用户名: 密码: 验证码:
黄瓜果实弯曲性蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜果形是衡量黄瓜品质的重要条件。在黄瓜栽培和育种工作中,有效减少弯曲果实的比率,培育果形顺直、整齐一致的品种尤为重要。黄瓜果实弯曲性是多基因控制的数量性状遗传。黄瓜果实弯曲性的基因加性效应较大,显性效应相对较小。显性×环境互作效应相对较高,加性×环境互作效应很小。为了能从遗传育种角度对黄瓜果实弯曲特性进行研究,实现对果实弯曲的调控和改良,有必要对黄瓜果实弯曲性的分子机理进行研究。果实弯曲形成过程中,会存在一系列的细胞调控机制,必然涉及到多个蛋白质,果实发生弯曲后,会通过改变体内蛋白质的表达和酶类的活性等来完成信号的感应、传递以及生物学效应的实现。因此,要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究,有助于在蛋白质水平上全面系统认识弯曲果实的变化特征和细胞代谢等过程。将其与基因组学、转录组学、代谢组学整合,能够实现对体系内代谢调控的动态监测,揭示细胞生理状态的进程与本质、对弯曲发生的反应途径以及细胞调控机制,对我们从整体上系统地解析黄瓜果实弯曲形成和调控的复杂机理具有重要意义。
     本研究利用双向凝胶电泳和质谱分析技术,研究开花座果期、果实膨大期和商品成熟期黄瓜顺直果实、弯曲果实腹部和脊部蛋白质组的变化,获得黄瓜弯曲特性相关差异蛋白,利用生物信息学方法对差异蛋白质的生物学功能、参与生物过程、调控机制、蛋白质间的相互作用、染色体定位信息等进行分析,利用实时定量PCR技术对顺直果实、弯曲果实腹部和脊部的基因表达量变化进行验证,寻找调控黄瓜果实弯曲的关键基因,探索黄瓜果实弯曲形成的分子机理以及相关调控机制。主要研究结果如下:
     1)采用双向凝胶电泳技术(2-DE)对黄瓜顺直果实、弯曲果实腹部和弯曲果实脊部样品进行黄瓜果实弯曲特性差异蛋白质组学研究,分别在开花座果期、果实膨大期和商品成熟期鉴定到2114、1929和2638种差异蛋白质;利用2-sample t-test和fold change方法筛选差异表达蛋白质。利用质谱分析技术对差异蛋白质进行鉴定,分别获得开花座果期、果实膨大期和商品成熟期表达量符合上调2倍以上、有99%统计学显著性(P <0.05)的差异表达蛋白质11、7和43个。
     2)鉴定蛋白质多数为弯曲果实和顺直果实间差异表达蛋白质,少数为弯曲果实腹部和脊部间差异表达蛋白质。与顺直果实相比,开花座果期、果实膨大期和商品成熟期在弯曲果实腹部下调两倍表达、在弯曲果实脊部和顺直果实中无显著差异的差异蛋白质数分别为2、0和6个;在弯曲果实脊部下调两倍表达、在弯曲果实腹部和顺直果实中无显著差异的差异蛋白质均为1个;与顺直果实相比,在弯曲果实腹部与脊部均上调表达、而腹部和脊部之间没有显著差异的蛋白质数分别为3、4和19个,在弯曲果实腹部与脊部均下调表达、且在腹部和脊部无显著差异的差异蛋白质数分别为5、2和14个。
     3)鉴定的差异蛋白质分为22个功能类别,包括氧化还原、蛋白质水解、转运、新陈代谢过程、细胞蛋白质代谢、细胞周期、光合作用、逆境胁迫、核黄素合成、细胞骨架组成与发生、氮代谢、脂类代谢、核苷酸代谢、mRNA代谢、生物节律、蛋白酶体调节、生物过程、DNA损伤应激反应、DNA复制调节、复制后修复、翻译延伸以及未获得分类蛋白。其中,与黄瓜果实弯曲性相关的差异蛋白质功能主要集中在氧化还原过程,此外,转运、细胞周期、光合作用和蛋白质水解等功能蛋白质也发挥重要作用。
     4)对开花座果期、果实膨大期和商品成熟期的差异蛋白质进行层次聚类分析,主要分为两个大类,分别包括20和41个差异蛋白质。第一类(HZ9412-HK4319)多在果实发育初期表达量低,而在果实发育中后期表达量高;第二类(HZ7802-HZ1314)多在果实发育初期或中期表达量高,在果实发育中后期表达量高。根据差异蛋白质的表达情况,顺直果实和弯曲果实腹部和脊部被聚类为两组,一组为果实膨大期弯曲果实腹部和脊部、商品成熟期弯曲果实腹部和脊部;另一组包括开花座果期顺直果实、弯曲果实腹部和脊部,果实膨大期顺直果实,商品成熟期顺直果实,不同时期蛋白质表达量的差异远大于相同时期不同部位的蛋白质表达量差异。
     5)60个差异蛋白质序列分别成功定位在黄瓜7条染色体上,第6和第4条染色体上最多,分别为13个和11个,第2条染色体上最少,只有5个。同时包含三个时期差异表达蛋白质信息的染色体为第1、第3和第6染色体。除第7染色体以外,其他6条染色体上均存在参与氧化还原过程相关差异蛋白序列信息分布比较均匀,最多为3个,最少为1个。参与转运过程的蛋白质序列主要定位在第5染色体上,少数在第7染色体上。参与蛋白质水解的差异蛋白质序列信息主要定位于第4染色体。参与光合作用蛋白序列信息主要定位于第6染色体。
     6)利用KEGG数据库信息和KO分类体系分析差异蛋白质所在的生物学通路及相互关系,共找到39个相关的pathway,其中氧化磷酸化,光合作用,乙醛酸二羧酸代谢,细胞周期,卵母细胞减数分裂等pathway呈现蛋白质富集,对黄瓜果实弯曲进行调控。
     7)对分别参与氧化还原过程、转运过程、核黄素代谢、脂代谢和氮代谢过程的8个差异蛋白质在mRNA水平进行验证,转录水平与蛋白质水平表达趋势一致的蛋白为验证蛋白总数的62.5%。其中,蛋白点HP8012、HZ5012、HZ5615、HZ7601和HZ1302的表达变化与在mRNA水平的表达具有相似性。蛋白点HZ7629和HZ4803表达变化呈相反趋势。蛋白点HP4412在蛋白质水平表现为顺直果实中上调,但在mRNA水平弯曲果实腹部、脊部和顺直果实的表达量没有显著差异。
