用户名: 密码: 验证码:
锑矿区植物重金属积累特征及其耐锑机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于对锑矿开采缺乏有效的规划与管理,以及对锑的不合理使用,致使我国土壤、水体及空气中锑含量急剧上升,对人类及整个生态系统的健康构成严重威胁。植物修复作为一种经济、高效且相对安全的环境修复技术具有广阔的应用前景。然而,由于锑修复植物材料的缺乏,加之对锑的植物毒性效应以及植物的耐锑机制不明确,致使锑污染治理过程中植物修复技术的应用于受到极大限制。因此,本研究通过在锑矿矿区开展植物对重金属的积累特征分析,评价其用于植物修复的潜力。并以筛选获得的耐锑植物芒为研究材料,开展植物在锑胁迫下的生理生化及蛋白质组学响应研究,深入了解锑的植物毒性效应及植物的耐锑机理,为获取理想的锑修复植物材料提供有效方法。主要研究结果如下:
     (1)锑矿矿区植物重金属积累特征研究。本研究通过在湖南省锡矿山锑矿矿区开展植物和土壤的实地调查,分析锑矿区植物不同组织重金属的积累特征。在调查的10种草本植物中,芒(Miscanthus sinensis)和白茅(Imperata cylindrica)具有汞(Hg)和镉(Cd)的植物萃取潜力,美洲商陆(Phytolacca americana)具有Cd和铅(Pb)的植物稳定潜力,苎麻(Boehmeria longispica)对砷(As)和锑(Sb)表现出较强的转移能力,繁穗苋(Amaranthus paniculatus)和芒可应用于Sb的植物稳定,狗牙根(Cynodon dactylon)可分别应用于As和Sb的植物稳定。其中,芒作为一种潜在的能源植物在修复锑污染的同时带来巨大的经济价值,是一种较为理想的锑修复植物材料。此外,本研究中发现的这些锑富集植物可用于植物耐锑机理的研究。
     (2)两种生态型芒对锑的积累特征及生长响应比较。矿区和非矿区生态型芒根部和叶片中的锑含量均随锑处理浓度增加而极显著上升。两种生态型芒对锑的富集主要位于根部,锑的转移系数范围为0.13~0.18。两种生态型芒不同组织对锑的积累量差异不显著,表明其在对锑的富集能力方面并无较大差异。锑的加入对不同生态型芒的生长、生物量均造成显著抑制,其中矿区生态型芒的苗高和根长较对照的减少率低于非矿区生态型芒;矿区生态型芒地上部分干重和地下部分干重较对照的下降量低于非矿区生态型芒,表明矿区生态型芒对锑的耐受性高于非矿区生态型芒。
     (3)锑胁迫下两种生态型芒的活性氧及渗透调节机制研究。锑胁迫会使两种芒叶片MDA含量增高,表明脂质过氧化反应加剧。其中,非矿区生态型芒MDA积累的幅度大于矿区生态型芒。同时,在芒对体内活性氧的调节过程中,矿区生态型芒SOD、CAT和POD活性随胁迫浓度增大而显著升高,而非矿区生态型芒POD活性被抑制,且除CAT活性外,SOD活性均低于矿区生态型芒。此外,在芒的渗透调节过程中,可溶性糖、脯氨酸含量均随胁迫浓度增大而显著升高,其中非矿区可溶性糖和脯氨酸含量增值均低于矿区生态型芒。结果表明:矿区生态型芒在锑胁迫下通过较高的抗氧化酶活性和渗透调节物质来增强其对锑的耐受性。
     (4)锑胁迫下矿区生态型芒的差异蛋白质组学研究。本研究通过运用双向电泳结合质谱鉴定技术,开展矿区生态型芒在锑胁迫下的蛋白质组学响应研究。通过分别开展芒叶片及根部在锑胁迫后差异蛋白组学研究,共获得48个差异蛋白质点,共成功鉴定了其中的31个差异蛋白,主要涉及自由氧调节、能量代谢、信号转导、细胞分裂及细胞结构稳定、蛋白折叠及组装和转录。此外,在本研究中发现一些差异蛋白在锑处理后均上调或诱导表达。其中包括:活性氧调节相关蛋白、伽马响应蛋白、CBS结构域蛋白、锌指蛋白、蛋白丝氨酸/苏氨酸激酶、热休克蛋白Hsp90、ACC氧化酶的同源蛋白、病程相关蛋白PR10等。这些蛋白可能在增强芒对锑的耐受性方面发挥重要作用,其中的一部分蛋白已被证实与植物环境胁迫的耐性相关。
     (5)锑对植物的毒性危害。通过开展芒在锑胁迫下的蛋白质组学响应研究发现,大量与活性氧调节相关的蛋白质被检测到。如:过氧化物酶Peroxidase73-like、过氧化物还原酶、抗坏血酸过氧化物酶、谷胱甘肽S-转移酶、氧化还原酶活性蛋白C-signal等。本研究结果从分子水平阐明氧化胁迫在锑对植物的毒害过程中起到主要作用。
In recent years, due to the lack of effective planning and management of the antimonymining activities and irrational use of antimony, the antimony content in the soil, water and airrose sharply, which posed a serious threat to the health of humans and the entire ecosystem.Phytoremediation as an economic, efficient and relatively safe environmental remediationtechnology has broad application prospects. However, the lack of plant materials for antimonyphytoremediation and undefined mechanism about the antimony phytotoxicity andtolerance inplants made the phytoremediation technology for antimony pollution management extremelyrestricted. Therefore, the current research was carried out to analyze the characteristics ofheavy metal accumulation in plants through the antimony mining areas to assess the potentialsof phytoremediaiton in these plants. Besides, antimony-tolerant plant Miscanthus sinensis wasused to study plant physiology, biochemistry and proteomics response under antimony stresswhich provided an effective method for the understanding of the mechanism of antimonyphytotoxicity and tolerance in plant, which provide an effective method for obtaining idealplant material for antimony phytoremediation.The major results are summarized as follows:
     (1) Research on the characteristics of heavy metal accumulation in plants grown on anantimony mining areas. A field survey of plants and associated soil in an antimony mining areaof Xikuangshan, Hunan Province, China was conducted to identify species that accumulateheavy metals in their tissues. Of the10herbaceous plants, Miscanthus sinensis and Imperatacylindrica exhibited Hg and Cd phytoextraction potentials. Boehmeria longispica was capableof accumulating Sb and As in its shoots. Moreover, Phytolacca americana could be used forthe phytostabilization of Pb and Cd, Amaranthus paniculatus and Miscanthus sinensis could beused for Sb stabilization, Cynodon dactylon had considerable potential for As and Sbstabilization. Additionally, Miscanthus sinensis considered as a potential energy plant couldbring amount of economic value during its Sb phytoremediation, recognized as a ideal material for Sb phytoremediation. Besides, all these Sb accumulation plants could be used for the studyon plant tolerant mechanism of Sb.
