用户名: 密码: 验证码:
普通菜豆镰孢菌枯萎病抗病种质鉴定及抗病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通菜豆是人类主要食用豆类作物之一,营养价值高,栽培面积大。但在菜豆栽培生产中,尖镰孢菌枯萎病一直是菜豆生产中严重的病害,给菜豆生产带来较大损失。因此,筛选具有稳定抗性的菜豆种质资源,揭示普通菜豆镰孢菌枯萎病的抗病机理,发掘并利用优异的抗病基因,改良普通菜豆抗病性,对保障我国食物安全、提高菜豆生产的经济效益具有重要的理论和现实意义。本研究根据普通菜豆枯萎病原菌(Fusarium oxysporum f. sp. phaseoli)中与其致病力密切相关的一个转录因子基因(ftf1基因)设计了一对特异性引物,结合荧光定量PCR技术能够准确区分抗病性不同的菜豆种质,通过cDNA-AFLP技术揭示了普通菜豆与病原菌互作过程中的差异表达基因,克隆了2个寄主防御反应相关基因,钙调素基因PvCaM1和过氧化物酶基因PvPOX1,并通过外源激素诱导的方法探索菜豆抗病信号传导途径及其抗病机理,以期为普通菜豆抗镰孢菌枯萎病抗性遗传改良提供基因资源和理论依据。获得如下结果:
     1.从全国6个省的8个地点采集的病株上分离病原菌,通过形态学鉴定得到59株尖镰孢菌,并从致病性和分子生物学方面鉴定出致病菌37株。根据F. oxysporum f. sp. phaseoli中ftf1基因设计了一对特异性引物QFopA/QFopB,该引物组合只能在F. oxysporum f. sp. phaseoli中扩增到一个149bp的片段,因此可以用于准确鉴定菜豆枯萎病原菌,从而为定量地筛选抗性较好的菜豆种质资源奠定了基础。
     2.利用枯萎病原菌FOP-DM01菌株,比较了玉米粉接种体法、下胚轴双孔注射法及接种体蘸根法的接种效果,选用玉米粉接种体法从362份普通菜豆种质资源中鉴定出抗病种质16份,其中2份抗性较好,品种名称分别为260205和黑芸豆,统一编号分别为:F0005035和F0004851。利用F. oxysporum f. sp. phaseoli特异性引物QFopA/QFopB并结合荧光定量PCR技术,最低能够检测到1pg的病原菌DNA,通过对感病菜豆品种BRB-130,A0640-1和抗病菜豆品种260205,黑芸豆根和茎中病原菌的定殖量进行分析,结果表明,接种病原菌6d后,BRB-130和A0640-1根中的定殖量均显著高于病原菌在260205和黑芸豆中的定殖量。
     3.通过cDNA-AFLP技术揭示了感病材料BRB-130和抗病材料260205分别与FOP-DM01菌株互作中差异表达基因,共获得443个差异表达片段,其中172个已经测序,测序的片段其中包括许多植物抗病相关基因,如:生长素调节蛋白(GH3auxin-regulated protein)、钙调素蛋白(calmodulin)、过氧化物酶(peroxidase)等,并通过荧光定量PCR技术验证差异表达基因在互作过程中表达量的变化;扫描电镜(Scanning electron micrographs, SEM)和透射电镜(Transmissionelectron micrographs, TEM)观察结果显示,BRB-130根和茎的组织结构和细胞结构被病原菌严重破坏,而260205根和茎被病原菌浸染后组织结构基本正常;260205被病原菌侵染后根和茎中苯丙氨酸解氨酶(Phenylalanine ammonia lyase, PAL)和过氧化物酶(Peroxidase, POX)的活性要显著高于BRB-130,表明这两种植物防御相关酶在菜豆抗病反应中发挥重要的作用。此外对菜豆根和茎中H_2O_2和O_2~-的含量进行了测定,结果表明,260205被病原菌侵染后根和茎中H_2O_2和O_2~-的含量均高于BRB-130,说明活性氧(ROS)在菜豆抗镰饱菌枯萎病抗性反应中同样具有重要的作用。
     4.利用表达序列标签(EST)克隆了含有编码普通菜豆CaM基因,命名为PvCaM1(JN418801),同源分析结果显示,PvCaM1基因与百脉根、西瓜的CaM基因亲缘关系最近,分别达到77%和76%。荧光定量PCR分析表明,PvCaM1基因受FOP-DM01菌株诱导表达,而且叶中的表达量高于根和茎中的表达量。PvCaM1基因表达量也受外源植物激素脱落酸(ABA)、茉莉酸甲酯(MeJA)和乙烯利(ETH)诱导上调,在根、茎、叶中均有不同程度的表达,其中叶中表达量最高。
     5.利用EST克隆了含有编码普通菜豆POX基因,命名为PvPOX1(JQ627838),同源分析结果显示,PvPOX1与大豆POX基因的亲缘关系最近,达到90%,与苜蓿次之,达85%。荧光定量PCR分析表明,在根和茎中PvPOX1基因均受FOP-DM01菌株显著诱导表达,并且伴随着POX活性的显著增强及H_2O_2含量的升高,PvPOX1基因表达量的升高与POX活性及H_2O_2含量的变化具有明显的相关性。PvPOX1基因在根、茎、叶、花和荚中均有不同程度的表达,叶中最低,荚中最高。PvPOX1基因表达量也受水杨酸(SA)和ABA等植物激素及机械损伤、盐、干旱等非生物胁迫诱导表达。
     6.采用SA、MeJA、ETH、多效唑(Paclobutrazol)和去甲二氢愈创木酸(NDGA)等化学药品处理菜豆BRB-130,结果表明SA处理菜豆叶片使植株根中内源SA的含量升高,并显著提高植株对枯萎病原菌FOP-DM01菌株的抗病性。此外,SA能够显著地诱导菜豆SAR反应,从而降低了FOP-DM01菌株在菜豆根中增殖能力,体外实验结果表明,SA对FOP-DM01菌株并没有直接的抑菌活性;另外,SA诱导菜豆根组织中PAL和POX活性和H_2O_2和O_2~-的含量显著升高,从而诱导菜豆产生HR和SAR反应,增强了菜豆对FOP-DM01菌株的抗性。
Common bean is one of the main legumes for human consumption with high nutritional value andlarge-scale planting area. However, Fusarium wilt (FW) was a serious disease in the agricultrualproduction of common bean and usually brought greater losses to common bean production in thedisease happened year. Therefore, it was significant to ensure the food security and improve theeconomic value of common bean production by screening for stable resistance germplasm resources ofcommon bean, revealing resistance mechanism of the common beans to FW, discovering and takingadvantage of excellent resistance gene so as to improve the resistance of different common beanvarieties. In this study, a transcription factor gene (ftf1genes) from Fusarium oxysporum f. sp. phaseoliwhich is closely related to its virulence was used to design a pair of specific primers. The primers werecombined with real time quantitative PCR to differentiate the resistance level of different common beancultivars accurately. It revealed differentially expressed genes in interaction between common bean andpathogen by cDNA-AFLP analysis, then we cloned two defence-response genes named PvCaM1encoding calmodulin and PvPOX1encoding secretory peroxidase, separately. The exogenous planthormone was used to induce the host resistance and reveal the resistance signalling pathway andresistance mechanism of the common bean to FW so as to supply the gene resources and theoreticalbasis for resistance genetic improvement. The results as followed:
     1.59Fusarium oxysporum isolates collected from8locations in6provinces were identifiedusing pathogenicity test, morphological and molecular biological methods. The results indicated59F.oxysporum contained37pathogenic isolates. A transcription factor gene (ftf1genes) from Fusariumoxysporum f. sp. phaseoli which is closely related to its virulence was used to design a pair of specificprimers QFopA/QFopB, and149bp amplified product was obtained only from F. oxysporum f. sp.phaseoli. Therefore, the primers was used to identify F. oxysporum f. sp. phaseoli and screening for theresistant resource quantitatively.
     2.362accessions of common bean germplasm resources were screened for the resistant resourceinoculated with FOP-DM01isolate by the corn meal inoculum after comparation with the hypocotylsdouble holes injection and the root dipped inoculum, and we obtained16resistant cultivars, and2ofthem named with260205and Heiyundou showed stable resistance level, their accession numbers wereF0005035and F0004851, respectively. Using the specific primers QFopA/QFopB, the minimum of1pgpathogen DNA was detected by real time-PCR. The result indicated that FOP-DM01DNAquantifications in the roots and stems of susceptible BRB-130and A0640-1were significantly higherthan those in resistant260205and Heiyundou, which absolutely matched with the phenotypicidentification.