Fruit shape is one of the important quality traits. Bending fruit has a serious impact on thequality of cucumber appearance, flavor and taste in cucumber. However, there has been littledetailed analysis of molecular mechanisms of this character. To better understand thepost-transcriptional changes of bent character, a proteomic approach was used to profile proteinchanges among the straight fruit, the abdomen and ridge of cucumber bending fruit at fruit settingstage, fruit development stage and fruit maturity stage, respectively. Two-dimensional gelelectrophoresis (2-DE) has been used to identify proteins that were differentially expressed in thestraight fruit, the abdomen and back of cucumber bending fruit, and image analysis has been usedto determine which proteins were up-or down-regulated by the experiments designed. Nextmatrix-Assisted Laser Ionization Time of Flight Mass Spectrometry (MALDI-TOF-TOF/MS) willbe used to determine the identity of these proteins. Searching the NCBI protein database with thecombination of gene ontology (GO) annotation database, Cluster analysis, PDB protein database,SWISS-MODEL pathway analysis and Chromosome location, it is possible to assign a scientificidentification of biological functions, regulatory functions and interaction network of these proteins.In addition, real-time quantitative RT-PCR will be used to assess the transcript levels of criticaldifferentially expressed proteins. Gene expression patterns correlate with or without proteinexpression identified by both proteomic and genomic approaches will be required to obtain adetailed understanding of the bending fruit. It is imperative to screen the proteome pattern ofcucumber bent character, in order to better understand the key pathway, the cells changes, and themolecular mechanism for regulating bending happened and development. Here we report thechanges in proteome of the straight fruit, the abdomen and ridge of cucumber bending fruit. Themain results were as followed:
     1)According to the stringent criteria of having more than one unique peptide per proteinpresent and a false discovery rate≤5%,2114、1929and2638proteins were identified at fruitsetting stage, fruit development stage and fruit maturity stage, respectively. A total of197difference proteins from different part of cucumber fruit were screened out, in which,61proteinspots were analyzed using MALDI-TOF-TOF MS. Differentially expressed proteins were screenedby2-sample t-test (p<0.05) and fold change (fold>1.5),11、7and43proteins were screened out at fruit setting stage, fruit development stage and fruit maturity stage, respectively.
     2)61protein spots were identified by MS. Most of them were up-regulated or down-regulatedbetween the straight and bending fruit, and few was up-regulated or down-regulated between theabdomen and ridge of cucumber bending fruit. During the three development period,3、4and19differential proteins were down-regulated in the straight fruit,5、2and14differential proteins wereup-regulated in the straight fruit,2、0and6differential proteins were down-regulated in theabdomen of bending fruit, all1differential proteins were down-regulated in the ridge, respectively.