     (2) Comparison of characteristics in antimony accumulation and growth responses underantimony stress between two ecotypes of Miscanthus sinensis. The content of antimonyconcentration in mine and non-mine eco-Miscanthus sinensis roots and leaves increasedsignificantly with increasing concentration in treatments. Antimony in these two plants weremainly accumulated in its roots with transfer coefficient ranges from0.13to0.18. Differentorganizations of the two ecotypes was not significant different in antimony accumulation,indicating that there were not big difference in capacity of antimony uptake. Antimony addedon different ecotypes Miscanthus sinensis caused significant inhibition on its growth andbiomass. Besides the reduction rate of seedling height and root length in mine eco-Miscanthussinensis compared with the control was lower than the non-mine eco-Miscanthus sinensis.Meanwhile, the dry weight of eco-Miscanthus sinensis shoot and root decline less than thenon-mine eco-Miscanthus sinensis compared with the control, which indicate that the mineeco-Miscanthus sinensis possessed a higher antimony tolerance than the non-mineeco-Miscanthus sinensis.
     (3) Reactive oxygen and osmotic adjustment mechanism of the two eco-Miscanthussinensis under antimony stress. The antimony stress cause a increase content of MDA in botheco-Miscanthus sinensis leaves, which indicated that lipid peroxidation were aggravated.Among them, the MDA accumulation in non-mining eco-Miscanthus sinensis were greaterthan the mining. Meanwile, as to the adjustment process of ROS regulation, SOD, CAT andPOD activities in mining eco-Miscanthus sinensis rose significantly higher while the PODactivities in non-mining eco-Miscanthus sinensis were inhibited.Except for CAT, SODactivities in non-mining eco-Miscanthus sinensis were lower than the mine one. As to theosmotic adjustment process, soluble sugar and proline content increased significantly with theincreased antiomny concentration in both tow ecotypes. Among them, the increasing rate ofsoluble sugar and proline contentin non-mining eco-Miscanthus sinensis were lower than mining one. The results showed that mining eco-Miscanthus sinensis enhanced its antimonytolerance through higher antioxidant enzyme activities and osmotic adjustment matters.(4) Comparative proteomics research on the mining eco-Miscanthus sinensis under antimonystress. In this study, two-dimensional electrophoresis combined with mass spectrometricidentification technology were carry out to analyze proteomic response of miningeco-Miscanthus sinensis to antimony Stress. Comparative proteomics research were carried inboth leaves and roots under antimony stress. A total of48different protein spots were gainedand31spots were successfully identified. The results showed that these proteins were mainlyinvolved in free oxygen regulation, energy metabolism, signal transduction, cell division andcell structure stability, Protein folding and assembling, and transcription. In addition, severaldifferent proteins were upregulated or induced by the antimony stress including active oxygenregulator protein, gamma response proteins, CBS domain protein, zinc finger protein, proteinserine/threonine kinase, heat shock protein Hsp90, ACC oxidase homolog,pathogenesis-related protein PR10. These proteins might playe important roles in enhancingthe antimony tolerance, part of which had been identified to be associated with plantenvironmental stress tolerance.
     (5) Phytoxicity of Antimony. A large number of active oxygen regulator proteins weredetected through the proteomic study on Miscanthus sinensis responses to antimony stress,including Peroxidase Peroxidase73-like peroxide reductase, ascorbate peroxidase, glutathioneS-transferase enzyme, C-signal protein with oxidoreductase activity. The results clarified thatoxidative stress play a major role in antimony phytotoxicity at the molecular level.