     3. The differentially expressed genes in interaction between common bean and pathogen wereanalyzed by cDNA-AFLP. Totally443differentially expressed fragments were obtained, and172ofthem were sequenced. The result indicated that a large number of plant resistance-related genes wasobtained, such as the GH3auxin-regulated protein, calmodulin, peroxidase and the expression level wasdeterminated by real time quantitative PCR; The results of scanning electron micrographs (SEM) and transmission electron micrographs (TEM) showed that the pathogens caused serious damage to theorganizational and celluar structure of roots and stems in BRB-130, however, the260205root and steminfected by pathogen were not obviously damaged; Phenylalanine ammonia lyase (PAL) and peroxidase(POX) activity was determinated, the result indicated that the activities of the two enzymes in the rootand stem of260205were significantly higher than BRB-130, which showed that these two plantdefense-related enzymes played an important role in the resistance of common bean to FW. In addition,H_2O_2and O_2~-content in the root and stem of260205and BRB-130were measured, it showed H_2O_2andO_2~-of260205were higher than BRB-130both in root and stem. Therefore, reactive oxygen species(ROS) were testified as an important signalling molecular in the resistant response of common bean.
     4. A full-length cDNA sequence coding for CaM in common bean was cloned based onexpressed sequence tags from common bean, designated PvCaM1(GenBank accession numberJN418801). Phylogenetic analysis based on the amino acids sequence of PvCaM1showed that theprotein encoded by this gene had the closest relationship with the CaM in Lotus japonicus andwatermelon, the homology were77%and76%, respectively. Real time-PCR analysis indicated that theexpression level of PvCaM1in the interactions between common bean and FOP-DM01isolateincreased significantly. The expression level of PvCaM1in leaves was higher than in roots.Transcriptional level of PvCaM1was up-regulated by exogenous abscisic acid(ABA), methyljasmonate(MeJA) and ethephon(ETH). PvCaM1expressed differentially in the leaves, stems and roots,and the expression level in leaves was higher than that in roots and stems.
     5. A full-length cDNA sequence coding for POX in common bean was cloned based onexpressed sequence tags from common bean, designated PvPOX1(GenBank accession numberJQ627838). Phylogenetic analysis based on the amino acids sequence of PvPOX1showed that theprotein encoded by this gene had the closest relationship with the POX in soybean and purple medic, thehomology were90%and85%, respectively. Real time-PCR analysis indicated that the enhancedexpression level of PvPOX1significantly correlated with the change of POX activity and H_2O_2content.PvPOX1expressed differentially in the roots, stems, leaves, flowers and pods, the expression level ofleaves was the lowest, and that of pods was the highest. Transcriptional level of PvPOX1wasup-regulated by exogenous salicylic acid(SA), ABA and other abiotic stress such as mechanicalwounding, salt and drought.
     6. SA, MeJA, ETH, paclobutrazol and nordihydroguaiaretic acid(NDGA) were used to treatBRB-130plants. The results indicated that plants treated by SA on leaves induced SA level in rootsincreased, and significantly enhanced the plant resistance to FOP-DM01isolate. In addition, SAinhibited growth of the pathogen in roots by inducing SAR in plants significantly, and SA had beentested to have no direct antifungal activity to FOP-DM01isolate in vitro; SA enhanced the activities ofPAL and POX, and increased H_2O_2and O_2~-content in common bean root significantly. These enhancedthe resistance to FOP-DM01isolate through induction of HR and SAR of common bean.
引文
1.杜永刚,李昶.菜豆枯萎病的发生与综合防治.吉林蔬菜,2008(4):89.
    2.冯国军,杨文月,王杰等.莱豆种质资源对枯萎病菌的抗性研究.北方园艺,2008(2):234-236.
    3.郭丽琼,林俊芳,杨丽卿等.应用cDNA-AFLP技术分离草菇冷诱导表达基因.园艺学报,2005:32(1):54-59.
    4.黄仲生,杨玉茹.菜豆枯萎病及防治研究.中国蔬菜,1981,2:33-36.
    5.霍建飞,宋水山,李星等. CaM及各亚型基因参与小麦抗叶锈病反应的研究.华北农学报,2010,25(004):175-179.
    6.雷蕾,杨琦凤.我国莱豆优异资源的田间综合评价.西南园艺,200028(4):23-24.
    7.李大志,陈霄,邓子牛等.应用cDNA-AFLP技术分离应答BABA诱导的番茄抗病相关基因.湖南农业大学学报(自然科学版),2007,33(1):32-36.
    8.李凌,宋文芹,毛英伟等.用cDNA-AFLP银染技术研究与花椰菜花色相关的基因.南开大学学报(自然科学版),2000,33(4):33-36.
    9.刘新颖,王晓杰,薛杰等.小麦钙调素新亚型TaCaM5的克隆及表达分析.作物学报,2010,36(6):953-960.
    10.邱金龙,金巧玲.活性氧与植物抗病反应.植物生理学通讯,1998;34(1):56-63.
    11.沈文飚,徐朗莱.水杨酸诱导植物抗病性的新进展.生物化学与生物物理进展,1999,26(3):237-240.
    12.孙涌栋,张兴国,侯瑞贤等.授粉后黄瓜果实膨大相关基因的鉴别植物生理与分子生物学学报,2005,31(4):403-408.
    13.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002,47(18):1412-1416.
    14.王金生.分子植物病理学.北京:中国农业出版社,1999:17-70.
    15.王素.菜豆枯萎病苗期接种方法和抗病性鉴定.中国蔬菜,1994(3):13-15.
    16.王述民,张亚芝,魏淑红.普通菜豆种质资源描述规范和数据标准.北京:中国农业出版社,2006:64.
    17.王艳辉,贾慧,司贺龙等.不同基因型玉米受HT-毒素胁迫后细胞内CaM的动态变化.河北农业大学学报,2007:30(005):4-7.
    18.魏景超.真菌鉴定手册.上海科学技术出版社,1979.
    19.吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达.作物学报,2001,27(3):339-342.
    20.肖月华,罗明,韦宇拓等.棉花纤维起始期基因表达的cDNA-AFLP分析.农业生物技术学报,2003,11(1):20-24.
    21.薛仁风,朱振东,黄燕等.应用荧光定量PCR技术分析普通菜豆品种中尖镰孢菜豆专化型定殖量.作物学报,2012,38(5):791-799.
    22.尤占武,徐丽呜,艾瑞英.采用下胚轴双孔注射法鉴定菜豆品种资源苗期抗枯萎病特性的结果.吉林蔬菜,2004(2):32-33.
    23.岳海林,邓秀新,彭抒昂.钙调素mRNA在梨子房和幼果中的表达.中国农业科学2008,41(1):176-181.
    24.周志钦.马铃薯从休眠到发芽过程差异表达基因的分析.西南农业大学学报,2001,23(3):213-215.
    25. Abawi G.S. and Pastor-Corrales M.A., Root rots of beans in Latin America and Africa:diagnosis, research methodologies and management strategies. CIAT Bulletin. Cali, Colombia:Centro Internacional de Agricultura Tropical,1990.
    26. Abd-Elsalam K.A., Asran-Amal A., Schnieder F., et al., Molecular detection of Fusariumoxysporum f. sp. vasinfectum in cotton roots by PCR and real-time PCR assay. Journal ofPlant Disease Protection2006,113(1):14-19.
    27. Able A.J., Guest D.I. and Sutherland M.W., Hydrogen peroxide yields during theincompatible interaction of tobacco suspension cells inoculated with Phytophthora nicotianae.Plant Physiology2000,124:899-910.
    28. Achuo E.A., Audenaert K., Meziane H., et al., The salicylic acid dependent defense pathwayis effective against different pathogens in tomato and tobacco. Plant Pathology2004,53:65-72.
    29. Adam A., Farkas T., Somlyai G., et al., Consequence of O2-generation during a bacteriallyinduced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiologicaland Molecular Plant Pathology1989,34:13-26.
    30. Agrios G.N., Plant Pathology.5th Edition.2005.Academic Press, San Diego, USA.
    31. Alves-Santos F.M., Benito E.P., Eslava A.P., et al., Genetic diversity of Fusarium oxysporumstrains from common bean fields in Spain. Applied Environment Microbiology1999,65:3335-3340.
    32. Alves-Santos F.M., Ramos B., García-Sánchez M.A., et al., A DNA-based procedure for inplanta detection of Fusarium oxysporum f. sp. phaseoli. Phytopathology2002,92(3):237-244.
    33. An C. and Mou Z. Salicylic acid and its function in plant immunity. Journal of IntegrativePlant Biology2011,53(6):412-428.
    34. Anita L.B. and Frederik C.B., Cloning of a specific ripening-related gene from the multiple ofripening-related genes identified from a single band excised from a cDNA-AFLP gel. PlantMolecular Biology Reporter2004,22:225-236.
    35. Armstrong G.M. and Armstrong J.K., Formae speciales and races of Fusarium oxysporumcausing wilt diseases. In P.E. Nelson et al (Ed.) Fusarium diseases, biology, and taxonomy1981, pp391-399, Pennsylvania State University, University Park, USA.
    36. Bachem C.W., Horvath B., Trindade L., et al., A potato tuber‐expressed mRNA withhomology to steroid dehydrogenases affects gibberellin levels and plant development. ThePlant Journal2001,25(6):595-604.
    37. Bachem C.W., Oomen R.J.F. and Visser R.G., Transcript imaging with cDNA-AFLP: astep-by-step protocol. Plant Molecular Biology Reporter1998,16:157-173.
