lowest at3.97μmol·m-2·s-1, only taking up57.87%of Xianglin86. The daily average net photosynthetic efficiency followed this order:Xianglin86> Cenruan24> Changlin4> Cenruan3> Gan190> Cenruan2, respectively.
     (2) By simulating the light radiation condition, the maximum net photosynthetic efficiency of different camellia species ranged between8.4and10.5μmol·m-2·s-1, with C.oleifera the highest and C. polyodonta the lowest. Light compensation point of C.oleifera was merely15.50μmol·m-2·s-1, with the high capacity to utilize low light, followed by C. osmantha and C.japonica. C. polyodonta, C. vietnamensis and C. gigantocarpa had weak capacity to utilize low light. Light saturation point of C. osmantha which was distributed in areas of low latitude, showed high tolerance against strong light, while C.japonica which was distributed at high latitude showed the opposite. Among the tested clones, the maximum net photosynthetic efficiency ranged between5.8and11.4μmol·m-2·s-1, Cenruan3the highest and Cenruan2the lowest. The light compensation point of Gan190was16.36μmol·m-2·s-1,with the strongest capacity to utilize low light, while Cenruan2and Changlin4showed the weak capacity to utilize low light. Light saturation point of Cenruan3was537.86μmol·m-2·s-1, with the highest capacity to utilize strong light, while Gan190had the weakest capacity to utilize low light, with the light saturation point at383.55μmol·m-2·s-1.
     (3) In late September and early October, under the shading-free condition, the curve of diurnal variation of net photosynthetic rate of the tested camellia species during seedling stage as well as C. oleifera clones during seedling and adult stage demonstrated single and double apexes. C. gigantocarpa of camellia species and Cenruan24of C. oleifera clone during seedling stage and Xianglin86during adult stage showed single apexes. The remaining camellia species, Sect. Paracamellia, C. vietnamensis and C. polyodonta during the seedling stage, and Cenruan2, Cenruan3, Xianglin86and Gan190of C. oleifera clones during the seedling stage, as well as Cenruan3and Gan190during the adult stage showed double apexes. Along with the increase of shading intensity, the curve of diurnal variation of net photosynthetic rate of all the camellia species during seedling stage and C. oleifera clones during seedling and adult stage showed single apexes. Under the condition of60%-90%shading, the curve of diurnal variation of net photosynthetic rate of all tested camellia species during seedling stage and C. oleifera clones during seedling and adult stage was lower than the control. Ratio of daily average net photosynthetic efficiency against that of control was higher than the ratio of photosynthetic active radiation against that of control under the same shading condition, indicating that under the condition of60%-90%shading, capacity of leaves of all tested camellia species and C.oleifera clones to capture low light was increased.
     (4) Content of chlorophyll a, b and carotenoid in leaves of C. vietnamensis, C. oleifera, C. polyodonta, C. osmantha, Cenruan2, Cenruan3and Xianglin86during seedling stage and Cenruan3, Xianglin86and Gan190during adult stage under60%-90%shading condition increased obviously. Content of chlorophyll a, b and carotenoid in leaves of C. gigantocarpa, Cenruan24and Gan190under75%-90%shading condition was obviously higher than that of control. The synthesis of leaves chlorophyll and carotenoid under low light was enhanced in consistency with the increased capacity to utilize low light under shading condition for photosynthesis. Under low-light condition, increase of Qchlb/Qchla in the tested camellia species and C. oleifera clones during seedling stage was not obvious. During the process of chlorophyll synthesis, chlorophyll b was not synthesized in priority. Except C. oleifera, Qchlb/Qchla of remaining camellia species and C. oleifera was obviously higher than that of control, the increase extent of chlorophyll was higher than that of carotenoid, and chlorophyll was synthesized in priority. Among the C. oleifera clones during adult stage, except Qchlb/Qchla of Gan190under90%shading condition was obviously higher than that of control, Qchlb/Qchla of the remaining shading treatments was not increased significantly, and tendency to synthesize chlorophyll in priority was not obvious. However, Qchlb/Qchla in leaves of three tested clones under75%and90%shading treatments as well as Xianglin86and Gan190under60%shading treatment was increased significantly, chlorophyll b was synthesized in priority to better capture scattered light.