引文
Abercrombie J M, Halfhill M D, Ranjan P, et al. Transcriptional responses of Arabidopsis thaliana plants toAs (V) stress. BMC Plant Biology,2008,8:87
    Adriano D C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks ofMetals.2nd Edition, Springer Verlag, New York,2001
    Ahsan N, Lee D G, Alam I, et al. Comparative proteomic study of arsenic-induced differentially expressedproteins in rice roots reveals glutathione plays a central role during As stress. Proteomics,2008,8(17):3561~3576
    Ahsan N, Lee D G, Lee S H, et al. Excess copper induced physiological and proteomic changes ingerminating rice seeds. Chemosphere,2007,67(6):1182~1193
    Ahsan N, Lee S H, Lee D G, et al. Physiological and protein profiles alternation of germinating riceseedlings exposed to acute cadmium toxicity. Comptes Rendus Biologies,2007,330(10):735~746
    Aina R, Labra M, Fumagalli P, et al. Thiol~peptide level and proteomic changes in response to cadmiumtoxicity in Oryza sativa L. roots. Environmental and Experimental Botany,2007,59(3):381~392
    Ainsworth N, Cooke J A, Johnson M S. Distribution of Antimony in Contaminated Grassland.1. Vegetationand Soils, Environmental Pollution,1990,65(1):65~77
    Alina K P, Henryk P. Trace Elements in Soils and Plants. CRC Press: Boca Raton, FL.1984
    Alloway B J, Jackson A P, Morgan H. The Accumulation of Cadmium by Vegetables Grown on SoilsContaminated from a Variety of Sources. The Science of the total Environment,1990,91:223~236
    álvarez-Ayuso E, Otones V, Murciego A, et al. Mobility and phytoavailability of antimony in an areaimpacted by a former stibnite mine exploitation. Science of the total environment,2013,449:260~268
    Anawar H M, Freitas M C, Canha N, et al. Arsenic, antimony, and other trace element contamination in amine tailings affected area and uptake by tolerant plant species. Environmental Geochemistry andHealth,2011,33(4):353~362
    Anil K S, Ritesh K, Ashwani P, et al. Overexpression of Rice CBS Domain Containing Protein ImprovesSalinity, Oxidative, and Heavy Metal Tolerance in Transgenic Tobacc. Molecular biotechnology,2012,52(3):205~216
    Ar k F,. Yald z T. Heavy Metal Determination and Pollution of the Soil and Plants of Southeast Tav anl(Kütahya, Turkey). Clean: Soil, Air, Water,2010,38(11):1017~1030
    Asada K. Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum,1992,85(2):235~241
    Baker A J M, Brooks R R. Terrestrials Higher Plants Which Hyperaccumulate Metallic Elements. A Reviewof Their Distribution, Ecology and Phytochemistry. Biorecovery,1989,1:81~126
    Baroni F, Boscagli A, Protano G, et al. Antimony Accumulation in Achillea ageratum, Plantago lanceolataand Silene vulgaris Growing in an Old Sb-mining Area. Environmental Pollution,2000,109(2):347~352
    Berggren K, Chernokalskaya E, Steinberg T H, et al. Background~free, high sensitivity staining of proteinsin one~and two~dimensional sodium dodecyl sulfate~polyacrylamide gels using a luminescentruthenium complex. Electrophoresis,2000,21(12):2509~2521
    Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellularmechanisms. Archives of Toxicology,2008,82(3):493~512
    Bhuiyan M A, Parvez L, Isam M A, et al. Heavy~metal Pollution of Coal Mine~affected Agricultural Soilsin the Northern Part of Bangladesh. Journal Hazardous Material,2010,173(1-3):384~392
    Bona E, Marsano F, Cavaletto M, et al. Proteomic characterization of copper stress response in Cannabissativa roots. Proteomics,2007,7(7):1121~1130
    Canepa D, Izza G, Facco S, et al. Official Methods of Chemical Analysis of Soil (in Italian). Ministry ofAgriculture, Food and Forestry,1994,87~93
    Chang A C, Pan G, Page A L, et al. Developing human health-related chemical guidelines for reclaimedwaster and sewage sludge applications in agriculture. World Health Organization EuropeanEnvironmental Bureau,2002,94
    Clemens S. Molecular mechanisms of plant metal toler~ance and homeostasis. Planta,2001,212(4):475~486
    Conesa H M, García, G, Fazá, et al. Dynamics of metal tolerant plant communities’ development in minetailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for furtherrevegetation purposes. Chemosphere,2007,68(6):1180~1185
    Davis R D, Beckett P H T, Wollan E. et al. Critical Levels Of20Potentially Toxic Elements In Young SpringBarley. Plant and Soil,1978,49(2):395~408
    Detmar B, Andrea H. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms.Archives of Toxicology,2008,82(8):493~512
    Duquesnoy I, Goupil P, Nadaud I, et al. Identification of Agrostis tenuis leaf proteins in response to As(V)and As(III) induced stress using a proteomics approach. Plant Science,2009,176(2):206~213
    Edreva A. Pathogenesis~related proteins. Research progress in the last15years. Gen. Appl. PlantPhysiol.2005,31(1-2):105~124
    Elizabeth A H P, John L F. Environmental cleanup using plants: biotechnological advances and ecologicalconsiderations. Frontiers in Ecology and Environment,2006,4(4):203~210
    Elizabeth Pilon~Smits. Phytoremediation. Annual Review of Plant Biology,2005,56:15~39
    Fagioni M, D'Amici G M, Timperio A M, et al. Proteomic analysis of multiprotein complexes in thethylakoid membrane upon cadmium treatment. Journal of Proteome Research,2009,8(1):310~326
    Fecht-Christoffers M M, Braun H P, Lemaitre-Guillier C, et al. Effect of manganese toxicity on the proteomeof the leaf apoplast in cowpea. Plant Physiology,2003,133(4):1935~1946
    Feng R W, Wei C Y, Tu S X, et al. Antimony accumulation and antioxidative responses in four fern plants.Plant and Soil,2009,317(1-2):93~101
    Feng R W, Wei C Y, Tu S X, et al. Detoxification of antimony by selenium and their interaction in paddy riceunder hydroponic conditions. Microchem Journal,2011,97(1):57~61.