     3)The identified proteins were involved in various metabolic processes and cellular responses,including proteolysis, proteasome regulatory particle assembly, cytoskeleton organization andbiogenesis, circadian rhythm, riboflavin biosynthetic process, biological-process, response to stress,response to dna damage stimulus, mRNA catabolic process, cellular protein metabolic, nucleotidemetabolic process, lipid metabolic process, metabolic process, nitrogen compound metabolicprocess, postreplication repair, translational elongation, regulation of dna replication, cell cycle,photosynthesis, light harvesting, oxidation-reduction process and transport according to the primarydatabases. Of them, oxidation-reduction process was the key process, and transport, cell cycle,photosynthesis were also important.
     4)Hierarchical cluster analysis of differentially expressed proteins. Two sub-class included20and41differentially expressed proteins respectively. HZ9412-HK4319differentially expressedproteins were down-regulated at fruit setting stage, HZ7802-HZ1314differentially expressedproteins were up-regulated at fruit setting stage. The abdomen and ridge of bending fruit at fruitdevelopment stage and fruit maturity stage were clustered the same group. Other parts of elsestages were clustered another group.
     5)60differentially expressed proteins were located in7chromosomes of cucumber. Thenumber of differentially expressed proteins in Ch6and Ch4were13and11respectively, the Ch5was only5. The differentially expressed proteins in Ch1, Ch3and Ch6included proteins from threedevelopment stage. The oxidation-reduction process proteins were located in Ch1, Ch2, Ch3, Ch4,Ch5and Ch6. The transport proteins were located in Ch5. The proteolysis proteins were located inCh4and photosynthesis in Ch6.
     6)We found65pathways during searching KEGG database, including39related pathway,such as glyoxylate and dicarboxylate metabolism, photosynthesis, oocyte meiosis, cell cyclepathway were presented enrichment and were related with fruit bending.
     7)Different proteins were validated in mRNA and protein levels of the straight fruit, theabdomen and ridge of cucumber bending fruit. Different proteins were riboflavin biosyntheticprocess, lipid metabolic process, nitrogen compound metabolic process, oxidation-reductionprocess and transport proteins. The results were consistent with mass spectrometry at the ratio of62.5%, HP8012, HZ5012, HZ5615, HZ7601and HZ1302were consistent with mass spectrometry.HZ7629and HZ4803were opposite with mass spectrometry. HP4412was disorder with massspectrometry.
引文
[1]周秀艳,秦智伟,王新国.黄瓜品种资源商品性的评价[J].东北农业大学学报,2005,36(6):707-713.
    [2]金浜耕基.キュウリの曲がり果に関する諸問題(1)曲がりが発生する栽培条件[J].農業および園芸,1989,64,第1号:47-52.
    [3]金浜耕基,斎藤隆.キュウリの曲がり果発生に及ぼす栽植密度と遮光の影響[J]. Japan.Soc. Hort. Sci.1984,53(3):331-337.
    [4]东北农业大学.黄瓜外观图像获取与特征识别软件系统:中国,2011SR063342[cP],2011-06-14.
    [5]孙涌栋,张兴国,侯瑞贤,等.授粉后黄瓜果实膨大相关基因的鉴别[J].植物生理与分子生物学学报,2005,31(4):403-408.
    [6]刘春香,何启伟,于占东.畸形黄瓜主要芳香物质含量变化试验[J].山东农业科学,2003,1:20-21.
    [7]葛长军,周秀艳,秦智伟.黄瓜果实弯曲相关性状的多元回归分析[J].东北农业大学学报,2008,39(12):23-27.
    [8] Zhang P, Qin Z W, Wang L L, Zhou X Y, Wang G L. Mapping quantitative traits loci linked tobending fruit trait in cucumber[J]. Journal of Northeast Agricultural University (EnglishEdition),2011,18,1-5.
    [9] Wasinger V C, Cordwell S J, Cerpa‐Poljak A, et al. Progress with gene‐product mapping ofthe Mollicutes: Mycoplasma genitalium[J]. Electrophoresis,1995,16(1):1090-1094.
    [10]赵欣,蒲小平.蛋白质组学在药物研究中的应用[J].中国药理学通报,2009,25(8):988-991.
    [11]林秀琴,袁坤,王真辉,等.植物响应逆境胁迫的比较蛋白质组学研究进展[J].热带农业科学,2009,29(2):52-57.