     (5) During seedling stage, among the tested camellia species, the tolerance ability against low light of C. gigantocarpa and C. vietnamensis was the highest that there was no inhibiting to the growth of root, stem and leaves under90%shading treatment condition, and the growth of root was enhanced under the situation of60%shading intensity. C. oleifera and C. osmantha had relatively strong ability of low-light tolerance; there was no significant impact of each shading treatment on the growth of root, stem and leaves. C.polyodonta had relatively weak ability of low-light tolerance during seedling stage, and the growth of root system was inhibited obviously under60%shading treatment. Among the different clones of C. oleifera, Cenruan2and Gan190had the strongest ability of low-light tolerance, there was no inhibiting effects of each treatment on the growth of root, stem and leaves, and partial shading treatment enhanced the vegetative growth of the plant. Cenruan24had a relatively strong ability of low-light tolerance, although root growth was inhibited under90%shading condition, the growth of stem and leaves was enhanced under partial shading condition. Cenruan3and Xianglin86during seedling stage had a relatively weak ability of low-light tolerance, and75%shading would obviously inhibit the growth of root.
     (6) Twenty-two months after shading treatment was applied on the tested C. oleifera clones during adult stage, it was found out that growth of Cenruan3and Xianglin86under90%shading condition and Gan190under60%-90%shading condition was prone to capturing light. Meanwhile,90%shading treatment also enhanced the growth of Xianglin86and Gan190towards capturing light. However, there was no significant difference in the content of N, P and K between three clones and control under each shading treatment. Under60%shading condition, Cenruan3had normal bud initiation and fruits, and there was no significant difference in fruit quality and oil composition compared with control. Though Gan190had similar bud quantity, fruit quantity and oil composition compared with control, fruit enlargement was inhibited. Bud initiation and fruits of Xianglin86were significantly lower than that of control. Although oil composition of fruits of Cenruan3, Xianglin86and Gan190under75%and90%shading condition was similar with that of control, bud initiation and fruits were obviously inhibited. At the adult stage, ability of low-light tolerance of three clones followed this order:Cenruan3>Gan190>Xianglin86.
     (7) At seedling stage, camellia species and C. oleifera clones all had relatively strong ability of low-light tolerance. C. gigantocarpa, C. vietnamensis, C. oleifera, C. osmantha, Cenruan2and Gan190of C. oleifera could grow normally under90%shading condition (in early October photosynthetic active radiation was61.83μmol·m-2·s-1). Cenruan24could grow normally under75%shading condition (in early October photosynthetic active radiation was178.87μmol·m-2·s-1). Cenruan3and Xianglin86could also grow normally under60%shading condition (in early October photosynthetic active radiation was311.91μmol·m-2·s-1). C. oleifera clones at adult stage had relatively weak ability of low-light tolerance. Bud initiation and fruits of Cenruan3, Xianglin86and Gan190under75%shading condition (on September30th the diurnal average synthetic active radiation was193.25μmol·m-2·s-1) were inhibited. However, Cenruan3could grow normally under60%shading condition (on September30th the diurnal average synthetic active radiation was280.72μmol·m-2·s-1), and Gan190could also flower and have fruits normally.
引文
[1]陈永忠,王德斌.油茶综合利用浅析[J].湖南林业科技,1997,24(4):15-19.
    [2]游美红.我国油茶产业化现状与发展前景分析[J].安徽农业科学,2008,36(14):6119-6121.
    [3]石鹏皋,罗治建.湖北省油茶产业发展对策[J].湖北林业科技,2009,(1):48-51.
    [4]贾治邦.解决突出问题推进油茶产业又好又快发展[J].林业经济,2008,(10):3-5.
    [5]王瑞,陈永忠,杨小胡,等.油茶光合作用及其影响因素研究进展[J].经济林研究,2007,25(2):78-83.
    [6]周盛,朱金惠,肖景治,等.油茶远缘杂交育种试验[J].经济林研究,2001,19(1):20-25.
    [7]黄光裕,胡柏松.油茶更新造林技术环节[J].经济林研究,1999,17(1):31-32.
    [8]张日清,丁植磊,张勖,等.油茶育种研究进展[J].经济林研究,2006,24(4):1-8.
    [9]赵德贵.油茶换冠丰产技术研究[J].经济林研究,1999,17(1):17-19.