    Feng R, Wei C, Tu S, et al. Simultaneous hyperaccumulation of arsenic and antimony in Cretan brakefern:Evidence of plant uptake and subcellular distributions. Microchemical Journal,2011,97(1):38~43
    Filella M, Belzile N, Chen Y W. Antimony in the environment: a review focused on natural waters I.Occurence. Earth~Science Reviews,2002,57(1-2):125~176
    Fitz W J, Wenzel W W. Arsenic Transformation in the Soil-Rhizosphere-plant System, Fundamentals andPotential Application of Phytoremediation. Journal of Biotechnology,2002,99(3):259~278
    Fowler, B A, Goering, P L Antimony. In: Merian, E.(ed.) Metals and their Compounds in theEnvironment,VCH, Weinheim, New York, Basel, Cambridge,1991
    Foyer C H, Descourvierse P, Kunert K J. Protection against oxygen radicals: an important defensemechanism studied in transgenic plants. Plant Cell Environment,1994,17(5):507~523
    Führs H, Hartwig M, Molina L E, et al. Early manganese~toxicity response in Vigna unguiculata L.~aproteomic and transcriptomic study. Proteomics,2008,8(1):149~159
    Fukuda T, Saito A, Wasaki J, et al. Meta~bolic alterations proposed by proteome in rice roots grown underlow P and high Al concentration under low pH. Plant Science.2007,172(6):1157~1165
    Ghosh M, Singh S P. A Comparative Study of Cadmium Phytoextraction by Accumulator and Weed Species.Environmental Pollution,2005,133(2):365~371
    Gillet S, Decottignies P, Chardonnet S, et al. Cadmium response and redoxin targets in Chlamydomonasreinhardtii: A proteomic approach. Photosynthesis Research,2006,89(2-3):201~211
    Giovanna V, Marta M, Nelson M. Two-dimensional liquid chromatography technique coupled with massspectrometry analysis to compare the proteomic response to cadmium stress in plants. Journal ofBiomedicine and Biotechnology,2010, doi:10.1155/2010/567510
    Gonnelli C, Galardi F, Gabbrielli G. Nickel and copper tolerance and toxicity in three Tuscan populations ofSilene paradoxa. Physiologia Plantarum,2001,113(4):507~514
    Hajduch M, Rakwal R, Agrawal G K. et al. High-resolution two-dimensional electrophoresis separation ofproteins from metal~stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentation ofribu-lose-1,5-bisphosphate carboxylase/oxygenase and induction of stress~related proteins.Electrophoresis,2001,22(13):2824~2831
    Hare P D, Cress W A, Van S J. Disseeting the roles of osmolyte accumulation during stress. Plant Cell andEnvironmanet,1998,21(6):535~553
    Hartley-Whitaker J, Ainsworth, Meharg A A. Copper and arsenate-induced oxidative stress inHolcus lanatusL.clones with differential sensitivity. Plant, Cell and Environment,2001,24(7):713~722
    Haydon M J, Cobbett C S. Transporters of ligands for essential metal ions in plants. New Phytologist,2007,174(3):499~506
    He M C, Wang X Q, Wu F C, et al. Antimony pollution in China. Science of the Total Environment,2012,421~422:41~50
    He M C, Yang J R. Effects of different forms of antimony on rice during the period of germination andgrowth and antimony concentration in rice tissue. Science of the Total Environment,1999,243-244:149~155
    He M C. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan,China. Environmental Geochem istry and Health,29(3):209~219
    Heckathorn S A, Mueller J K, Laquidice S, et al. Chloroplast small heat~shock proteins protectphotosynthesis during heavy metal stress. American Journal of Botany,2004,91(9):1312~1318
    Hodges D M, DeLong J M, Forney C F, et al. Improving the thiobarituric acid~reactive~substances assey forestimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.Planta,1999,207(4):604~611
    Huang H, Shu S C, Shih J H, et al. Antimony trichloride induces DNA damage and apoptosis in mammaliancells. Toxicology,1998,129(2-3):113~23
    Huang J, Sun S J, Xu D Q, et al. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerancesin transgenic rice (Oryza sativa L). Plant Molecular Biology,2012,80(3):337~350
    Ingle R A, Smith J A C, Sweetlove L J. Responses to nickel in the proteome of the hyperaccumulator plantAlyssum lesbiacum. Biometals,2005,18(6):627~641
    Isaure M P, Fraysse A, Devès G, et al. Microchemical imaging of cesium distribution in Arabidopsisthaliana plant and its interaction with potassium and essential trace elements. Biochimie,2006,88(11):1583~1590
    Jana U, Chassany V, Bertrand G, et al. Analysis of arsenic and antimony distribution within plants growingat an old mine site in Ouche (Cantal, France) and ide ntification of species suitable for site revegetation.Journal of Environmental Management,2012,110:188~193
    John P, Kris F, Andrew C, et al. Increased abundance of proteins Involved in phytosiderophore production inBoron-tolerant Barley. Plant Physiology,2007,144(3):1612~1631
    Kabata-Pendias A, Pendias H. Trace Elements in Soil&Plants, CRC Press, Boca Raton, USA,2000
    Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants. CRC Press: Boca Raton, FL (USA),1984