    38. Bachem C.W., van der Hoeven R.S., de Bruijn S.M., et al., Visualization of differential geneexpression using a novel method of RNA fingerprinting based on AFLP: analysis of geneexpression during potato tuber development. The Plant Journal1996,9(5):745-753.
    39. Baker C.J., O’Neill N.R., Keppler L.D., et al., Early response during plant-bacteriainteractions in tobacco cell suspensions. Phytopathology1991,81:1504-1507.
    40. Baldwin D., Crane V. and Rice D. A comparison of gel-based, nylon filter and microarraytechniques to detect differential RNA expression in plants. Current Opinion in Plant Biology1999,2:96-103.
    41. Bateman D.F., An induced mechanism of tissue resistance to polygalacturonase inRhizoctonia infected hypocotyls of beans. Phytopathology1964,54(3):438-445.
    42. Bates J.A. and Taylor E.J.A., Scorpion ARMS primers for SNP real-time PCR detection andquantification of Pyrenophora teres. Molecular Plant Pathology2001,2:275-280.
    43. Bates J.A., Taylor E.J.A., Gans P.T., et al., Determination of relative proportions of Globoderaspecies in mixed populations of potato cyst nematodes using PCR product melting peakanalysis. Molecular Plant Pathology2002,3:153-161.
    44. Bates J.A., Taylor E.J.A., Kenyon D.M., et al., The application of real-time PCR to theidentification, detection and quantification of Pyrenophora species in barley seed. MolecularPlant Pathology2001,2:49-57.
    45. Bauer D., Warthoe P., Rohde M., et al., PCR methods and applications manual supplement1994, pp. S805-809, Cold Spring Harbor University Press, Cold Spring Harbor, NY.
    46. Bent A.F., Plant disease resistance genes: Function meets structure. Plant Cell1996,8:1757-1771.
    47. Berrocal-Lobo M. and Molina A., Arabidopsis defense response against Fusarium oxysporum.Trends in Plant Science2008,13:145-150.
    48. Berrocal-Lobo M., Molina A. and Solano R., Constitutive expression ofETHYLENE-RESPONSE-FACTOR1in Arabidopsis confers resistance to severalnecrotrophic fungi. The Plant Journal2002,29:23-32.
    49. Blume B., Nurnberger T., Nass N., et al., Receptor-mediated increase in cytoplasmic freecalcium required for activation of pathogen defense in parsley. Plant Cell2000,12:1425-1440.
    50. Bindschedler L.V., Dewdney J., Blee K.A., et al., Peroxidase-dependent apoplastic oxidativeburst in Arabidopsis required for pathogen resistance. Plant Journal2006,47:851-863.
    51. B hm J., Hahn A., Schubert R., et al., Real-time quantitative PCR: DNA determination inisolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthorainfestans and Phytophthora citricola in their respective host plants. Journal of Phytopathology1999,147:409-416.
    52. Bolwell G.P., Bindschedler L.V., Blee K.A., et al., The apoplastic oxidative burst in responseto biotic stress in plants: a three component system. Journal of Experimental Botany2002,53:1367-1376.
    53. Boonham N., Smith P., Walsh K., et al., The detection of tomato spotted wilt virus (TSWV) inindividual thrips using real time fluorescent RT-PCR (TaqMan). Journal of VirologicalMethods2002,101:37-48.
    54. Brick M.A., Cross H., Panella L.W., et al., Inheritance of resistance to Fusarium wilt in twocommon bean races. Crop Science2000,40(4):954-958.
    55. Brick M.A.B, Schwartz P.F., Ogg H.F., et al., Reaction to three races of Fusarium wilt in thecore collection. Crop Science2006,46(3):1245-1252.
    56. Broughton W.J., Hernandez G., Blair M., et al., Beans (Phaseolus spp.)—model food legumes.Plant Soil2003,252(1):55-128.
    57. Brugmans B., Del Carmen A.F., Bachem C.W., et al., A novel method for the construction ofgenome wide transcriptome maps. The Plant Journal2002,31:211-222.
    58. Bruns T.D., White T.J. and Taylor J.W., Fungal molecular systematics. Annual Review ofEcology and Systematics1991,22:525-564.
    59. Bücking H., F rster H., Stenzel I., et al., Applied jasmonates accumulate extracellularly intomato, but intracellularly in barley. FEBS letters2004,562(1):45-50.
    60. Buruchara, R.A. and Camacho L., Common Bean Reaction to Fusarium oxysporum f. sp.phaseoli, the cause of severe vascular wilt in central Africa. Journal of Phytopathology2000,148:39-45.
    61. Bustin S.A., Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems. Journal of Molecular Endocrinology2002,29:23-39.
    62. Cao J., Zeng K. and Jiang W., Enhancement of postharvest disease resistance in Ya Li pear(Pyrus bretschneideri) fruit by salicylic acid sprays on the trees during fruit growth. Europeanof Journal Plant Pathology2006,114:363-370.
    63. Castro M.S. and Fontes W., Plant defense and antimicrobial peptides. Protein and PeptideLetters2005,12:11-16.
    64. Chamnongpol S., Willekens H., Moeder W.,et al., Defense activation and enhanced pathogentolerance induced by H2O2in transgenic tobacco. Proceedings of the National Academy ofSciences USA1998,95:5818-5823.
    65. Charles and Arden, Fusarium oxysporum f. sp. phaseoli Kendrick and snyder, VegetableDiseases and Their control1960:129-131.
    66. Chaudhary S., Anderson T., Park S., et al., Comparison of screening methods for resistance toFusarium root rot in common beans (Phaseolus vulgaris L.). Journal of Phytopathology2006,154(5):303-308.
    67. Chen Z., Zheng Z., Huang J., et al., Biosynthesis of salicylic acid in plants. Plant Signalingand Behavior.2009,4:493-496.
    68. Cheong Y.H., Chang H.S., Gupta R., et al., Transcriptional profiling reveals novel interactionsbetween wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. PlantPhysiology2002,129:661-677.
    69. Chong T.M., Abdullah M.A., Fadzellah N.M., et al., Jasmonic acid elicitation ofanthraquinones with some associated enzymic and non-enzymic antioxidant responses inMornida elliptica. Enzyme and Microb Technology2005,36:469-477.
    70. Ciancio A., Leonetti P. and Finetti Sialer M.M. Detection of nematode antagonistic bacteria byfluorogenic molecular probes. EPPO Bulletin2000,30:563-570.
    71. Cosio C., Vuillemin L., De Meyer M., et al., An anionic class III peroxidase from zucchinimay regulate hypocotyl elongation through auxin oxidase activity. Planta2009,229:823-836.
    72. Creelman R.A. and Mullet J.E. Biosynthesis and action of jasmonates in plants. AnnualReview of Plant Physiology and Plant Molecular Biology1997,48:355-81.
    73. Cross H., Brick M.A., Schwartz H.F., et al., Inheritance of resistance to Fusarium wilt in twocommon bean races. Crop Science2000,40:954-958.
    74. Crozier A., Bishop Y.K.G. and Yokota T., Biosynthesis of hormones and elicitor molecules2000, pp:850-928. In: Gruissem B.B.W. and Jones R.(Eds), Biochemistry and MolecularBiology of Plants, American Society of Plant Physiologists (Pubs).Rockville, MD, USA.
    75. Cullen D.W., Lees A.K., Toth I.K., et al., Conventional PCR and real-time quantitative PCRdetection of Helminthosporium solani in soil and potato tubers. European Journal of PlantPathology2001,107:387-398.
    76. Cullen D.W., Lees A.K., Toth I.K. et al., Detection of Colletotrichum coccodes from soil andpotato tubers by conventional and quantitative real-time PCR. Plant Pathology2002,51:281-292.
    77. De Gara L., de Pinto M. and Tommasi F., The antioxidant systems via-á-via reactive oxygenspecies during plant-pathogen interaction. Plant Physiology and Biochemistry2003,41:863-870.
    78. Delaney T.P., Uknes S., Vernooij B., et al., A central role of salicylic acid in plant diseaseresistance. Science1994,266:1247-1250.
    79. Dellagi A., Birch P.R., Heilbronn J., et al., cDNA-AFLP analysis of differential geneexpression in the prokaryotic plant pathogen Erwinia carotovora. Microbiology2000,146(1):165-171.
    80. Dempsey D.A., Shah J. and Klessig D.F., Salicylic acid and disease resistance in plants,Critical Reviews in Plant Sciences1999,18:547-575.
    81. Diachenko L.B., Ledesma J., Chenchik A.A., et al., Combining the technique of RNAfingerprinting and differential display to obtain differentially expressed mRNA. Biochemicaland Biophysical Research Communications1996,219:824-828.
    82. Diaz-Minguez J.M., Alves-Santos F.M., Benito E.P., et al., Fusarium wilt of common bean inthe Castilla y Leon region of Spain. Plant Disease1996,80:600.
    83. Didenko V.V., DNA probes using fluorescence resonance energy transfer (FRET): designs andapplications. BioTechniques2001,31:1106-1121.