    [12]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊,2002,3:167-169.
    [13] Rappsilber J, Mann M. What does it mean to identify a protein in proteomics [J]. Trends inbiochemical sciences,2002,27(2):74-78.
    [14]袁雪宇,吴国亭,韩玉麒.差异蛋白质组学技术和应用前景[J].同济大学学报(医学版),2004,25(4):349-351.
    [15]赵宏伟,田秀珠,王波.差异蛋白质组学研究与应用进展[J].医学与哲学:临床决策论坛版,2006,27(4):45-47.
    [16] Graves P R, Haystead T A J. Molecular biologist's guide to proteomics[J]. Microbiology andMolecular Biology Reviews,2002,66(1):39-63.
    [17] Blackstock W P, Weir M P. Proteomics: quantitative and physical mapping of cellularproteins[J]. Trends in biotechnology,1999,17(3):121-127.
    [18] Jung E, Heller M, Sanchez J C, et al. Proteomics meets cell biology: the establishment ofsubcellular proteomes[J]. Electrophoresis,2000,21(16):3369-3377.
    [19]王英超,党源,李晓艳,等.蛋白质组学及其技术发展[J].生物技术通讯,2010(001):139-144.
    [20] Werner T. Promoters can contribute to the elucidation of protein function[J]. Trends inbiotechnology,2003,21(1):9-13.
    [21] Righetti P G, Castagna A, Antonucci F, et al. The proteome: anno Domini2002[J]. Clinicalchemistry and laboratory medicine,2003,41(4):425-438.
    [22]孙言伟,姜颖,贺福初.差异蛋白质组学的研究进展[J].生命科学,2005,17(2):137-140.
    [23]何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),2002,38(4):558-562.
    [24] Unwin R D, Gaskell S J, Evans C A, et al. The potential for proteomic definition of stem cellpopulations[J]. Experimental hematology,2003,31(12):1147-1159.
    [25] Steen H, Mann M. The ABC's (and XYZ's) of peptide sequencing[J]. Nature ReviewsMolecular Cell Biology,2004,5(9):699-711.
    [26] Klose J, Nock C, Herrmann M, et al. Genetic analysis of the mouse brain proteome[J]. Naturegenetics,2002,30(4):385-393.
    [27] Beranova-Giorgianni S. Proteome analysis by two-dimensional gel electrophoresis and massspectrometry: strengths and limitations[J]. TrAC Trends in Analytical Chemistry,2003,22(5):273-280.
    [28]杨礼富.蛋白质组学研究技术与展望[J].热带农业科学,2007,27(2):58-62.
    [29] Weiss G H, Kiefer J E. Some properties of a measure of resolution in gel electrophoresis andcapillary zone electrophoresis[J]. Electrophoresis,1997,18(11):2008-2011.
    [30] Rabilloud T. Solubilization of proteins for electrophoretic analyses[J]. Electrophoresis,1996,17(5):813-829.
    [31] Damerval C, Zivy M, Granier F, et al. Two-dimensional electrophoresis in plant biology[M].Laboratoire de génétique des systèmes végétaux,1988.
    [32] Jacobs D I, van der Heijden R, Verpoorte R. Proteomics in plant biotechnology and secondarymetabolism research[J]. Phytochemical Analysis,2000,11(5):277-287.
    [33] Granier F. Extraction of plant proteins for two-dimensional electrophoresis[J]. Electrophoresis,1988,9(11):712-718.
    [34]刘卫群,李浩.差异蛋白质组学在植物研究中的应用[J].安徽农业科学,2006,34(17):4201-4203.
    [35]阮松林,马华升,王世恒,等.植物蛋白质组学研究进展—Ⅰ.蛋白质组关键技术[J].遗传,2006,28(11):1472-1486.
    [36]黄丽俊,王建华.蛋白质组研究技术及其进展木[J].生物学通报,2005,40(8):4-6.
    [37]高华,高述民,孙芳芳.蛋白质组学及其在植物研究中的应用[J].安徽农学通报,2010,16(008):31-32.
    [38]柳展基,杨小红,毕玉平.蛋白质组学在农业中的应用[J].分子植物育种,2006,4(3):106-110.
    [39] ünlü M, Morgan M E, Minden J S. Difference gel electrophoresis. A single gel method fordetecting changes in protein extracts[J]. Electrophoresis,1997,18(11):2071-2077.
    [40] Hood BL, Veenstra TD, Conrads T P. Mass spectrom etrybased proteomics[J]. InternationalCongress Series,2004,1266:375-380.