    [10]韩宁林.油茶丰产栽培技术研究进展[J].林业科技开发,2000,14(1):10-13.
    [11]吴孔雄,熊年康,何学友,等.油茶杂优闽1等32个品系选育的研究[J].福建林业科技,2001,28(1):23-27.
    [12]庄瑞林.中国油茶[M].北京:中国林业出版社,2008,9-11,38.
    [13]粱根桃,杨成区,张吉祥,等.油茶叶片某些光合性能的研究[J].浙江林业科技,1988,8(1):8-11.
    [14]傅埘,叶青.油茶某些生理活动的昼夜变化[J].林业科技通讯,1984,(8):11-14.
    [15]骆琴娅,漆龙霖,方晰,等.山茶属植物五个物种光合作用的研究[J].林业科学研究,1993,6(3):311-315.
    [16]吴祖映,孙鸿有,储家淼.杉木幼林与大豆立体复合经营模式及其综合效益的研究[J].浙江林业科技,1995,15(3):54-59.
    [17]蒋桂雄,马锦林,李开祥,等.广西油茶比较效益探析[J].经济林研究,2011,29(1):149-152.
    [18]陈永忠.油茶优良种质资源[M].北京:中国林业出版社,2008,14-15.
    [19]何一明,吕芳德.不同密度条件下油茶光合作用的研究[J].现代农业科学,2008,15(3):25-27.
    [20]佘祥威,王德斌,汪枚初.油茶叶片光合功能参数的测定[J].湖南林业科技,1980(2):17-21.
    [21]赵中华,郭晓敏,李发凯,等.不同施肥处理对油茶光合生理特性的影响[J].江西农业大学学报,2007,29(4):576-581.
    [22]梁根桃,阮建云,章晶晶.硫代硫酸银等四种试剂对油茶光合性能影响的初步研究[J].经济林研究,1987,5(1):59-65.
    [23]胡哲森,时忠杰,许长钦.亚硫酸氢钠对油茶光合机构的生理效应研究[J].林业科学,2001,37(1):68-71.
    [24]李铁柱,包梅荣,乌云塔娜.油茶秋水仙素诱导苗光合作用变异研究[J].内蒙古农业大学学报,2008,29(4):155-160.
    [25]黄义松,牛德奎,赵中华.3个油茶优良无性系光合作用及生理特性研究[J].江西农业大学学报,2007,29(2):219-224.
    [26]战吉成,黄卫东,王利军.植物弱光逆境生理研究综述[J].植物学通报,2003,20(1):43-50.
    [27]郫树桐,孙小镭,王球,等.黄瓜不同品种苗期耐低温弱光特性测定初报[J].中国蔬菜,1994(1):26-28.
    [28]何明,张伟春,孙立春.茄子耐弱光鉴定指标和耐弱光品种筛选的研究[J].辽宁农业科学,2002(2):6-9.
    [29]边静,胡迎雪.青椒耐低温弱光鉴定的初步研究[J].辽宁农业科学,1994(4):37-40.
    [30]吴晓雷,尚春明,张学东,等.番茄品种耐弱光性的综台评价[J].华北农学报,1997,12(2):97-101.
    [31]侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展[J].中国蔬菜,1999,(4):48-51.
    [32]EI-Gizawy A M, Gomea H M. Effect of different shading levels on tomato plants: Ⅰ. Growth, flowering and chemical composition [J]. Acta Horticulturae,1992 (323):341-347.
    [33]Nieuwhof M, Garretsen F, Van Oeveren J C. Growth analysis of tomato genotypes grown under low energy conditions [J]. Netherlands Journal of Agricultural Sciences,1991,39:191-196.
    [34]Dijk S J. Differences between tomato genotypes in stomatal resistance and specific leaf fresh weight in relation to differences in net photosynthesis under low light intensity and low temperatures [J]. Euphytica,1985,34:717-723.
    [35]Baevre O A. Effects of light on flowering and fruiting in the tomato [J]. Norwegian Journal of Agricultural Sciences,1990,4(3):225-232.
    [36]Bruggeman N W. Long-term chilling of young tomato plants under low light.VI. Differential chilling sensitivity of ribulose-1,5-Bisphosphate carboxylase/oxygenase is linked to the oxidation of cysteine residues [J]. Plant Cell Physiol,1995,36(4):733-736.