    84. Ding X.H., Cao Y.L., Huang L.L., et al., Activation of the indole-3-acetic acid-amidosynthetase GH3-8suppresses expansin expression and promotes salicylate-andjasmonate-independent basal immunity in rice. Plant Cell2008,20:228-240.
    85. Di Pietro A. and Anaya N., Occurrence of a retrotransposon-like sequence among differentformae speciales and races of Fusarium oxysporum. Mycological Research1994,98(9):993-996.
    86. Dixon R.A. and Harrison M.J., Early events in the activation of plant defense responses.Annual Review of Phytopathology1994,32:479-501.
    87. Doke N., Involvement of superoxide anion generation in the hypersensitive response of potatotuber tissues to infection with an incompatible race of Phytophthora infestans and to thehyphal cell wall components.Physiological and Plant Pathology1983,23:359-367.
    88. Donson J., Fang Y., Espiritu-Santo S.A., et al., Comprehensive gene expression analysis bytranscript profiling. Plant Molecular Biology2002,48:75-97.
    89. Draper J. Salicylate, superoxide synthesis and cell suicide in plant defense. Trends in PlantScience1997,2:162-165.
    90. Du L., Ali G.S., Simons K.A., et al., Ca2+/calmodulin regulates salicylic-acid-mediated plantimmunity. Nature2009, DOI:10.1038/nature07612.
    91. Durrant W.E. and Dong X. Systemic acquired resistance. Annual of Review Phytopathology2004,42:185-209.
    92. Dyer P.S., Furneaux P.A., Douhan G., et al., A multiplex PCR test for determination of matingtype applied to the plant pathogens Tapesia yallundae and Tapesia acuformis. Fungal Geneticsand Biology2001,33:173-180.
    93. Edgar C.I., McGrath K.C., Dombrecht B., et al., Salicylic acid mediates resistance to thevascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana,Australasian Plant Pathology2006,35:581-591.
    94. El-Basyouni S.Z., Chen D., Ibrahim R.K., et al., The biosynthesis of hydroxybenzoic acids inhigher plants. Phytochemistry1964,3,485-492.
    95. Elias, K.S., Zamir D., Lichtman-Pleban T., et al., Population structure of Fusarium oxysporumf. sp. lycopersici: Restriction fragment length polymorphisms provide genetic evidence thatvegetative compatibility group is an indicator of evolutionary origin. Molecular Plant MicrobeInteraction1993,6:565-572.
    96. Elstner E.F. and Heupel A., Inhibition of nitrite formation from hydroxylammoniumchloride:A simple assay for superoxide dismutase. Analytical Biochemistry1976,70:616-620.
    97. Eun A.J.C., Seoh M.L. and Wong S.M. Simultaneous quantitation of two orchid viruses by theTaqMan real-time RT-PCR. Journal of Virological Methods2000,87:151-160.
    98. Fall A.L., Byrne P.F., Jung G., et al., Detection and mapping of a major locus for Fusariumwilt resistance in common bean. Crop Science2001,41:1494-1498.
    99. Feys B.J. and Parker J.E., Interplay of signaling pathways in plant disease resistance. Trendsin Genetics2000,16:449-455.
    100.Filion M., St-Arnaud M. and Jabaji-Hare S.H. Quantification of Fusarium solani f. sp.phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-timepolymerase chain reaction and direct isolations on selective media. Phytopathology2003a,93:229-235.
    101.Finetti Sialer M., Schena L. and Gallitelli D., Real-Time diagnosis in plant pathology withself-probing amplicons (Scorpions)2000a, pp.94-96. Proceeding5th Congress of theEuropean Foundation for Plant Pathology Taormina-Giardini Naxos, Catania, Italy.
    102.Finetti Sialer M., Ciancio A. and Gallitelli D. Use of fluorogenic scorpions for fast andsensitive detection of plant viruses. EPPO Bulletin2000b,30:437-440.
    103.Foster S.J., Ashby A.M. and Fitt B.D.L. Improved PCR based assays for pre-symptomaticdiagnosis of light leaf spot and determination of mating type of Pyrenopeziza brassicae onwinter oilseed rape. European Journal of Plant Pathology2002,108:379-383.
    104.Fraaije B.A., Lovell D.J., Coelho J.M., et al., PCR-based assays to assess wheat varietalresistance to blotch (Septoria tritici and Stagonospora nodorum) and rust (Puccinia striiformisand Puccinia recondita) diseases. European Journal of Plant Pathology2001,107:905-917.
    105.Gaffney T., Friedrich L., Vernooij B., et al., Requirement of salicylic acid for the induction ofsystemic acquired resistance. Science1993,261:754-756.
    106.Gherbawy Y., Molecular identification of fungi2010, pp.93-106. In. Brunner K. and MachR.L.(Eds) Quantitative Detection of Fungi by Molecular Methods: A Case Study on Fusarium.In. Saikia R. and Kadoo N.(Eds) Molecular Detection and Identification of Fusariumoxysporum. Springer-Verlag, Berlin Heidelberg, Germany.
    107.Glass N.L. and Donalson G.C., Development of primer sets designed for use with the PCR toamplify conserved genes from Filamentous ascomycetes. Applied and EnvironmentalMicrobiology1995,31:1323-1330.
    108.Glazebrook J., Genes controlling expression of defense responses in Arabidopsis-2001status.Current Opinion in Plant Biology2001,4:301-308.
    109.Gordon T. and Martyn R., The evolutionary biology of Fusarium oxysporum. Annual Reviewof Phytopathology1997,35(1):111-128.
    110.Grant M., Brown I., Adams S., et al., The RPMI plant disease resistance gene facilitates arapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst andhypersensitive cell death. The Plant Journal2000,23:441-450.
    111.Grant M. and Mansfield J., Early events in host-pathogen interactions. Current Opinion inPlant Biology1999,2:312-319.
    112.Gupta S., Chakraborti D., Rangi R.K., et al., A molecular insight into the early events ofchickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race1) interaction throughcDNA-AFLP analysis. Phytopathology2009,99:1245-1257.
    113.Gupta S., Chakraborti D., Sengupta A., et al., Primary Metabolism of Chickpea Is the InitialTarget of Wound Inducing Early Sensed Fusarium oxysporum f. sp. ciceri Race I. PLoS ONE2010,5(2): e9030. doi:10.1371/journal.pone.0009030
    114.Habu Y., Fukada-Tanaka S., Hisatomi Y., et al., Amplified restriction fragment lengthpolymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a4-bp sequence. Biochemical and Biophysical Research Communications1997,234:516-521.
    115.Hammerschmidt R., Nuckles E.M. and Ku F., Association of enhanced peroxidase activitywith induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiologicaland Plant Pathology1982,20:73-82.
    116.Hammond-Kosack K.E. and Jones J.D.G., Responses to plant pathogens2000, pp:1102-1155.In: Gruissem B.B.W. and Jones R.(Eds), Biochemistry and Molecular Biology of Plants.American Society of Plant Physiologists (Pubs). Rockville, MD, USA.
    117.Harms K., Ramirez I., Peńa-Cortés H. Inhibition of wound induced accumulation of alleneoxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiology1998,118:1057-1065.
    118.Harter L.L.,AFusarium disease of beans.(Abstr.) Phytopathology1929,19:82.
    119.Haware M.P., and Nene Y.L.1982. Races of Fusarium oxysporum. Plant Disease66:809-810.
    120.He Y., Fukushige H., Hildebrand D.F., et al., Evidence supporting a role for of jasmonic acidin Arabidopsis leaf senescence. Plant Physiology2002,128:876-84.
    121.He C.Y., Hsiang T. and Wolyn D.J., Induction of systemic disease resistance and pathogendefense responses in Asparagus officinalis by nonpathogenic strains of Fusarium oxysporum.Plant Pathology2002,51:225-230.
    122.He C.Y. and Wolyn D.J., Potential role for salicylic acid in induced resistance of asparagusroots to Fusarium oxysporum f. sp. asparagi. Plant Pathology2005,54:227-232.
    123.Heath M., Hypersensitive response related death. Plant Molecular Biology2000,44:321-334.
    124.Henson J.M. and French R., The polymerase chain reaction and plant disease diagnosis.Annual Review of Phytopathology1993,31:81-109.
    125.Heo W.D., Lee S.H., Kim M.C., et al., Involvement of specific calmodulin isoforms insalicylic acid-independent activation of plant disease resistance responses. Proceedings ofNational Academy of Sciences USA1999,96(2):766-771.
    126.Herman R., Zvirin Z., Kovalski I., et al., Characterization of Fusarium race1,2resistance inmelon and mapping of a major QTL for this trait near a fruit netting locus. In: Pitrat M.,(Ed)The Ⅸth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. Avignon(France):INRA. Centre de Recherche d'Avignon. Unité Génétique et Amélioration des Fruits etLégumes, Montfavet2008. pp149-156.
    127.Hermansson A. and Lindgren P.E. Quantification of ammonia-oxidizing bacteria in arable soilby real-time PCR. Applied and Environmental Microbiology2001,67:972-976.