    [41] Nesvizhskii A I, Aebersold R. Analysis, statistical validation and dissemination of large-scaleproteomics datasets generated by tandem MS[J]. Drug discovery today,2004,9(4):173-181.
    [42] Li L, Garden R W, Sweedler J V. Single-cell MALDI: a new tool for direct peptide profiling[J].Trends in biotechnology,2000,18(4):151-160.
    [43] Scalf M, Westphall M S, Smith L M. Charge reduction electrospray mass spectrometry[J].Analytical chemistry,2000,72(1):52-60.
    [44] LoPachin R M, Jones R C, Patterson T A, et al. Application of proteomics to the study ofmolecular mechanisms in neurotoxicology[J]. Neurotoxicology,2003,24(6):761-775.
    [45] Liang Y, Jing Y X, Shen S H. Advances in plant proteomics[J]. Acta Phytoecologica Sinica,2004,28:114-125.
    [46]李维平,李云.生物质谱技术与蛋白质组学[J].生命科学研究,2004,2:113-116.
    [47]杨礼富.蛋白质组学研究技术与展望[J].热带农业科学,2007,27(2):58-62.
    [48]吴亚丹.植物蛋白质组学的研究策略[J].现代农业科学,2009,16(5):12-16.
    [49]王英超,党源,李晓艳,等.蛋白质组学及其技术发展[J].生物技术通讯,2010(001):139-144.
    [50] Berardini T Z, Mundodi S, Reiser L, et al. Functional annotation of the Arabidopsis genomeusing controlled vocabularies[J]. Plant physiology,2004,135(2):745-755.
    [51] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-basedenvironment for protein structure homology modelling[J]. Bioinformatics,2006,22(2):195-201.
    [52] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucleic acids research,2003,31(13):3381-3385.
    [53] Guex N, Peitsch M C. SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment forcomparative protein modeling[J]. Electrophoresis,1997,18(15):2714-2723.
    [54] Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individualprotein structure models[J]. Bioinformatics,2011,27(3):343-350.
    [55]季芝娟,薛庆中.植物蛋白质组学研究进展[J].生命科学,2004,16(4):241-245.
    [56]孟慧,段翠芳,曾日中.植物蛋白质组学研究概况[J].热带农业科学,2006,26(2):60-65.
    [57]于澄宇,金平安.高通量植物蛋白质组学研究方法[J].生物信息学,2003,1(1):1-54.
    [58]徐幼平,徐秋芳,蔡新忠.适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J].浙江农业学报,2007,19(2):71-74.
    [59]张鹏.黄瓜果实弯曲性QTL定位及蛋白质组差异研究[D].哈尔滨:东北农业大学,2009.
    [60]李凤玉,潘德灼,陈伟.黄瓜子叶节的蛋白质组双向电泳条件的优化[J].植物生理学通讯,2008,44(5):963-967.
    [61]范海延,陈捷,张春宇,等.适于黄瓜叶片蛋白质组分析的双向电泳方法最佳条件的研究[J].2008,39(3):365-367.
    [62]黎飞,徐秋芳,臧宪朋,等.番茄子叶总蛋白双向电泳体系的建立[J].园艺学报,2010,37(4):661-668.
    [63]刘丽娟,舒烈波,陈海荣,等.适用于生菜叶片蛋白质双向电泳方法的建立及初步应用[J].植物遗传资源学报,2009,10(10):106-110.
    [64]陈移亮.蝴蝶兰叶片蛋白质双向电泳方法初探[J].亚热带植物科学,2010,39(001):40-44.
    [65]王一鸣,花宝光,王有年,等.桃果实蛋白质双向电泳影响因素的研究[J].园艺学报,2007,34(6):1579-1584.
    [66] Walz C, Giavalisco P, Schad M, et al. Proteomics of curcurbit phloem exudate reveals anetwork of defence proteins[J]. Phytochemistry,2004,65(12):1795-1804.
    [67] Sheoran I S, Olson D J H, Ross A R S, et al. Proteome analysis of embryo and endosperm fromgerminating tomato seeds[J]. Proteomics,2005,5(14):3752-3764.
    [68]王珊,蔡斌华,章镇,等.果梅完全花与不完全花的差异蛋白分析[J].植物遗传资源学报,2008,9(4):465-468.
    [69] Albertin W, Brabant P, Catrice O, et al. Autopolyploidy in cabbage (Brassica oleracea L.) doesnot alter significantly the proteomes of green tissues[J]. Proteomics,2005,5(8):2131-2139.