    [37]Jackson J E, Palmer J W. Effects of shade on the growth and cropping of apple trees [J]. J Hort Sci,1977,52:253-266.
    [38]Kappel F, Flore J A. Effect of shade on photosynthesis, specific leaf weight, leaf chlorophyll content and morphology of young peach trees [J]. J. Amer. Soc. Hort. Sci.,1983,108:541-544.
    [39]郭风鸣.弱光条件下黄瓜的生长解析[J].吉林农业大学学报,1990,12(1):32-35.
    [40]许勇,王永健.黄瓜耐低温研究中几个问题的讨论[A]//中国科协第二届青年学术年会.园艺学论文集[P].北京:北京农业大学出版社,1995.439-444.
    [41]朱其杰,高守云,蔡洙湖.黄瓜耐冷性鉴定及遗传规律的研究[A]//李树德.中国主要蔬菜抗病育种进展[P].北京:北京科学出版社,1995.478-483.
    [42]侯锋,沈文云,吕淑珍.黄瓜幼苗耐寒性鉴定方法研究[J]//李树德主编.中国主要蔬菜抗病育种进展[P].北京:北京科学出版社,1995.474-477.
    [43]何明,张伟春,山春.遮光和密度对茄子不同耐弱光品种生长发育的影响[J].辽宁农业科学.2002,(4):7-8.
    [44]易金鑫,陈静华.弱光胁迫对茄子植株形态及两项生理指标的影响[J].江苏农业科学,1999,(6):62-65.
    45]郑勤,李俊.番茄苗期耐弱光特性及若干形态生理指标的测定[J].江苏农业科学,1999,(6):51-53.
    [46]Nasiruddin K M, Sharfuddin A F M. Effect of differect shading treatments on growth, yield and quality of tomato CV. Roma vf and Mary lobe [J]. Punjab vegetable Grower.1995,30(2):35-44.
    [47]Smeets L. Growth, flowering and chemical composition. [J]. Acta Horticulturae, 1992,323:341-347.
    [48]Ishida K. Influence of respiration rate and metabolic substances on nodal position of first flower bud of eggplant seedlings[J]. Journal of the Japanese Society for Horticultural Science.1989,58(3):657-661
    [49]Flore J A, Kesner C. Orchard design for stone fruit based on light interception [J]. Compact Fruit Tree,1982,25:159-165
    [50]Koblet W. Stress and stress recovery by grapevines [J]. Botanica Helvetica, 1996,106(1):73-84
    [51]Menzel C 1, Simpson D R. Effect of continuous shading on growth, flowering and nutrient uptake of passion fruit [J]. Scientia Horticulturate,1988,35:77-88
    [52]陈满盈,齐小平,张国龙.温光条件对茄子开花节位的影响[J].北方园艺.1999,(4):3-4.
    [53]Rylski. Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation [J]. Scientia Horticulturae,1986,29:31-35.
    [54]吴金凤,朱立新,耿军,等.不同遮阳处理对早玉桃花器官发育的影响[J].北京农学院学报,2007(3):17-19.
    [55]冯孝严,李淑珍,石英.设施栽培桃树落花落果原因及对策[J].山西果树,1999(4):10-12.
    [56]Jackson D I. Environmental and hormonal effects on development of early bunch stem necrosis[J]. Am. J., Enol. Vitic.,1991,42:290-293.
    [57]杜永臣.弱光对番茄生育的影响[J].中国蔬菜,1996,(6):51—53.
    [58]Kinet J M. Effect of light condition on the development of the inflorescence in tomato [J]. Scientia Hortic,1977,1(6):15-26.
    [59]马国成,张福墁.日光温室不同光温环境对黄瓜光合产物运输及分配的影响[J].北京农业大学学报,1995,21(1):34-38.
    [60]Patten K D. Effect of different artificial shading times and natural light intensities on the fruit quanlity of 'Bing' sweet cherry [J]. J. Amer. Soc. Hort. Sci.,1986, 111:360-363
    [61]Cockshull K E, Graves C J. Shading on yield of glasshouse tomatoes [J]. Hort. Sci.,1992,67:11-21.