    128.Hietala A.M., Eikenes M., Kvaalen H., et al., Multiplex real-time PCR for monitoringHeterobasidion annosum colonization in norway spruce clones that differ in disease resistance.Applied and Environmental Microbiology2003,69:4413-4420.
    129.Higuchi R., Dollinger G., Walsh P.S., et al., Simultaneous amplification and detection ofspecific DNA sequences. Biotechnology1992,10:413-417.
    130.Hirada S., Sasaki K., Ito H., et al., A large family of class III plant peroxidases. Plant CellPhysiology2001,42:462-468.
    131.Houot V., Etienne P., Petitot A.S., et al., Hydrogen peroxide induces programmed cell deathfeatures in cultured tobacco BY-2cells, in a dose-dependent manner. Journal of ExperimentalBotany2001,52:1721-1730.
    132.Howe G.A. and Browse J., New weapons and a rapid response against insect attack. PlantPhysiology2008,146:832-838.
    133.Howlett B.J., Brownlee A.G., Guest D.I., et al., The5S ribosomal RNA gene is linked to thelarge and small subunit ribosomal RNA genes in the oomycetes, Phytophthora vignae, P.cinnamomi, P. megasperma f. sp. glycinea and Saprolegnia ferax. Current Genetics1992,22:455-461.
    134.Inami K., Yoshioka C., Hirano Y., et al., Real-time PCR for differential determination of thetomato wilt fungus, Fusarium oxysporum f. sp. lycopersici, and its races. Journal of GeneralPlant Pathology2010,76(2):116-121.
    135.Ippolito A., De Cicco V. and Salerno M., Aetiological and epidemiological aspects ofPhytophthora citrus root rot in Apulia and Basilicata. Phytopathologia Mediterranea1991,30:47-51.
    136.Ippolito A., Schena L., Nigro F., et al., PCR based detection of Phytophthora spp. and P.nicotianae from roots and soil of citrus plants. Proceeding5th Congress of the EuropeanFoundation for Plant Pathology2000, pp.158-160, Taormina-Giardini Naxos, Catania, Italy
    137.Ippolito A., Schena L. and Nigro F., Detection of Phytophthora nicotianae and P. citrophthorain citrus roots and soils by nested PCR. European Journal of Plant Pathology2002,108:855-868.
    138.Ippolito A., Schena L., Nigro F., Soleti Ligorio V., et al., Real-time detection of Phytophthoranicotianae and P. citrophthora in citrus roots and soil. European Journal of Plant Pathology2004,110:833-843.
    139.Ishiguro T., Saitoh J., Yawata H., et al., Homogeneous qualitative assay of hepatitis CvirusRNA by polymerase chain reaction in the presence of a fluorescent intercalater.Analytical Biochemistry1995,229:207-213.
    140.Ivanova N.B. and Belyavsky A.V. Identification of differentially expressed genes byrestriction endonuclease-based gene expression fingerprinting. Nuclease Acids Research1995,23:2954-2958.
    141.Jabs T., Dietrich R.A. and Dangl J.L. Initiation of runaway cell death in an Arabidopsismutant by extracellular superoxide. Science1996,273:1853-1856.
    142.Jaiti F., Verdeil J.L. and Hadrami I.E., Effect of jasmonic acid on the induction ofpolyphenoloxidase and peroxidase activities in relation to date palm resistance againstFusarium oxysporum f. sp. albedinis. Physiological and Molecular Plant Pathology2009,74:84-90.
    143.Jiménez-Gasco M.M. and Jiménez-Díaz R.M., Development of a specific polymerase chainreaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and itspathogenic races0,1A,5, and6. Phytopathology2003,93:200-209.
    144.Jiménez-Fernández D., Montes-Borrego M., Jiménez-Díaz R.M., et al., In planta and soilquantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistancein chickpea with a newly developed quantitative polymerase chain reaction assay.Phytopathology2011,101(2):250-262.
    145.Johnes J. and Rower H., A comparison the efficiency of differential display and cDNA-AFLPas a tools for the isolation of differentially expressed parasite genes. Fundamental and AppliedNemadity1998,21:81-88.
    146.Kachroo P., Kachroo A., Lapchyk L., et al., Restoration of defective cross talk in ssi2mutants:role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling. MolecularPlant Microbe Interactions2003,16:1022-1029.
    147.Kato K. RNA fingerprinting by molecular indexing. Nuclease Acids Research1996,24:394-395.
    148.Katz V., Thulke O.U. and Conrath U., A benzothiadiazole primes parsley cells for augmentedelicitation of defense responses. Plant Physiology1998,117:1333-1339.
    149.Kauss H. and Jeblick W., Pretreatment of parsley suspension cultures with salicylic acidenhances spontaneous and elicited production of H2O2. Plant Physiology1995,108:1171-1178.
    150.Kawano T., Roles of the reactive oxygen species-generating peroxidase reactions in plantdefense and growth induction. Plant Cell Reports2003,21:829-837.
    151.Kawano T. and Muto S. Mechanism of peroxidase actions for salicylic acid-inducedgeneration of active oxygen species and an increase in cytosolic calcium in tobacco cellsuspension culture. Journal of Experimental Botany2000,51:685-693.
    152.Kazan K. and Manners J.M., Jasmonate signaling: Toward an integrated view. PlantPhysiology2008,146:1459-1468.
    153.Kazan K., Murray F.R., Goulter K.C., et al., Induction of cell death in transgenic plantsexpressing a fungal glucose oxidase. Molecular Plant Microbe Interactions1998,11:555-562.
    154.Kendrick J., Seed transmission of Fusarium yellows of beans. Phytopathology1934,24:1139.
    155.Keppler L.D. and Baker C.J., O-2initiated lipid peroxidation in a bacteria-inducedhypersensitive reaction in tobacco cell suspension. Phytopathology1989,79:555-562.
    156.Keppler L.D., Baker C.J. and Atkinson M.M., Active oxygen production during abacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology1989,79:974-979.
    157.Kidd B.N., Kadoo N.Y., Dombrecht B., et al., Auxin signaling and transport promotesusceptibility to the root infecting fungal pathogen Fusarium oxysporum in Arabidopsis.Molecular Plant Microbe Interactions,2011,24(6):733-748.
    158.Kim M.C., Chung W.S., Yun D.J., et al., Calcium and calmodulin-mediated regulation ofgene expression in plants. Molecular Plant2009,2(1):13-21.
    159.Klambt H.D., Conversion in plants of benzoic acid to salicylic acid and its β-D-glucoside.Nature1962,196:491.
    160.Klarzynski O., Plesse B., Joubert J.M., et al., Linear b-1,3-glucans are elicitors of defenseresponses in tobacco. Plant Physiology2000,124:1027-1037.
    161.Knight H. and Knight M.R., Abiotic stress signaling pathways: specificity and cross-talk.Trends in Plant Science2001,6:262-267.
    162.Knoester M., van Loon L.C., van den Heuvel J., et al., Ethylene-insensitive tobacco lacksnonhost resistance against soil-borne fungi. Proceedings of National Academy of SciencesUSA1998,95:1933-1937.
    163.Kojima T., Habu Y., Iida S., et al., Direct isolation of differentially expressed genes from aspecific chromosome region of common wheat: application of the amplified fragment lengthpolymorphism-based mRNA fingerprinting (AMF) method in combination with a deletionline of wheat. Molecular and General Genetics2000,263:635-641.
    164.Korimbocus J., Coates D., Barker I., et al., Improved detection of Sugarcane yellow leaf virususing a real-time fluorescent (TaqMan) RT-PCR assay. Journal of Virological Methods2002,103:109-120.
    165.Kunkel B.N. and Brooks D.M.,Cross talk between signaling pathways in pathogen defense.Current Opinion in Plant Biology2002,5:325-331.
    166.Lacourt I. and Duncan J.M. Specific detection of Phytophthora nicotianae using thepolymerase chain reaction and primers based on the DNA sequence of its elictin gene ParA1.European Journal of Plant Pathology1997,103:73-83.
    167.Lamb C. and Dixon R. The oxidative burst in plant disease resistance. Annual Review ofPlant Physiology and Plant Molecular Biology1997,48:251-275.
    168.Landeweert R., Veenman C., Kuyper T.W., et al., Quantification of ectomycorrhizal myceliumin soil by real-time PCR compared to conventional quantification techniques. FEMSMicrobiology Ecology2003,45:283-292.
    169.Latunde-Dada A.O.and Lucas J.A., The plant defense activator acibenzolar-Smethyl primescowpea (Vigna unguiculata (L.) Walp.) seedlings for rapid induction of resistance.Physiological and Molecular Plant Pathology2001,58:199-208.
    170.Lecourieux D., Mazars C., Pauly N., et al., Analysis and effects of cytosolic free calciumincreases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell2002,14:2627-2641.
    171.Lee Y.M., Choi Y.K. and Min B.R., PCR-RFLP and sequence analysis of the rDNA ITSregion in the Fusarium spp. The Journal of Microbiology2000,38(2):66-73.
    172.Lee S.H., Kim J.C., Lee M.S., et al., Identification of a novel divergent calmodulin isoformfrom soybean which has differential ability to activate calmodulin-dependent enzymes.Journal of Biological Chemistry1995,270:21806-21812.