    [70] Zhu M, Dai S, McClung S, et al. Functional differentiation of Brassica napus guard cells andmesophyll cells revealed by comparative proteomics[J]. Molecular&Cellular Proteomics,2009,8(4):752-766.
    [71] Baerenfaller K, Grossmann J, Grobei M A, et al. Genome-scale proteomics revealsArabidopsis thaliana gene models and proteome dynamics[J]. Science,2008,320(5878):938-941.
    [72]苦瓜,种子,孙海燕,等.苦瓜种子发育过程中水溶性蛋白组分的研究[J].浙江大学学报:农业与生命科学版,2006,32(2):134-138.
    [73]刘浩.龙眼(DimocarpusLonganLour)种子败育的蛋白质组学研究[D].福州:福建农林大学,2009:26-46.
    [74]祝岩,姜春宁.蛋白质研究在植物发育过程中的应用[J].广东林业科技,2008,24(5):69-73.
    [75]韩毅科,杜胜利,魏爱民,等.黄瓜离体雌核发育早期的特异蛋白研究[J].南开大学学报(自然科学版),2006,39(6):1-5.
    [76] Faurobert M, Mihr C, Bertin N, et al. Major proteome variations associated with cherry tomatopericarp development and ripening[J]. Plant Physiology,2007,143(3):1327-1346.
    [77]朱长甫,镰田博,原田宏,等.与胡箩卜胚胎发生相关的胚性细胞蛋白63cDNA分离及其基因表达的研究[J].植物学报,1997,39(12):1091-1098.
    [78] D Dodeman V L, Le Guilloux M, Ducreux G, et al. Somatic and zygotic embryos of Daucuscarota L. display different protein patterns until conversion to plants[J]. Plant&cellphysiology,1998,39(10):1104-1110.
    [79]周燕,高述民,李凤兰.胡萝卜体细胞胚胎发生中的细胞组织化学和蛋白质组分变化[J].植物生理学通讯,2004,4(2):181-183.
    [80]陈伟,吕柳新,黄春梅,等.‘乌叶’荔枝胚胎发育过程特异蛋白的变化[J].园艺学报,2001,28(6):504-508.
    [81]肖华山,吕柳新,陈伟.荔枝雌花发育期蛋白质的特异性[J].热带作物学报,2002,23(4):33-38.
    [82]游向荣.龙眼成花转变与成花逆转的差异蛋白质组学研究[D].福州:福建农林大学,2009.
    [83]池旭娟.桑椹成熟期营养成分交化及差异蛋白质组的研究[D].苏州:苏州大学.2009.
    [84]徐刚,姚银安.蛋白质组学在研究植物响应逆境机理上的应用[J].广西植物,2009,29(3):372-376.
    [85]程思思,乙引,张习敏,等.双向电泳技术在植物应答非生物胁迫蛋白质组学研究中的应用[J].安徽农业科学,2010,38(3):1135-1138.
    [86]许培磊,白吉刚,王秀娟,等.低温对不同基因型黄瓜叶片蛋白质组的影响[J].中国农业科学,2009,42(2):588-596.
    [87]王艳,李雪梅,彭永康.黄瓜Cd2+抗性的变化及其与蛋白质组分改变的关系[J].天津师范大学学报(自然科学版),2008,28(1):14-18.
    [88]杨立飞,朱月林,胡春梅,等. NaCl胁迫下嫁接黄瓜叶片中特异蛋白的分离与鉴定[J].西北植物学报,2006,12:249-256.
    [89]张恩平,张淑红, CORDEWENERA JAN,等.盐胁迫下不同盐敏感型番茄在蛋白质表达上的差异[J].沈阳农业大学学报,2005,36(1):25-28.
    [90] Zgallai H, Steppe K, Lemeur R. Effects of different levels of water stress on leaf waterpotential, stom-atal resistance, protein and chlorophyll content andcertain anti-oxidativeenzymes in tomato plants[J].Jouranl of Integrative Plant Biology,2006,48(6):679-685.
    [91] Iwahashi Y, Hosoda H. Effect of heat stress on tomato fruit protein expression[J].Electrophoresis,2000,21(9):1766-1771.
    [92] Timperio AM, D'Amici GM, Barta C, et al. Zolla L.Proteomics, pigment composition,andorganization of thyla-koid membranes in iron-deficient spinach leaves[J]. J Exp Bot,2007,58,3695-3710.
    [93] Guy C L, Haskell D. Detection of polypeptides associated with the cold acclimation process inspinach[J]. Electrophoresis,1988,9(11):787-796.