    [62]Bepetel M, Lakso A N. Differential effects of shade on early-season fruit and shoot growth rates in 'empire' apple[J]. Hortscience,1998,33(5):823-825.
    [63]李天来.苗期光照度对番茄畸形果发生的影响[J].辽宁农业科学, 1997(2):22-25.
    [64]朱龙英,许娣惟,康高强,等.番茄耐低温和耐弱光性能鉴定方法初探[J].上海农业学报,1998,14(1):45-50.
    [65]张立军.植物生理学[M].长春:吉林科学技术出版社,1999,28.
    [66]何明,山春,张伟春.茄子耐弱光研究的进展[J].辽宁农业科学,2005,(4):24-27.
    [67]Ody Y. Effects of light intensity, CO2 concentration and leaf temperature on gas exchange of strawberry plants:feasibility studies on CO2 enrichment in Japanese conditions[J]. Acta Horticultrae,1997,439:563-573.
    [68]Tognetti R. Ecophysiological responses of Fagus sylvatica L. Seedings to changing lighe conditions I. Interactions between photosynthetic acclimation and photoinhibition during stimulated canopy gap formation [J]. Physiologia Plantarum,1997,101(1):115-123.
    [69]眭晓蕾,蒋健箴,王志源,等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5):314-318.
    [70]采利尼克尔.木本植物耐荫性的生物学原理[M].北京:科学出版社,1986,22-25.
    [71]郁继华,舒英杰,吕军芬,等.低温弱光对茄子幼苗光合特性的影响[J].西北植物学报,2004,24(5):831-836.
    [72]Lichtenthaler H K, Burkart S. Photosynthesis and high light stress[J]. J Plant Physiol.,1999,25(3):3-16.
    [73]王毅,方秀娟.黄瓜幼苗低温对叶片细胞叶绿体结构的影响[J].园艺学报,1999,22(3):299-300.
    [74]Lasley S E, Garber M P, Hodges C F. Affects of light and chilling temperature on photosynthesis excised cucumber cotyedons [J]. J Amer. Hort. Sci.,1979,104: 477.
    [75]何洁,刘鸿先.低温与植物光合作用[J].植物生理学通讯,1986,(2):1-6.
    [76]甄伟,张福墁.弱光对黄瓜功能叶片光合特性及超微结构的影响[J].园艺学报,2000,(4):290-292.
    [77]沈文云,马德华,候锋.弱光处理对黄瓜叶绿体超微结构的影响[J].园艺学报,1995,22(4):397-398.
    [78]陈银华,蒋健箴.光照强度对辣椒光合特性与生长发育的影响[J].上海农业 学报,1998,14(3):46-50.
    [79]崔淑芬,张中鹤.遮光处理对辣椒产量及叶绿素含量的影响[J].天津农业科学,2003,9(2):28-30.
    [80]孙治强,张强,张惠梅.低温弱光对番茄叶绿素含量变化的影响[J].华北农学报,2005,20(1):82-85.
    [81]王萍,郭晓冬,赵鹏.低温弱光对辣椒叶片光合色素含量的影响[J].北方园艺,2007,(7):15-17.
    [82]Amon D I. Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris [J]. Plant Physiology,1949,24(1):1-15.
    [83]粱馈林,粱慕勤,潘世元.大豆耐阴性研究X:不同耐阴性大豆叶片叶绿素台量和比叶重研究[J].贵州农学院学报,1992,11(2):16-22.
    [84]姚君平,杨新道.光照强度对花生苗期和花针期植株生育的影响[J].花生科技,1992,(4):20-22.
    [85]颉建明,颉敏华,郁继华,等.低温弱光下辣椒叶片光合色素的变化及与品种耐性的关系[J].中国蔬菜,2008,(4):12-16.
    [86]和红云,薛琳,田丽萍.低温胁迫对甜瓜幼苗叶绿素含量及荧光参数的影响[J].北方园艺,2008,(4):13-16.
    [87]许春辉.光逆境对叶绿体叶绿素蛋白质复合物的影响[J].植物学通报,1991,11(4):8-11.
    [88]Leong T Y. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes [J]. Photo Syn Res,1984,5:105-115.
    [89]马德华,庞金安.弱光对黄瓜幼苗光合及膜脂过氧化作用的影响[J].河南农业大学学报,1998,32(1):68-71.