    173.Lee H.I., Léon J. and Raskin I. Biosynthesis and metabolism of salicylic acid. Proceedings of.National Academy of Sciences. USA1995,92:4076-4079.
    174.Lees A.K., Cullen D.W., Sullivan L., et al., Development of conventional and quantitativereal-time PCR assays for the detection and identification of Rhizoctonia solani AG-3in potatoand soil. Plant Pathology2002,51:293-302.
    175.Leon J., Shulaev V., Yalpani N., et al., Benzoic acid2-hydroxylase, a soluble oxygenase fromtobacco, catalyzes salicylic acid biosynthesis. Proceedings of National Academy of SciencesUSA1995,92:10413-10417.
    176.Leslie J.F. and Summerell B.A.(Ed.), The Fusarium laboratory manual2006, p.212-218.Blackwell Publishing, USA.
    177.Levine A., Tennaken R., Dixon R., et al., H2O2from the oxidative burst orchestrates the planthypersensitive disease resistance response. Cell1994,79:583-593.
    178.Liang P. and Pardee A.B., Differential display of eukaryotic messenger RNA by means of thepolymerase chain reaction. Science1992,257:967-971.
    179.Lie Y.S. and Petropoulos C.J., Advances in quantitative PCR technology:5’ nuclease assay.Current Opinion in Biotechnology1998,9:43-49.
    180.Lievens B., Rep M. and Thomma B.P.H.J., Recent developments in the moleculardiscrimination of formae speciales of Fusarium oxysporum. Pest Management Science2008,64:781-788.
    181.Lievens B. and Thomma B.P.H.J., Recent developments in pathogen detection arrays:implications for fungal plant pathogens and use in practice. Phytopathology2005,95(12):1374-1380.
    182.Liew E.C.Y., Maclean D.J. and Irwin J.A.G., PCR based detection of Phytophthoramedicaginis using the intergenic spacer region of the ribosomal DNA. Mycological Research1998,102:73-80.
    183.Liu G.S., Sheng X.Y., Greenshields D.L., et al., Profiling of wheat Class III peroxidase genesderived from powdery mildew-attacked epidermis reveals distinct sequence-associatedexpression patterns. Molecular Plant Microbe Interactions2005,18(7):730-741.
    184.Livak K.J., Flood S.J.A., Marmaro J., et al., Oligonucleotides with fluorescent dyes atopposite ends provide a quenched probe system useful for detecting PCR product and nucleicacid hybridisation. PCR Methods and Applications1995,4:357-362.
    185.Loake G. and Grant M., Salicylic acid in plant defence-the players and protagonists. CurrentOpinion in Plant Biology2007,10:466-472.
    186.Lorenzo O. and Solano R., Molecular players regulating the jasmonate signalling network.Current Opinion in Plant Biology2005,8:532-540.
    187.Lutz A. and Menge J.A., Phytophthora root rot. Citrograph1986,72:33-39.
    188.Mayer Z., Bagnara A., F rber P., et al., Quantification of the copy number of nor-1, a gene ofthe aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu ofAspergillus flavus in foods. International Journal of Food Microbiology2003,82:143-151.
    189.Mackay I.M., Arden K.E. and Nitsche A., Real-time PCR in virology. Nucleic AcidsResearch2002,30:1292-1305.
    190.Magnano di San Lio G., Perrotta G, Cacciola S.O. and Tuttobene R. Factors affecting soilpopulations of Phytophthora in citrus orchards. In: Proceedings of Sixth International CitrusCongress1988,2:767-774.
    191.Makandar R., Essig J.S., Schapaugh M.A., et al., Genetically engineered resistance toFusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant MicrobeInteractions2006,19:123-129.
    192.Malamy J., Carr J.P., Klessig D.F., et al., Salicylic acid: A likely endogenous signal in theresistance response of tobacco to viral infection. Science1990,250:1002-1004.
    193.Malamy J. and Klessig D.F., Salicylic acid and plant disease resistance. Plant Journal.1992,2:643-654.
    194.Mandal S., Mallick N. and Mitra A., Salicylic acid-induced resistance to Fusarium oxysporumf. sp. lycopersici in tomato. Plant Physiology and Biochemistry2009,47:642-649.
    195.Mandal S. and Mitra A., Reinforcement of cell wall in roots of Lycopersicon esculentumthrough induction of phenolic compounds and lignin by elicitors. Physiological and MolecularPlant Pathology2007,71:201-209.
    196.Mao C.Z., Yi K.K., Yang L., et al., Identification of aluminium-regulated genes bycDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cellwall components. Journal of Experimental Botany2004,55(394):137-143.
    197.Martinez C., Baccou J.C., Bresson E., et al., Salicylic acid mediated by the oxidative burst is akey molecule in local and systemic responses of cotton challenged by an avirulent race ofXanthomonas campestris pv. malvacearum. Plant Physiology2000,122:757-766.
    198.Mauch-Mani B. and Slusarenko A.J., Production of salicylic acid precursors is a majorfunction of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronosporaparasitica. Plant Cell1996,8:203-212.
    199.Mazel A. and Levine A., Induction of cell death in Arabidopsis by superoxide in combinationwith salicylic acid or with protein synthesis inhibitors. Free Radical Biology and Medicine2001,30:98-106.
    200.McClelland M., Mathieu-Daude F. and Welsh J., et al., RNA fingerprinting and differentialdisplay using arbitrarily primed PCR.Trends in Genetics1995,11:242-246.
    201.McKay G.J., Brown A.E., Bjourson A.J., et al., Molecular characterisation of Alternarialinicola and its detection in linseed. European Journal of Plant Pathology1999,105:157-166.
    202.Mehdy M.C., Active oxygen species in plant defense against pathogens. Plant Physiology1994,105:467-472.
    203.Métraux J.P., Systemic acquired resistance and salicylic acid. European Journal of PlantPathology2001,107:13–18.
    204.Métraux J.P., Nawrath C., Genoud T., et al., Systemic acquired resistance. Euphytica2002,124:237–243.
    205.Métraux J.P., Signer H., Ryals J.A., et al., Increase in salicylic acid at the onset of systemicacquired resistance in cucumber. Science1990,250:1004-1006.
    206.Miklas P.N., Kelly J.D., Beebe S.E., et al., Common bean breeding for resistance againstbiotic and abiotic stresses: From classical to MAS breeding. Euphytica2006,147(1):105-131.
    207.Money T., Reader S., Qu L.J., et al., AFLP-based mRNA fingerprinting. Nucleic AcidsResearch1996,24:2616-2617.
    208.Morrison T.M., Weis J.J. and Wittwer C.T., Quantification of low-copy transcripts bycontinuous SYBR Green I monitoring during amplification. BioTechniques1998,24:954-962.
    209.Morton A., Tabrett A.M., Carder J.H. et al., Sub-repeat sequences in the ribosomal RNAintergenic regions of Verticillium albo-atrum and V. dahliae. Mycological Research1995,99:257-266.
    210.Nawrath C., Heck S., Parinthawong N., et al., EDS5, an essential component of salicylicacid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATEtransporter family. Plant Cell2002,14:275-286.
    211.Nawrath C. and Métraux J.P., Salicylic acid induction-deficient mutants of Arabidopsisexpress PR-2and PR-5and accumulate high levels of camalexin after pathogen inoculation.Plant Cell1999,11:1393-1404.
    212.Nigro F., Schena L. and Gallone P., Diagnosi in tempo reale della verticilliosi dell’olivomediante Scorpion-PCR. Proceeding ‘Convegno Internazionale di Olivicoltura’2002, pp.454-461, Spoleto, Italy.
    213.Nimalkar S.B., Harsulkar A.M., Giri A.P., et al., Differentially expressed gene transcripts inroots of resistant and susceptible chickpea plant (Cicer arietinum L.) upon Fusariumoxysporum infection. Physiological and Molecular Plant Pathology2006,68:176-188.
    214.Norman-Setterblad C., Vidal S. and Palva E.T., Interacting signal pathways control defensegene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwiniacarotovora. Molecular Plant Microbe Interaction2000,13:430-438.
    215.Nürnberger T., Brunner F., Kemmerling B., et al., Innate immunity in plants and animals:striking similarities and obvious differences. Immunological Reviews2004,198:249-266.
    216.Nürnberger T. and Lipka V., Non-host resistance in plants: new insights into an oldphenomenon. Molecular Plant Pathology2005,6:335-345.
    217.Nürnberger T. and Scheel D., Signal transmission in the plant immune response. Trends inPlant Science2001,6:372-379.
    218.Oomen J.F.J, Bergervoet M.J.E.M, Bechem C.W.B, et al., Exploring the use of cDNA-AFLPwith leaf protoplasts as a tool to study primary cell wall biosynthesis in potato. PlantPhysiology and Biochemistry2003,41(11/12):965-971.
    219.Oostendorp M., Kunz W. and Dietrich B., et al., Induced disease resistance in plants bychemicals. European Journal of Plant Pathology2001,107:19-28.