    [94]乐寅婷,李梅,陈倩,等.油菜叶片蛋白质组对机械损伤应答的初步分析[J].植物生态学报,2008,32(1):220-225.
    [95]孙海燕.甘蓝型油菜响应低磷胁迫的差异蛋白质组学研究[D].贵州:贵州大学,2009.
    [96] Hajbeidari M, Abdollabian-Nogbabi M, Askari H, et al. Proteome analysis sugar beet leavesunder drongbt stress[J]. Proteomic,2005,5:950-960.
    [97] Yoshimura K, Masuda A, Kuwano M, et al. Programmed proteome response for droughtavoidance/tolerance in the root of a C3xerophyte (wild watermelon) under water deficits[J].Plant and cell physiology,2008,49(2):226-241.
    [98] Taylor N L, Heazlewood J L, Day D A, et al. Differential impact of environmental stresses onthe pea mitochondrial proteome[J]. Molecular&Cellular Proteomics,2005,4(8):1122-1133.
    [99] Meza-Basso L, Alberdi M, Raynal M, et al. Changes in protein synthesis in rapeseed (Brassicanapus) seedlings during a low temperature treatment[J]. Plant physiology,1986,82(3):733-738.
    [100] Jellouli N, Ben Jouira H, Skouri H, et al. Proteomic analysis of Tunisian grapevine cultivarRazegui under salt stress[J]. Journal of plant physiology,2008,165(5):471-481.
    [101]林秀琴,袁坤,王真辉,等.植物响应逆境胁迫的比较蛋白质组学研究进展[J].热带农业科学,2009,29(2):52-57.
    [102]喻娟娟,戴绍军.植物蛋白质组学研究若干重要进展[J].植物学报,2009,44(4):410-425.
    [103]范海延,陈捷,吕春茂,等.黄瓜杂交二代抗黄瓜白粉病的蛋白质组学初步分析[J].园艺学报.2007,34(2):349-354.
    [104]范海延,陈捷,邵美妮,等.白粉病菌胁迫下黄瓜R17抗病品系叶片蛋白质组分析[J].园艺学报.2009,36(6):829-834.
    [105]屈中华,薛春生,刘力行,等.生物型种衣剂诱导后黄瓜叶片蛋白质组学初步研究[J].安徽农业科学,.2007,35(21):6487-6489.
    [106] Deepak S A, Shibato J, Ishii H, et al. Proteomics approach for investigating the diseaseresistance using cucumber as model plant[J]. American Journal of Biochemistry andBiotechnology,2008,4(3):231-238.
    [107] Walz C, Giavalisco P, Schad M, et al. Proteomics of curcurbit phloem exudate reveals anetwork of defence proteins[J]. Phytochemistry,2004,65(12):1795-1804.
    [108] HOUTERMAN P M, Speijer D, DEKKER H L, et al. The mixed xylem sap proteome ofFusarium oxysporum‐infected tomato plants[J]. Molecular Plant Pathology,2007,8(2):215-221.
    [109] Casado Vela J, Sellés S, Bru Martínez R. Proteomic approach to blossom‐end rot in tomatofruits (Lycopersicon esculentum M.): Antioxidant enzymes and the pentose phosphatepathway[J]. Proteomics,2005,5(10):2488-2496.
    [110] Corbett M, Virtue S, Bell K, et al. Identification of a new quorum-sensing-controlledvirulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targetingpathway[J]. Molecular plant-microbe interactions,2005,18(4):334-342.
    [111]皇甫海燕,官春云.甘蓝型油菜抗菌核病近等基因系和感病亲本蛋白差异的初步研究[J].中国农业科学,2010,43(10):2000-2007.
    [112] ANDRADE A E,SILVA L P,PEREIRA J L, et al. In vivo proteome analysis of Xanthomonascamp estris pv.camp estris in the interaction with the host plant Brassica oleracea [J].FEMSMicrobiology Letters,2008,281:167-174.
    [113]胡丹凤,李鸿彬,陈远良,等.黄瓜芽黄突变体叶片的蛋白组学研究[J].石河子大学学报:自然科学版,2010,28(2):138-143.
    [114] Corpillo D, Gardini G, Vaira A M, et al. Proteomics as a tool to improve investigation ofsubstantial equivalence in genetically modified organisms: The case of a virus‐resistanttomato[J]. Proteomics,2004,4(1):193-200.