    [90]郁继华,张国斌,冯致,等.低温弱光对辣椒幼苗抗氧化酶活性与质膜透性的影响[J].西北植物学报,2005,25(12):2478-2483.
    [91]Su Wei-ai, Mi Rong-qi, WANG Wen-ying, et al. The influence of cold hardness of plant stress sensitivity [J]. Acta Photophysiological Sinica,1990, 16(3):284-292.
    [92]Shen W Y, Nada K, Tachibana S. Effect of cold treatment on nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivar [J]. Jap. Soc. Hort. Sci.,1999,68(5):967-973.
    [93]陈青君,王永健,张海英.黄瓜低温弱光耐受性研究进展[J].中国蔬菜,2005,(5):31-34.
    [94]Syvertsen J P, Smith M L. Lighe acclimation in citrus leaves. I. Change in physical characteristics, chlorophyll, and nitrogen content [J]. J Amer. Soc. Hor. Sci.,1984,109(6):812-817
    [95]Seemann J R. Light adaptation/acclimation of photosynthesis and the regulation of Ribulose-1,5-bisphosphate carboxylase activity in sun and shade plants [J]. Plant Physiol.,1989,91:379-386.
    [96]Van K O,,Snel J P H. The use of chlorophyll fluorescence nomenclature in plant stress physiology [J]. Photosynth Res.,1990,25,147-150.
    [97]Springer V, Berlin S U, Bilger W. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis [M]. In:Schuke E N, Caldwell, M M. Ecophysiology of Photosynthesis.1994:49-70.
    [98]Xu C C, Jeon Y A, Lee C H. Relative contributions of photochemical and non-photochemical routes to excitation energy dissipation in rice and barley illuminated at a chilling temperature [J]. Physiol. Plant,1999,107:447-453.
    [99]李长缨,朱其杰.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报,1997,24(1):97-99.
    [100]任华中,黄伟,张福墁.低温弱光对温室番茄生理特性的影响[J].中国农业大学学报,2002,7(1):95-101.
    [101]黄俊,郭世荣,吴震,等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2007,18(2):352-358.
    [102]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,1992,9(1):1-16.
    [103]Tewari A K, Tfipathy B C. Impairment of chlorophyll biosynthetic reactions in cucumber and wheat [J]. Plant Physiology Rockvile,1998,117(3):851-858.
    [104]Xu Chunhui, Chen Zhiqiang. Efects of chiling injury on the thylakoid membrane of cucumber chloroplasts [J]. Acta Botanica Sinica,1997,39(12):1143-1146.
    [105]战吉成,王利军,黄卫东.弱光环境对葡萄叶片生长及其在强光下光合特性的影响[J].中国农业大学学报,2002,7(3):75-78.
    106]李美茹,刘鸿先,王以柔.低温与光对黄瓜幼苗子叶光合电子传递活性的影响[J].植物生理学报,1993,19(1):23-30.
    [107]张渝洁.低温弱光胁迫对番茄光系统Ⅱ作用的影响[J].北方园艺2008(7):79-80.
    [108]眭晓蕾,张宝玺,何洪巨.弱光对不同基因型辣椒坐果和果实品质的影响[J].沈阳农业大学学报,2006,37(3):356-359.
    [109]陈青君,张福墁.不同品种黄瓜在低温弱光胁迫和恢复过程中的光合特性[J].中国农业大学学报,2000,5(5):30-35.
    [110]黄显波,邓则勤,林美娟.优质高声褐感光型孝支水稻新品种元丰优401[J].三明农业科技,2008,(3):12-13.
    [111]张家文,陈世凯,温瑞明.优质高产弱感光型杂交水稻新品种博优双青[J].中国种业,2009,(1):71-72.
    [112]黄慧君,符福鸿,李传国.弱感光型杂交稻新组合博优998的选育与应用[J].杂交水稻,2002,17(1):7-8.
    [113]王兰青,杜立丰,吴放.耐弱光耐C02白灵菇焦科一号的特性及栽培技术[J].食用菌,2007,(4):21-22.
    [114]姜亦巍,胡洽,吴国胜,等.甜(辣)椒耐低温弱光品种筛选方法初探[J].华北农学报,1996,11(4):39-42.