    220.Paavanen-Huhtala S., Avikainen H. and Yli-Mattila T., Development of strain-specific primersfor a strain of Gliocladium catenulatum used in biological control. European Journal of PlantPathology2000,106:187-198.
    221.Pasquali M., Acquadro A., Balmas V., et al., Development of PCR primers for a newFusarium oxysporum pathogenic on Paris daisy (Argyranthemum frutescens L.). EuropeanJournal of Plant Pathology2004a,110(1):7-11.
    222.Pasquali M., Dematheis F., Gullino M.L., et al., Identification of race1of Fusariumoxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterizedamplified region technique. Phytopathology2007,97(8):987-996.
    223.Pasquali M., Marena L., Fiora E., et al., Real-time polymerase chain reaction for identificationof a highly pathogenic group of Fusarium oxysporum f. sp. chrysanthemi on Argyranthemumfrutescens L. Journal of Plant Pathology2004b,86(1):53-59.
    224.Pasquali M., Piatti P., Gullino M.L., et al., Development of a real-time polymerase chainreaction for the detection of Fusarium oxysporum f. sp. basilici from Basil seed and roots.Journal of Phytopathology2006,154(10):632-636.
    225.Pasquer F., Isidore E., Zarn J., et al., Specific patterns of changes in wheat gene expressionafter treatment with three antifungal compounds. Plant Mol. Biol2005,57,693-707.
    226.Passardi F., Cosio C., Penel C., et al., Peroxidases have more functions than a Swiss armyknife. Plant Cell Reports2005,24:255-265.
    227.Pastor-Corrales M.A. and Abawi G.S., Reactions of selected bean germplasm to infection byFusarium oxysporum f. sp. phaseoli. Plant Disease1987,71:990-993.
    228.Pastori G.M. and Foyer C.H., Common components, networks, and pathways ofcross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls.Plant Physiology2002,129:460-468.
    229.Pe a-Cortés H., Albrecht T., Prat S., et al., Aspirin prevents wound-induced gene expressionin tomato leaves by blocking jasmonic acid biosynthesis. Planta1993,191:123-128.
    230.Penninckx I.A.M.A., Eggermont K., Terras F.R.G., et al., Pathogen induced systemicactivation of a plant defensin gene in Arabidopsis follows a salicylic acid independentpathway. Plant Cell1996,8:2309-2323.
    231.Penninckx I.A.M.A., Thomma B.P.H.J., Buchala A., et al., Concomitant activation ofjasmonate and ethylene response pathways is required for induction of a plant defensin. PlantCell1998,10:2103-2113.
    232.Pietro A.D., Madrid M.P., Caracuel Z., et al., Fusarium oxysporum: exploring the moleculararsenal of a vascular wilt fungus. Molecular plant pathology2003,4(5):315-325.
    233.Pramateftaki P.V., Antoniou P.P. and Typas M.A,. The complete DNA sequence of the nuclearribosomal RNA gene complex of Verticillium dahliae: intraspecific heterogeneity within theintergenic spacer region. Fungal Genetics and Biology2000,29:19-27.
    234.Preston C.A., Lewandowski C., Enyedi A.J., et al., Tobacco mosaic virus inoculation inhibitswound-induced jasmonic acid-mediated responses within but not between plants. Planta1999,209:87-95.
    235.Puhalla, J.E., Classification of strains of Fusarium oxysporum on the basis of vegetativecompatibility. Canadian journal of Botany1985,63:179-183.
    236.Qi M. and Yang Y., Quantification of Magnaporthe grisea during infection of rice plants usingreal-time polymerase chain reaction and northern blot/phosphoimaginganalyses.Phytopathology2002,92:870-876.
    237.Qin G.Z. and Tian S.P., Enhancement of biocontrol activity of Cryptococcus laurentii bysilicon and the possible mechanisms involved. Phytopathology2005,95:69-75.
    238.Quiroga M., Guerrero C., Botella M.A., et al., A tomato eroxidase involved in the synthesis oflignin and suberin. Plant Physiology2000,122:1119-1127.
    239.Radwan D.E.M., Fayez K.A., Mahmoud S.Y., et al., Physiological and metabolic changes ofCucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection andsalicylic acid treatments. Plant Physiology and Biochemistry2007,45:480-489.
    240.Recorbet G., Steinberg C., Olivain C., et al., Wanted: pathogenesis‐related markermolecules for Fusarium oxysporum. New phytologist2003,159(1):73-92.
    241.Ribeiro R.L. and Hagedorn D.J., Screening for resistance to and pathogenic specialization ofFusarium oxysporum f. sp. phaseoli, the causal agent of bean yellows. Phytopathology1979a,69:272-276.
    242.Ribeiro R.L. and Hagedorn D.J., Inheritance and nature of resistance to Fusarium oxysporumf. sp. phaseoli. Phytopathology1979b,69:859-861.
    243.Ririe K.M., Rasmussen R.P. and Wittwer C.T., Product differentiation by analysis of DNAmelting curves during the polymerase chain reaction. Analytical Biochemistry1997,245(2):154-160.
    244.Roberts C.A., Dietzgen R.G., Heelan L.A., et al., Real-time RT-PCR fluorescent detection oftomato spotted wilt virus. Journal of Virological Methods2000,88:1-8.
    245.Rodriguez P.L., Protein phosphatase2C (PP2C) function in higher plants. Plant MolecularBiology1998,38:919-927.
    246.Rojo E., Solano R. and Sanchez-Serrano J.J., Interactions between signaling compoundsinvolved in plant defense. Journal of Plant Growth Regulation2003,22:82-98.
    247. Ryals J.A., Neuenschwander U.H., Willits M.G., et al., Systemic acquired resistance. PlantCell1996,8:1809-1819.
    248.Ryan C.A., The systemin signaling pathway: differential activation of plant defensive genes.Biochimica et Biophysica Acta2000,1477:112-121.
    249.Sagisaka S., The occurrence of peroxide in perennial plant Populas gebrica. Plant Physiology1976,57:308-309.
    250.Saikia S., Singh T., Kumar R., et al., Role of salicylic acid in systemic resistance induced byPseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Research inMicrobiology2003,158:203-213.
    251.Salgado M.O. and Schwartz H.F., Physiological specialization and effects of inoculumconcentration of Fusarium oxysporum f. sp. phaseoli on common beans. Plant Disease1993,77:492-496.
    252.Salgado, M.O., Schwartz H.F., Brick M.A., et al., Inheritance of resistance to a Colorado raceof Fusarium oxysporum f. sp. phaseoli in common beans. Plant Disease1995,79:279-281.
    253.Sanders P.M., Lee P.Y., Biesgen C., et al., The Arabidopsis DELAYED DEHISCENCE1geneencodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell2000,12:1041-1062.
    254.Sawada H., Shim I.S. and Usui K., Induction of benzoic acid2-hydroxylase and salicylic acidbiosynthesis-modulation by salt stress in rice seedlings. Plant Science2006,171:263-270.
    255.Schaller F., Enzymes of the biosynthesis of the octadecanoid-derived signaling molecules2001, Journal of Experimential Botany.,52:11-23.
    256.Schena L., Finetti Sialer M. and Gallitelli D. Specific identification of Aureobasidiumpullulans strain L47using Scorpion-PCR. EPPO Bulletin2000,30:559-562.
    257.Schena L., Finetti Sialer M. and Gallitelli D., Molecular detection of the strain L47ofAureobasidium pullulans, a biocontrol agent of postharvest diseases. Plant Disease2002a,86:54-60.
    258.Schena L., Nigro F. and Ippolito A. Identification and detection of Rosellinia necatrix byconventional and real-time Scorpion-PCR. European Journal of Plant Pathology2002b,108:355-366.
    259.Schena L. and Ippolito A., Rapid and sensitive detection of Rosellinia necatrix in roots andsoils by real time Scorpion-PCR. Journal of Plant Pathology2003,85:15-25.
    260.Schena L., Nigro F., Ippolito A., et al., Real-time quantitative PCR: a new technology todetect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology2004,110(9):893-908.
    261.Schmittgen T.D., Real-time quantitative PCR. Methods2001,25:383-385.
    262.Schoen C.D., Knorr D. and Leone G. Detection of potato leafroll virus in dormant potatotubers by immunocapture and a fluorogenic5’ nuclease RT-PCR assay. Phytopathology1996,86:993-999.
    263.Schwartz H.F., McMillan M.F. and Silbernagel M.J., Occurrence of Fusarium wilt of beans inColorado. Plant Disease1989,73:518.
    264.Schwartz, H.F., Franc G.D. and Kerr E.D., Fungal diseases1996, p.67-77. In. Schwartz H.F. etal (Ed.) Dry bean production and pest management regional bulletin562A. Coop. Ext. Res.Center. Colorado State University. Fort Collins, CO.
    265.Schweizer P., Buchala A., Silverman P., et al., Jasmonate inducible genes are activated inrice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels.Plant Physiology1997,114:79-88.
    266.Shah J. and Klessig D.F., Salicylic acid: Signal perception and transduction1999, pp.513-541.In: Hooykaas P.P.J, Hall M.A. and Libbega K.R.(Eds). Biochemistry and Molecular Biologyof Plant Hormones. Elsevier, Amsterdam, Netherlands.