    Kabata-Pendias A. Trace Elements in Soil&Plants. CRC Press, Boca Raton, USA,2000
    Kellermann J. ICPL-isotope-coded protein label. Methods in Molecular Biology,2008,424:113~123
    Kennedy S. The role of proteomics in toxicology: identification of biomarkers of toxicity by proteinexpression analysis. Biomarkers,2002,7(4):269~290
    Kieber J J.The ethylene response pathway in Arabidopsis. Annual Review of Plant Physiology and PlantMolecular Biology.1997,48:277~296
    Kieffer P, Dommes J, Hoffmann L, et al. Quantitative changes in protein expression of cadmium-exposedpoplar plants. Proteomics,2008,8(12):2514~2530
    Kieffer P, Planchon S, Oufir M, et al. Combining proteomics and metabolite analyses to unravel cadmiumstress-response in poplar leaves. Journal of Proteome Research,2009,8(1):400~417
    Kim S T, Yu S, Kang Y H, et al. The rice pathogen~related protein10(JIOsPR10) is induced by abiotic andbiotic stresses and exhibits ribonuclease activity. Plant Cell Reports,2008,27(3):593~603
    Kovácik J, Klejdus B. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricariachamo~millaroots. Plant Cell Reports,2008,27(3):605~615
    Kovalchuk I, Titov V, Hohn B, et al. Transcriptome profiling reveals similarities and differences in plantresponses to cadmium and lead. Mutation Research,2005,570(2):149~161
    Kr mer U, Cotter~Howells J D, Charnock J M, et al. Free histidine as a metal chelator in plants thataccumulate nickel. Nature,1996,379:635~638
    Ku S, Babiychu K E, Kam P K, et al. Characterization of A rabidopsis thaliana cDNAs that render yeaststolerant toward the thiol-oxidizing drug diamide. Proc Natl Acad Sci USA,1995,92(23):10580~10584
    Kumar S P, Varrman P A M, Kumari B D R. Identification of differentially expressed proteins in response toPb stress in Catharanthus roseus. African Journal of Environmental Science and Technology,2011,5:689~699
    Kung C C, Huang W N, Huang Y C, et al. Proteomic survey of copper-binding proteins in Arabidopsis rootsby immobilized metal affinity chromatography and mass spectrometry. Proteomics,2006,6(9):2746~2758
    Labra M, Gianazza E, Waitt R, et al. Zea mays L. protein changes in response to potassium dichromatetreatments. Chemosphere,2006,62(8):1234~1244
    Lee K, Bae D W,Kim S H, et al. Comparative proteomic analysis of the short~term responses of rice rootsand leaves to cadmium. Journal of Plant physiology,2010,167(3):161~168
    Lee S B, Lee Y B, Le C H, et al. Characteristics of Boron Accumulation by Fly Ash Application in PaddySoil. Bioresour. Technol.2008,99(13):5928~5932
    Lewandowski I, Kicherer A, Vonier P. CO2-balance for the cultivation and combustion of Miscanthus.Biomass and Bioenergy,1995,8(2):81~90
    Li F, Shi J, Shen C, et al. Proteomic characterization of copper stress response in Elsholtzia splendens rootsand leaves. Plant Molecular Biology,2009,71(3):251~263
    Li W X, Chen T B, Huang Z C, et al. Effect of arsenic on chloroplast ultrastructure and calcium distributionin arsenic hyperaccumulator Pteris vittata L. Chemosphere,2006,62(5):803~809
    Liu G S, Jiang N H, Zhang L D, et al. Soil Physical and Chemical Analysis Description of Soil Profiles.Beijing: China Standard Press,1996
    Liu G, Zheng L, Nurdan S, et al. Health effects of arsenic,fluorine, and selenium from indoor burning ofChinese coal. Reviews of Environmental Contamination and Toxicology,2007,189:89~106
    Liu X, Tanaka M, Matsui Y. Generation amount prediction and materialflow analysis of electronic waste: acase study in Beijing, China. Waste Management&Research,2006,24(5):434~445
    Liu X, Zhang S, Shan X, et al. Toxicity of arsenate and arsenite on germination seedling growth andamylolytic activity of wheat. Chemosphere,2005,61(2):293~301
    L sch R. in: Prasad M N V (Eds), Heavy Metal Stress in Plants: From Biomolecules to Ecosystems,Springer and Narosa Publishing House, New Delhi, India,2004,182~200
    Luque-Garcia J L, Cabezas~Sanchez P, Camara C. Proteomics as a tool for examining the toxicity of heavymetals. Trends in Analytical Chemistry,2011,30(5):703~716
    Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids.Trends in Plant Science.2001,6(6):273~278
    Maksymiec W, Wianowska D, Dawidowicz A L, et al. The level of jasmonic acid in Arabidopsis thaliana andPhaseolus coccineus plants under heavy metal stress. Journal of Plant Physiology.2005,162(12):1338~1346
    Mann M. Functional and quantitative proteomics using SILAC. Nature Review Molecular Cell Biology,2006,7:952~958
    Marion F C, Hans~Peter B, Christelle L G, et al. Effect of manganese toxicity on the proteome of the leafapoplast in cowpea. Plant Physiology,2003,133(4):1935~1946
    Martin R C, Glover-Cutter K, Baldwin J C, et al. Identification and characterization of a salt stress-induciblezinc finger protein from Festuca arundinacea. BMC Research Notes,2012,5:66doi:10.1186/1756-0500-5-66