    [115]卢起建,龚繁荣,李俊.甜椒耐低温弱光材料筛选方法的研究[J].上海农业学报2007,23(4):67-71.
    [116]Mcavoy R J, Janes H W, Godfriaux B T. The effect of total available photosynthetic photon flux on single truss tomato growth and production[J]. J. Hort. Sci.,1989,64:331-338.
    [117]Russo V M. Shading of tomato plants inconsistently affects fruit yield [J]. HortScience,1993,28:1133.
    [118]Sumiati E. The effect of mulch, shade and plant growth regulators on the yield of tomato cultivar Berlian [J]. Bulrtin. Penelitian. Hortikultura.1989,18:26-31.
    [119]Zhong L F, Kato T. The effect of sun light intensity on growth, yield and chemical of xylem exudates in solanaceous fruits [J]. Research Reports of the Kochi. University, Agricultural Science.1988,37:39-40.
    [120]眭晓蕾张振贤,张宝玺.不同品种辣椒幼苗光合与呼吸对弱光的响应[J].中国生态农业学报,2007,15(2):88-91.
    [121]王丽娟.张平,顾青海,等.减光条件下番茄生态生理变化研究[J].天津农业科学,2002,(3):18—22.
    [122]杨万邦,刘东顺,赵晓琴,等.不同西瓜品种苗期耐低温弱光性综合评价[J].北方园艺,2008,(4):10-13.
    [123]朱艳蕾,陈梅,艾山江·阿布都拉.成株期弱光对不同品种黄瓜生长发育的影响[J].北方园艺,2008,(9):4-7.
    [124]王惠哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005,20(1):55-58.
    [125]蒋燕,赵会杰.低温弱光处理对番茄幼苗生长的影响[J].河南农业科学,2006(1):87-91.
    [126]毛爱军,耿三省.低温对甜椒生长发育的影响及甜椒耐低温筛选方法的研究[J].中国辣椒,2001,(1):17-20.
    [127]庞金安,沈文云,马德华,等.黄瓜幼苗耐低温指标研究初报[J].天津农业科学,1998,4(2):6-10.
    [128]余纪柱,李建吾,王美平,等.低温弱光对不同生态型黄瓜苗期若干测定指标及光合特性的影响[J].上海农业学报,2003,19(4):46-50.
    [129]鲁福成,王明启,魏雪生,等.逆境条件下几种蔬菜生理指标的变化[J].天津农业科学,2001,(6):6-9.
    [130]沈允钢,王铎.光合作用—从机理到农业[M[.上海:上海科学技术出版社,1978.117.
    [131]Smeets L, Garretsen F. Growth analyze of tomato genotypes grown under low light temperatures and low light intensity [J]. Euphytica,1986,35:701-715.
    [132]王绍辉,掷翠玲,张振贤.植物遮荫效应的研究与进展[J].山东农业大学学报,1998,29(1):130-134.
    [133]高健,刘颖丽,李岚.竹子光合作用研究进展[J].世界竹藤通讯,2006,4(3):13-16.
    [134]钟培芳,陈年来.光照强度对园艺植物光合作用影响的研究进展[J].甘肃农业大学学报,2008,43(5):104-109.
    [135]王庆成,刘开昌,张秀清,等.玉米的群体光合作用[J].玉米科学,2001,9(4):57-61
    [136]谢强,石磊,杜锋,等.C02、温度对葡萄群体光合作用的影响[J].上海交通大学学报,2007,25(4):110—114.
    [137]眭晓蕾,张宝玺,张振贤.不同品种辣椒幼苗光合特性及弱光耐受性的差异[J].园艺学报,2005,32(2):222-227.
    [138]胡文海.强光对番茄低温弱光胁迫后不同叶片恢复的影响[J].井冈山师范学院学报,2002,23(5):34-37.
    [139]黄伟,王英,张福墁,等.低温弱光对温室番茄苗期光合特性的影响[J].华中农业大学学报,2004,35:264-267.
    [140]周胜军,朱育强,陈丽萍,等.低温弱光下不同黄瓜品种生长和生理特性的研究[J].扬州大学学报,2007,28(2):91-94.
    [141]王维光,李立人.菠菜二磷酸核酮糖(RuBP)羧化酶简化提纯研究[J].植物生理学报,1980(6):257-261.