    267.Silvar C., Díaz J. and Merino F. Real-time polymerase chain reaction quantification ofPhytophthora capsici in different pepper genotypes. Phytopathology2005,95(12):1423-1429.
    268.Silverman P., Seskar M., Kanter D., et al., Salicylic acid in rice: biosynthesis, conjugation andpossible role. Plant Physiology1995,108:633-639.
    269.Spletzer M.E. and Enyedi A.J., Salicylic acid induces resistance to Alternaria solani inhydroponically grown tomato, Phytopathology1999,89:722-727.
    270.Sticher L., Mauch-Mani B. and Métraux J.P. Systemic acquired resistance. Annual Review ofPhytopathology1997,35:235-270.
    271.Stintzi A. and Browse J., et al., The Arabidopsis male-sterile mutant, opr3, lacks the12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of NationalAcademy of Sciences USA2000,97:10625-10630.
    272.Suarez M.C., Bernal A., Gutierrez J., et al., Developing expressed sequence tags (ESTs) frompolymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz).Genome2000,43:62-67.
    273.Takezawa D., Liu Z.H., An G., et al., Calmodulin gene family in potato: developmental andtouch-induced expression of the mRNA encoding a novel isoform. Plant Molecular Biology1995,27:693-703.
    274.Taylor E.J.A., Stevens E.A., Bates J.A., et al., Rapid-cycle PCR detection of Pyrenophoragraminea from barley seed. Plant Pathology2001b,50:347-355.
    275.Thoungchaleun V., Kim K.W., Lee D.K., et al., Pre-Infection Behavior of the Pitch CankerFungus Fusarium circinatum on Pine Stems. Journal of Plant Pathology2008,24:112-117.
    276.Tjamos E. and Beckman C.H., Vascular wilt diseases of plants. Basic studies and control:Springer-Verlag1989.
    277.Tsuda K., Sato M., Stoddard T., et al., Network properties of robust immunity in plants. PloSGenetics2009,5, e1000772.
    278.Tsuge S., Ochiai H., Inoue Y., et al., Involvement of phosphoglucose isomerase inpathogenicity of Xanthomonas oryzae pv. oryzae. Phytopathology2004,94:478-483.
    279.Tyagi S. and Kramer F.R., Molecular beacons: probes that fluoresce upon hybridisation.Nature Biotechnology1996,14:303-308.
    280.Ueeda M., Kubota and Nishi K., Contribution of jasmonic acid to resistance againstPhytophthora blight in Capsicum annuum cv. SCM334. Physiology and Molecular PlantPathology2006,67:149-154.
    281.Van Camp W., Van Montagn M. and Inze D., H2O2and NO-redox signals in disease resistance.Trends in Plant Science1998,3:330-334.
    282.Vandemark G.J. and Barker B.M. Quantifying Phytophthora medicaginis in susceptible andresistant alfalfa with a real-time fluorescent PCR assay. Journal of Phytopathology2003,151:577-583.
    283.Van de Graaf P., Lees A.K., Cullen D.W., et al., Detection and quantification of Spongosporasubterranea in soil, water and plant tissue samples using real-time PCR. European Journal ofPlant Pathology2003,109:589-597.
    284.Van Loon L.C.,1990. The nomenclature of pathogenesis related proteins. PhysiologicalMolecular Plant Pathology,37:229-230.
    285.Verberne M.C., Verpoorte R., Boln J.F., et al., Overproduction of salicylic acid in plants bybacterial transgenes enhances pathogen resistance. Nature Biotechnology2000,18:779-783.
    286.Vick B.A. and Zimmerman D.C. Biosynthesis of jasmonic acid by several plant species. PlantPhysiology1984,75(2):458-461.
    287.Vijayan P., Shockey J., Levesque C.A., et al., A role for jasmonate in pathogen defense ofArabidopsis. Proceedings of National Academy of Sciences USA1998,95:7209-7214.
    288.Vlot A.C., Dempsey D.A. and Klessig D.F., Salicylic acid, amultifaceted hormone to combatdisease. Annal of Review Phytopathology2009,47:177-206.
    289.Wang Q., Chen B., Liu P., et al., Calmodulin binds to extracellular sites on the plasmamembrane of plant cells and elicits a rise in intracellular calcium concentration. Journal ofBiological Chemistry2009,284(18):12000-12007.
    290.Wang L., Tsuda K., Sato M., et al., Arabidopsis CaM binding protein CBP60g contributes toMAMP-induced SA accumulation and is involved in disease resistance against Pseudomonassyringae. PLoS Pathogens2009,,5:e1000301
    291.Wang H., Zhou Y., Gilmer S., et al., Expression of the plant cyclin-dependent kinase inhibitorICK1affects cell division, plant growth and morphology. The Plant Journal2000,24:613-23.
    292.Ward E.R., Uknes S.J., Williams S.C., et al., Coordinate gene activity in response to agentsthat induce systemic acquired resistance. Plant Cell1991,3:1085-1094.
    293.Weller S.A., Elphinstone J.G., Smith N.C., et al., Detection of Ralstonia solanacearum strainswith a quantitative, multiplex, real-time, fluorogenic PCR (Taq-Man) assay. Applied andEnvironmental Microbiology2000,66:2853-2858.
    294.Welsh J., Chada K., Dalal S.S., et al., Arbitrarily primed PCR fingerprinting of RNA.Nuclease Acids Research1992,20:4965-4970.
    295.Welsh J. and McClelland M. Fingerprinting genomes using PCR with arbitrary primers.Nucleic Acids Research1990,18:7213-7218.
    296.Whitcombe D., Theaker J., Guy S.P., et al. Detection of PCR products using self-probingamplicons and fluorescence. Nature Biotechnology1999,17:804-807.
    297.White T.J., Bruns T., Lee S., et al., Amplification and direct sequencing of fungal ribosomalRNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (Eds)PCR Protocols: A Guide to Methods and Applications1990, pp315-322, Academic Press, Inc.,New York, USA.
    298.Wildermuth M.C., Dewdney J., Wu G., et al., Isochorismate synthase is required to synthesizesalicylic acid for plant defense. Nature2001,414:562-565.
    299.Williams J.G.K., Kubelik A.R., Livak K.J., et al., DNA polymorphisms amplified by arbitraryprimers are useful as genetic markers. Nucleic Acids Research1990,18:6531-6535.
    300.Winton L.M., Stone J.K., Watrud L.S., et al., Simultaneous one-tube quantification of host andpathogen DNA with real-time polymerase chain reaction. Phytopathology2002,92:112-116.
    301.Xu H.X. and Health M.C., Role of Calcium in signal transduction during the hypersensitiveresponse caused by basidiospore derived infection of the cowpea rust fumgus. Plant Cell1998(10):585-597.
    302.Yalpani N., Leon J., Lawton M.A., et al., Pathway of salicylic acid biosynthesis in healthy andvirus-inoculated tobacco. Plant Physiology1993,103:315-321.
    303.Yamakawa H., Mitsuhara I., Ito N., et al., Transcriptionally and post-transcriptionallyregulated response of13calmodulin genes to tobacco mosaic virus-induced cell death andwounding in tobacco plant. Eur opean Journal of Biochemistry2001,268(14):3916-3929.
    304.Yang T., Lev-Yadun S., Feldman M., et al., Developmentally regulated organ-, tissue-, andcell-specific expression of calmodulin genes in common wheat. Plant Molecular Biology1998,37(1):109-120.
    305.Yang T., Segal G., Abbo S., et al., Characterization of the calmodulin gene family in wheat:structure, chromosomal location, and evolutionary aspects. Molecular and General Genettics1996,252:684-694.
    306.Yu Z., Fu C., Han Y., et al., Salicylic acid enhances jaceosidin and syringin production in cellcultures of Saussurea medusa. Biotechnology Letters.2006,28:1027-1031.
    307. Zhang A.W., Hartman G.L., Curio-Penny B., et al., Molecular detection of Diaporthephaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology1999,89:796-804.
    308.Zhang Z., Zhang J., Wang Y., et al., Molecular detection of Fusarium oxysporum f. sp.niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS MicrobiologyLetters2005,249(1):39-47.
    309.Zhao J., Davis L.C. and Verpoorte R. Elicitor signal transduction leading to production ofplant secondary metabolites. Biotechnology Advances2005,23:283-333.
    310.Zhao S., Ooi S.L. and Pardee A.B., New primer strategy improves precision of differentialdisplay. Biological Techniques1995,18:842-850.
    311.Zhao Y., Thilmony R., Bender C.L., et al., Virulence systems of Pseudomonas syringae pv.tomato promote bacterial speck disease in tomato by targeting the jasmonate signalingpathway. The Plant Journal2003,36:485-949.
    312.Zimmerli L., Jakab G., Métraux J.P., et al., Potentiation of pathogenspecific defensemechanisms in Arabidopsis by b-aminobutyric acid, Proceedings of National Academy ofSciences U.S.A.2000,97:12920-12925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700