    Martinoia E, Maeshima M, Neuhaus H E. Vacuolar transporters and their essential role in plant metabolism.Journal of Experimental Botany,2007,58(1):83~102
    Minden J S, Dowd S R, Meyer H E, et al. Difference gel electrophoresis. Electrophoresis,2009,30(S1):S156~S161
    Molina J A, Oyarzun R, Esbrí M J, et al. Mercury Accumulation in Soils and Plants in the Almadén MiningDistrict, Spain: One of the Most Contaminated Sites on Earth. Environmental Geochemistry and Health,2006,28(5):487~498
    Moons A. Osgstu3and osgtu4, encoding tau class glutathione S-transferases, are heavy metal~and hypoxicstressinduced and differentially salt stress-responsive in rice roots. FEBS Letters.2003,553(3):427~432
    Nguyen T H, Sakakibara M, Sano S, et al. The Potential of Eleocharis acicularis for Phytoremediation: CaseStudy at an Abandoned Mine Site. Clean: Soil, Air, Water,2009,37(3):203~208
    Nguyen T H, Sakakibara M, Sano S, et al. Uptake of Metals and Metalloids by Plant Growing in aLead~Zinc Mine Area, Northern Vietnam. Journal of Hazardous. Material,2011,186(2-3):1384~1391
    Nguyen T H, Sakakibara M, SanoS, Phytoremediation of Sb, As, Cu, and Zn from Co-ntaminated Water bythe Aquatic Macrophyte Eleocharis acicularis, Clean: Soil, Air, Water,2009,37(9):720~725
    Nicolardi V, Cai G, Parrotta L, et al. The adaptive response of lichens to mercury exposure involves changesin the photosynthetic machinery. Environmental Pollution,2012,160(1):1~10
    Noriega G O, Balestrasse K B, Batlle A, et al. Cadmium induced oxidative stress in soybean plants also bythe accumulation of delta-aminolevulinic acid. Biometals,2007,20(6):841~851
    Norton G J, Lou-Hing D E, Meharg A A, et al. Rice-arsenate interactions in hydroponics: whole genometranscriptional analysis. Journal of Experimental Botany,2008,59(8):2267~2276
    Okuda T, Katsuno M, Naoi D, et al. Trends in hazardous trace metal concentrations in aerosols collected inBeijing, China from2001to2006. Chemosphere,2008,72(6):917~924
    Pan X L, Zhang D Y, Chen X, et al. Antimony Accumulation, Growth Performance, Antioxidant DefenseSystem and Photosynthesis of Zea mays in Response to Antimony Pollution in Soil.Water, Air, and SoilPollution,2011,215(1-4):517~523
    Patterson J, Ford K, Cassin A, et al. Increased abundance of proteins involved in phytosiderophoreproduction in boron~tolerant barley. Plant Physiology,2007,144(3):1612~1631
    Pinkerton M, Kociba R, Petrella R. A preliminary report on the investigation of the comparative toxicity ofcombustion products of high impact polystyrene with and without decabrom idiphenyloxide/antimonytrioxide as a flame retardant using2,3,7,8-tetrabrom odibenzopdioxin and2,3,7,8-tetrabromodibenzofuran as positive controls. Chemosphere,1989,18:1243~1249
    Pratas J, Prasad M N, Freitas H, et al. Plants Growing in Abandoned Mines of Portugal are Useful forBiogeochemical Exploration of Arsenic, Antimony, Tungsten and Mine Reclamation. Journal ofGeochemical Exploration,2005,85(3):99~107
    Qi C C, Wu F C, Deng Q J, et al. Distribution and accumulation of antimony in plants in the super-large Sbdeposit areas, China. Microchemical Journal,2011,97(1):44~51
    Qi C, Liu G, Chou C, et al. Environmental geoche mistry of antimony in Chinese coals. Science of the TotalEnvironment,2008,389(2-3):225~234
    Ranjeev K S, Ram N, Vishal C. Accumulation of Metals in Naturally Grown Weeds (Aquatic Macrophytes)Grown on an Industrial Effluent Channel. Clean: soil, air, water.2007,35(3):261~265
    Requejo R, Tena M. Maize response to acute arsenic toxicity as revealed by proteome analysis of plantshoots. Proteomics,2006,6(S1): S156~S162
    Robinson B H. E~waste: an assessment of global production and environmental impacts. Science of theTotal Environment,2009,408(2):183~191
    Rodríguez-Serrano M, Romero-Puertas M C, Zabalza A, et al. Cadmium effect on oxidative metabolism ofpea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo.Plant Cell Environment.2006,29(8):1532~1544
    Roskill. The economy of antimony10th edtion. http://www.roskill.com/reports/minor-and-light-metals/antimony,2007
    Roth U, von Roepenack-Lahaye E, Clemens S. Proteome changes in Arabidopsis thaliana roots uponexposure to Cd2+. Journal of Experimental Botany,2006,57(15):4003~4013
    Sahr T, Voigt G, Paretzke H G, et al. Caesium~affected gene expression in Arabidopsis thaliana. NewPhytologist,2005,165(3):747~754
    Sakakibara M, Ohmori Y, Nguyen H T, et al. Phytoremediation of Heavy Metal Contaminated Water andSediment by Eleocharis acicularis. Clean: Soil, Air, Water,2011,39(8):735~741
    Salt D E, Blaylock M, Kumar N P, et al. Phytoremediation: A Novel Strategy for the Removal of ToxicMetals from the Environment Using Plants, Biotechnology,1995,13(5):468~474
    Saravanan R S, Rose J K. A critical evaluation of sample extraction techniques for enhanced proteomicanalysis of recalcitrant plant tissues. Proteomics,2004,4(9):2522~2532