    [142]Makino A, Mae T, Ohira K. Purification and storage of ribulose 1,5-bisphosphate carboxylase from rice leaves [J].Plant Cell Physiol,1983,24:1169-1173.
    [143]SalvicciM E, Portis A R Jr, Ogren W L. Purification of ribulose 1,5-bisphosphate carboxylase/oxygenase with high specific activity by fast protein liquid chromatograph [J]. Annual Biochem,1986,153:97-101.
    [144]缪有刚,李立人.水稻Rubisco的纯化及其与烟草Rubisco性质的比较[J].植物生理学报,1991,17(2):183-191.
    [145]李卫芳,姚晓群,王忠.小麦Rubisco的纯化、鉴定及其活性测定[J].安徽农业科学,2001,29(2):146-148.
    [146]刘秀丽,宋平,孙成明.植物叶绿素测定方法的再探讨[J].江苏农业研究,1999,20(3):46-47.
    [147]苏正淑,张宪政.几种测定植物叶绿素含量的方法比较[J].植物生理学通讯,1989,(5):77-78.
    [148]艾天成,李方敏,周治安.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,(1):6-8.
    [149]陈福明,陈顺伟.混合液法测定叶绿素含量的研究[J].林业科技通讯.1984,(2):4—8.
    [150]张宪政.植物叶绿素含量测定:丙酮乙醇混合液法[J].辽宁农业科学,1986,(1):26-28.
    [151]王爱玉,张春庆,吴承来,等.玉米叶绿素含量快速测定方法研究[J].玉米科学2008,16(2):97-100.
    [152]唐炜,谭晓风,袁德义.山茶属三个物种光合特性日变化[J].北方园艺2010,(9):5-8.
    [153]王瑞,陈永忠,王湘南,等.油茶无性系新梢生长期光合特性的研究[J].林业科学研究,2010,23(3):405-410.
    [154]吕芳德,徐德聪,潘晓杰.果树光合作用研究进展[J].湖南林业科技,2003,30(3):34-38.
    [155]张启昌,杜凤国,夏富才,等.美国椴光合蒸腾的生理生态[J].北华大学学报(自然科学版),2000,5(1):436-438.
    [156]孙磊,章铁,李宏开,等.柿树光合速率日变化及其影响因子的研究[J].北方果树,2006,(2):4-6.
    [157]陈永忠,王瑞,王湘南,等.油茶无性系果实成熟期光合特性的研究[J].经济林研究,2010,28(2):1-6.
    [158]王瑞,陈永忠,王湘南,等.不同产量类型油茶无性系光合特性的研究:Ⅳ花期[J].中南林业科技大学学报,2010,30(4):85-91.
    [159]张林青,周青,肖程玲.园林植物耐阴性研究进展[J].安徽农业科学,2006,34(19):4851-4853.
    [160]储钟稀,许春辉,毛大璋,等.植物叶绿素一蛋白质复合物的研究Ⅰ.阳生植物向日葵、阴生植物□叶兰的叶绿素一蛋白质复合物[J].植物生理学报,1980,6(2):163-172.
    [161]高清华,叶正文,章镇,等.设施栽培中限根对油桃幼树叶片叶绿素含量、叶干重变化的影响[J].中国农学通报,2005,21:259-263.
    [162]王中华,付蓉,杨青松,等.应用多元回归模型预测红茄梨单叶面积、鲜重和干重的方法[J].中国园艺文摘,2010,11:13-15.
    [163]盛双,王国聪,颜权,等.大叶桉叶面积测定方法的比较研究[J].广西林业科学,2011,40(2):140-142.
    [162]袁方,李鑫,余君萍,等.分光光度法测定叶绿素含量及其比值问题的探讨[J].2009(1):63-66.
    [164]邓西民,韩振海,李绍华.果树生物学[M].北京:高等教育出版社,1999:35.
    [165]张丽君,冯殿齐,王爱喜.杏树叶片及土壤营养元素含量分析[J].中国农学通报,2010,(10):192,196.
    [166]奚如春,龚春,黄宝祥,等.赣25个油茶高产无性系的脂肪酸组成及遗传变异的初步研究[J].江西林业科技,2002,(4):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700