    [115] S Sheoran I S, Ross A R S, Olson D J H, et al. Differential expression of proteins in the wildtype and7B-1male-sterile mutant anthers of tomato (Solanum lycopersicum): A proteomicanalysis[J]. Journal of proteomics,2009,71(6):624-636.
    [116]薛柯.基因插入导致番茄表型变异及其蛋白质组差异分析[D].西安:西北大学,2008.
    [117]祁洋.转基因番茄叶绿体特征及其蛋白质差异研究[D].西安:西北大学,2009.
    [118] Kahn, P. From genome to proteome: looking at a cell's proteins[J]. Science,1995,(270):369-370.
    [119]李跃建,梁根云,刘小俊,等.黄瓜嫁接苗和自根苗的蛋白质组学研究[J].园艺学报,2009,36(8):1147-1152.
    [120]李凤玉,潘德灼,梁海曼,等. PP333诱导黄瓜子叶节差异蛋白表达的分析[J].中国农业科学,2010,43(3):655-660.
    [121] Lilley K S, Dupree P. Plant organelle proteomics[J]. Current opinion in plant biology,2007,10(6):594-599.
    [122] Yamaguchi K, Subramanian A R. The Plastid Ribosomal Proteins IDENTIFICATION OFALL THE PROTEINS IN THE50S SUBUNIT OF AN ORGANELLE RIBOSOME(CHLOROPLAST)[J]. Journal of Biological Chemistry,2000,275(37):28466-28482.
    [123] Peltier J B, Friso G, Kalume D E, et al. Proteomics of the chloroplast: systematicidentification and targeting analysis of lumenal and peripheral thylakoid proteins[J]. ThePlant Cell Online,2000,12(3):319-341.
    [124]张彩霞,李壮,陈莹,等.植物与病原菌互作的蛋白质组学研究进展[J].西北植物学报,2010,30(3):0626-0632.
    [125] Guo Y M, Shen S H, Jing Y X, et al. Plant proteomics in the post-genomic era[J]. ActaBotarica Sinica,2002,44(6):631-641.
    [126]贺林.解码生命[M].北京:科学出版社,2000.
    [127]张党权,谭晓风.蛋白质组学及其在植物研究中的应用[J].中南林学院学报,25(4):115-119.
    [128]潘瑞炽,植物生理学(第五版)[M],北京:高等教育出版社,2004.
    [129]王镜岩,生物化学(第三版)[M],北京:高等教育出版社,2002.
    [130] Miyao M, Murata N, Lavorel J, et al. Effect of the33-kDa protein on the S-state transitions inphotosynthetic oxygen evolution[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1987,890(2):151-159.
    [131]王乃兴.烟酰胺腺嘌呤二核苷酸磷酸与生物光化学[J].化学通报,2003,10:705-705.
    [132]李立人.核酮糖1,5-二磷酸羧化酶/加氧酶的结构,调节及遗传工程前景[J].生命科学,1989,01:14-17.
    [133]王德龙,叶武威,王俊娟,等.干旱胁迫下棉花SSH文库构建及其抗旱相关基因分析[J].作物学报,2010,36(12):2035-2044.
    [134]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社,2003.
    [135]黄锦文,李忠,陈军,等.不同杂交水稻籽粒灌浆期叶片蛋白的差异表达分析[J].中国生态农业学报,2011,19(1):75-81.
    [136]陈健,李建科.王浆高产蜜蜂(A.m.ligustica)与喀尼鄂拉蜂(A.m.carnica)幼虫期蛋白质组比较[J].中国农业科学,2008,41(10):3292-3299.
    [137]吴利民,陈键,田连福,等.水稻锚蛋白基因家族分析和锚定膜蛋白的表达模式研究[J].激光生物学报,2007,16(1):58-62.
    [138]胡开辉,黄桂英,颜松,等.斑玉蕈低温胁迫下菌丝体酶活变化及差异蛋白质组学研究[J].菌物学报,2009,28(4):584-590.
    [139] Roberts M R, Salinas J, Collinge D B.14-3-3proteins and the response to abiotic and bioticstress[J]. Plant molecular biology,2002,50(6):1031-1039.
    [140]孔令印,张耀洲.14-3-3蛋白家族及其临床应用研究进展[J].生物工程学报,2007,23(5):781-788.
    [141]崔娜,李天来,李悦.植物中14-3-3蛋白的主要功能[J].生物技术,2007,17(2):86-89.
    [142] Stotz H U, Long S R. Expression of the pea (Pisum sativum L.) α-tubulin gene TubA1iscorrelated with cell division activity[J]. Plant Molecular Biology,1999,41(5):601-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700