    Sarry J E, Kuhn L, Ducruix C, et al. The early responses of Arabidopsis thaliana cells to cadmium exposureexplored by protein and metabolite profiling analyses. Proteomics,2006,6(7):2180~2198
    Schutzendubel A, Polle A. Plant responses to abiotic stresses: heavy~metal induced oxidative stress andprotection by mycorrhization. Journal of experimental botany,2002,53(372):1351~1365
    Sentaro T, Hiroshi S, Yoshihisa K,et al. Inhibition of DNA~double strand break repair by antimonycompounds. Toxicology,2002,180(3):249~256
    Sgherri C, Cosi E, Navari-Izzo F. Phenols and antioxidative status of Raphanus sativus grown in copperexcess. Physiologia Plantarum,2003,118(1):21~28
    Shanker A K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants. Environment International,2005,31(5):739~753
    Sharmin S A, Alam I, Kim K H, et al. Chromium~induced physiological and proteomic alterations in rootsof Miscanthus sinensis. Plant Science,2012,187:113~126
    Shtangeeva I, Bali R, Harris A. Bioavailability and toxicity of antimony. Journal of Geochemical Exploration,2011,110(1):40~45
    Singla~Pareek S L, Yadav S K, Pareek A, et al. Transgenic tobacco overexpressing glyoxalase pathwayenzymes grow and set viable seeds in zinc~spiked soils. Plant Physiology,2006,140(2):613~623
    Smith A P, DeRidder B P, Guo W J, et al. Proteomic analysis of arabidopsis glutathione S~transferases fromBenoxacor~and copper~treated seedlings. Journal of Biological Chemistry,2004,279(25):26098~26104
    Sobkowiak R, Deckert J. Proteins induced by cadmium in soybean cells. Journal of Plant Physiology,2006,163(11):1203~1206
    Sun F H,Wu F C, Liao H Q, et al. Biosorption of antimony(V)by freshwater cyanobacteria Microcystisbiomass: Chemical modification and biosorption mechanisms. Chemical Engineering Journal,2011,171(3):1082~1090
    Takahashi S, Sato H, Kubota Y. et al. Inhibition of DNA-double strand break repair by antimony compounds.Toxicology,2002,180(3):249~256
    Tian H, Zhao D, He M, et al. Temporal and spatial distribution of atmospheric antimony emissioninventories from coal combustion in China. Environmental Pollution,2011,159(6):1613~1619
    Tschan M, Robinson B H, Nodari M, et al. Antimony uptake by different plant species from nutrientsolution, agar and soil. Environmental Chemistry,2009,6(2):144~152
    Tschan M, Robinson B H, Nodari M, et al. Antimony uptake by different plant species from nutrient solution,agar and soil. Environmental Chemistry,2009,6(2):144~152
    Tschan M, Robinson B, Schulin R. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) fromnutrient solution. Environmental Geochem istry and Health,2009,30(2):187~191
    Tuomainen M H, Nunan N, Lehesranta S J, et al. Multivariate analysis of protein profiles of metalhyperaccumulator Thlaspi caerulescens accessions. Proteomics,2006,6(12):3696~3706
    Turner J G, Ellis C, Devoto A. The jasmonate signal pathway. Plant Cell,2002,14: S153~S164
    U.S.Environmental Protection Agency, Microwave Assisted Acid Digestion of Siliceous and OrganicallyBased Matrices, USEPA SW-846; Method3052,1996
    van Loon L C, Rep M, Pieterse C M. Significance of inducible defense~related proteins in infected plants.Annual Reviews.Phytopathology,2006,44:135~162
    Vannini C, Domingo G, Marsoni M, et al. Proteomic changes and molecular effects associated with Cr(III)and Cr(VI) treatments on germinating kiwifruit pollen. Phytochemistry,2011,72(14-15):1786~1795
    Vannini C, Marsoni M, Domingo G, et al. Proteomic analysis of chromate-induced modifications inPseudokirchneriella subcapitata. Chemosphere,2009,76(10):1372~1379
    Vasconcelos M T, Azenha M, de Freitas V. Role of polyphenols in copper complexation in red wines. Journalof Agricutural and Food Chemistry.1999,47(7):2791~2796
    Wang J Y, Xia X L,Wang J P. Stress Responsive Zinc-finger Protein Gene of Populus euphratica in TobaccoEnhances Salt Tolerance. J Integr Plant Biol,2008,50(1):56~61
    Wang W, Scali M, Vignani R, et al. Protein extraction for two-dimensional electrophoresis from olive leaf, aplant tissue containing high levels of interfering compounds. Electrophoresis,2003,24(14):2369~2375
    Wang X Q, He M C, Xi J H. et al. Antimony distribution and mobility in rivers around the world’s largestantimony mine of Xikuangshan, Hunan Province, China. Microchemical Journal,2011,97(1):4~11
    Watanabe N, Inoue S, Ito H. Antimony in municipal waste. Chemosphere,1999,39(10):1689~1698
    Weber M, Trampczynska A, Clemens S. Comparative transcriptome analysis of toxic metal responses inArabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. PlantCell and Environment,2006,29(5):950~963
    Wei C Y, Deng Q J, Wu F C, et al. Arsenic, Antimony, and Bismuth Uptake and Accumulation by Plants inan Old Antimony Mine, China. Biological Trace Element Research,2011,144(1-3):1150~1158
    Wildes D, Wells J A. Sampling the N-terminal proteome of human blood. Proceeding of the NationalAcademy of Sciences of the United States of America,2010,107(10):4561~4566
    Williams L E, Pittman J K, Hall J L. Emerging mechanisms for heavy metal transport in plants.Biochim.Biochimica et Biophysica Acta (BBA),2000,1465(1-2):104~126
    Winkel~Shirley B. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology,2002,5(3):218~223
    Wu F C, Fu Z Y, Liu B J, et al. Health risk associated with dietary co~exposure to high levels of antimonyand arsenic in the world's largest antimony mine area. Science of the Total Environment,2011,409(18):3344~3351
    Yakimova E T, Kapchina-Toteva V M, Laarhoven L J. et al. Involvement of ethylene and lipid signalling incadmium~induced programmed cell death in tomato suspension cells. Plant Physiology. Biochem,2006,44(10):581~589
    Yang Q, Wang Y, Zhang J, et al. Identification of aluminum-responsive proteins in rice roots by a proteomicapproach: cysteine synthase as a key player in Al response. Proteomics,2007,7(5):737~749
    Yoon J, Cao X, Zhou Q, et al. Accumulation of Pb, Cu, and Zn in Native Plants Growing on a ContaminatedFlorida Site. Science of the Total Environment,2006,368(2-3):456~464
    Yoshiyama K, Conklin P A, Huefner, et al. Suppressor of gamma response1(SOG1) encodes a putativetranscription factor governing multiple responses to DNA damage. Proc Natl Acad Sci USA.2009,106(31):12843~12848
    Zhang D Y, Pan X L, Mu G J, et al. Toxic effects of antimony on photosystem II of Synechocystis sp. asprobed by in vivo chlorophyll fluorescence. Journal of Applied Phycology,2010,22(4):479~488
    Zhang H, Ma D, Xie Q, et al. An approach to studying heavy metal pollution caused by modern citydevelopment in Nanjing, China. Environmental Geology,1999,38(3):223~228
    Zhang W H, Cai Y, Tu C, et al. Arsenic Speciation and Distribution in an Arsenic Hyperaccumulating Plant.The Science of the total Environment,2002,300(1-3):167~177
    Zhang X Y, Tang L S, Zhang G. Heavy metal contamination in a typical mining town of a minority andmountain area, south China. Bulletin of Environmental Contamination and Toxicology,2009,82(1):31~38
    Zhao L, Sun Y L, Cui S X, et al. Cd-induced changes in leaf proteome of the hyperaccumulator plantPhytolacca Americana. Chemosphere,2011,85(1):56~66
    Zhao L, Zhang F S, Wang K, et al. Chemical properties of heavy metals in typical hospital waste incineratorashes in China. Waste Management,2009,29(3):1114~1121
    Zhen Y, Qi J L, Wang S S, et al. Comparative proteome analysis of differentially expressed proteins inducedby Al toxicity in soybean. Physiologia Plantarum,2007,131(4):542~554
    Zhou S P, Sauvé R, Thannhauser T W. Proteome changes induced by aluminium stress in tomato roots.Journal of Experimental Botany,2009,60(6):1849~1857
    Zhu J K, Shi J, Bressan R A, et al. Expression of an A triplex nummularia gene encoding a proteinhomologous to the bacterial molecular chaperone DnaJ. Plant Cell,1993,5(3):341~349
    Zieske L R. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies.Journal of Experimental Botany,2006,57(7):1501~1508
    曾凡荣.水稻铬毒害和耐性的生理与分子机理研究.浙江大学博士论文,2010
    陈丽,王炼,王振英等.Cd2+对番茄幼苗生长和蛋白质组的影响.作物学报,2010.36(12):2154~2161
    党晨,高越,阎晗等.利用蛋白质组技术分析Cd2+对萝卜幼苗生长的影响.中国生态农业学报,2012,20(2):231~235
    范希峰,左海涛,侯新村等.芒和荻作为草本能源植物的潜力分析.中国农学通报,2010,26(14):381~387
    冯人伟.植物对砷、硒、锑的富集及抗性机理研究.华中农业大学博士论文,2009
    国土资源部信息中心.世界矿产资源年评(2004—2005).北京:中国地质出版社,2006
    郝再彬,苍晶,徐仲.植物生理实验.哈尔滨:哈尔滨大学出版社,2004,101~108
    何孟常,谢南岳,余维德等.土壤锑对水稻生长的影响及残留积累规律研究.农业环境保护,1994,13(1):18~22
    江雪飞,乔飞,邹志荣.不同生育期咸水灌溉对甜瓜叶片膜脂过氧化及保护酶活性的影响.西北植物学报,2007,27(6):1197~1201
    焦健,李朝周,黄高宝.钴对干旱胁迫下大豆幼苗叶片的保护作用及其机理.应用生态学报,2006,17(5):796~800
    解新明,周峰,赵燕慧等.多年生能源禾草的产能和生态效益.生态学报,2008,28(5)2:329~2342
    金晓芬.镉超积累植物东南景天(Sedum alfredii)谷胱甘肽代谢特征及比较蛋白质组学研究.浙江大学博士论文,2008
    蓝唯源,宋书巧,吴浩东等.土壤三价锑污染对甜芥菜生长及品质的影响研究.环境科学与技术,2009,32(2):20~23
    刘俊祥,孙振元,勾萍等,镉胁迫下多年生黑麦草的光合生理响应.草业学报,2012,26(3):191~197
    卢国栋,张克山,刘永杰等.蛋白质组学样品处理方法研究进展.中国动物检疫,2011,28(6):78~81
    路伟.拟南芥果糖1,6~二磷酸醛缩酶家族分析.山东农业大学硕士论文,2011
    潘佑民,杨国治.湖南土壤背景值及研究方法.中国环境科学出版社,1988
    齐翠翠.锑在中国煤及典型矿区中的环境地球化学研究.中国科学技术大学博士论文.2010
    阮松华,马华升.植物蛋白质组学.北京:中国农业出版社,2009
    唐宝贤,刘绍仁.湖南冷水江锡矿山非法开采污染环境严重危害百姓.中国环境,2009,http://env.people.com.cn/GB/106985/9038011.html
    童方平,徐艳平,龙应忠等.冷水江锑矿区重金属污染林地土壤理化特性研究.中国农学通报,2009,25(10):246~250
    王淑玲.中国锑资源现状及可持续发展问题探讨.中国金属通报,2002,47:6~10
    王亚平.湖南有色金属工业发展循环经济研究.中南大学硕士论文,2007,54
    翁兆霞.镉胁迫下秋茄(Kandelia candel)根系蛋白质组变化及差异表达蛋白功能研究.福建农林大学博士论文,2011
    熊军波.紫花苜蓿响应盐胁迫的蛋白质组研究.中国农业科学院博士论文,2011
    徐学华.北方地区7种主要绿化树种对铅镐胁迫的生理生态响应.河北农业大学博士论文,2010
    杨万勤,王开运,宋光煜.土壤生态型及其应用.中国生态农业学报,2002,10(1):38~40
    杨肖娥,龙新宪,倪吾钟等.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究.植物生态学报,2001,25(6):665~672
    张玉秀,柴团耀,李军超等.DnaJ~like基因在不同环境胁迫下的表达研究.西北植物学报,2000,20(2):171~174
    中国科学院南京土壤研究所.土壤理化分析.上海:上海科技出版社,1978,466~526
    周婧,李巧云,肖亮等.芒和五节芒在中国的潜在分布.植物生态学报,2012,36(6):504~510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700