用户名: 密码: 验证码:
外源一氧化氮调控菊苣盐适应性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫对植物种子萌发和生长有抑制作用,一氧化氮(nitric oxide, NO)作为信号分子或效应分子参与植物的多种生理过程而发挥重要作用。本文以将军菊苣(Cichorium intybus L. cv. Commander)为试验材料,考察不同浓度的NaCl (0~280mmol/L)对菊苣种子萌发、幼苗生长和生理响应的影响,评估外源性NO供体硝普钠(SNP)对不同浓度NaCl胁迫下菊苣(Cichorium intybus L.)营养生长期幼苗渗透调节物质的影响,以及SNP对NaCl胁迫下萌发期幼苗的抗氧化酶活性、抗应激蛋白基因表达及其含量的影响。主要研究结果如下:
     1.100mmol/L盐胁迫明显降低了菊苣种子的发芽势、发芽率、发芽指数和活力指数,且随着盐胁迫浓度的升高,这种抑制作用越明显(P<0.05).180mmol/L可使种子萌发率降低50%;而280mmol/L则完全抑制了种子的萌发。盐胁迫对胚芽、株高、初生根和次生根的抑制作用也具有明显的浓度(剂量)-效应,在种子萌发期对初生根的抑制作用强于胚芽,在营养生长期对株高的抑制作用强于次生根。盐胁迫对萌发期和营养生长期幼苗新生叶的长、宽和面积都有抑制作用且随着盐浓度升高均呈显著性降低(P<0.05),但对幼苗根的鲜重、干重表现为低浓度(50,70mmol/L)促进而高浓度(>100mmol/L)抑制。
     2.与对照组相比,随着盐浓度的升高,菊苣幼苗中丙二醛(MDA)含量、质膜透性(MP)和脯氨酸含量均逐渐升高,而根系活力则逐渐下降,其中MDA和脯氨酸含量在70mmol/L时即显著高于对照组,MP则在140mmol/L处理时显著高于对照组(P<0.05)。盐胁迫影响了叶绿素的合成与代谢,菊苣幼苗中叶绿素的含量随着盐胁迫浓度的升高呈现先升高后降低的趋势。处理组菊苣根和叶中的Na+含量均明显升高而K+含量降低,其中根部显著降低(P<0.05);Ca2+含量变化不明显;根和叶的K+/Na+以及叶的Ca2+/Na+比值均显著降低(P<0.05)。
     3.不同浓度的SNP (0.10~0.30mmol/L)预处理均可以缓解盐胁迫对种子萌发和幼苗生长的抑制作用,其中0.2mmol/L SNP处理组达到最佳效果,使种子的发芽率、发芽势、发芽指数和活力指数均显著高于其相应的单盐处理组(P<0.05)。此外,0.2mmol/L SNP预处理也使盐胁迫(140mmol/L NaCl胁迫15d)对幼苗生长的抑制降到最低。
     4.对盐胁迫下渗透调节物质的测定表明,与空白对照相比,随着盐胁迫时间的延长(6-15d),菊苣相对含水量(RWC)明显降低,但脯氨酸含量显著上升(P<0.05)。HPLC分析表明,根中果糖、葡萄糖、蔗糖和1-蔗果三糖含量均随着盐胁迫时间的延长而降低,而蔗果四糖的含量则升高。SNP预处理不仅缓解了盐胁迫对菊苣叶RWC的抑制,而且使脯氨酸含量和蔗果四糖含量急剧增加(P<0.05),同时降低了果糖、葡萄糖和蔗糖的含量。
     5.抗氧化酶系统参与了植物盐胁迫下的生理响应和适应性。盐胁迫使菊苣幼苗中超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性减弱,而使过氧化物酶(POD)活性增强,MDA含量升高。SNP预处理可缓解盐胁迫对菊苣幼苗根长、鲜重的抑制作用,并促进MDA含量显著下降(P<0.05); SOD和POD同工酶谱带增多,且酶活性显著增强(P<0.05), CAT活性也有增强趋势。过氧化氢(H2O2,0.5mmol/L)预处理也有上述效应。
     6.实时荧光定量PCR和酶联免疫分析表明,盐胁迫下菊苣幼苗的热激蛋白(HSP90)和脱水素(CiDHN1)基因的mRNA相对表达量增加且后者在胁迫2h显著高于空白对照组(P<0.01);随着盐胁迫时间的延长(2~48h), HSP90含量无明显变化,但CiDHN1的含量则逐渐升高,并在24h和48h后分别在0.001和0.01水平极显著高于空白对照组。SNP预处理使盐胁迫下菊苣幼苗内HSP90和CiDHN1的mRNA表达进一步增多,其中HSP90和CiDHN1的mRNA含量分别在盐胁迫8h和24h明显高于其对应的单盐处理组(P<0.05)。盐胁迫期间(2~48h), SNP预处理菊苣幼苗中HSP90含量无明显变化,而CiDHN1蛋白含量则呈现逐渐上升的趋势。过氧化氢(0.5mmol/L)预处理后,菊苣幼苗中HSP90和CiDHN1的mRNA相对表达量和蛋白含量也表现出与SNP处理后相似的变化趋势,但效应不及SNP明显。
     以上结果表明,70mmol/L的NaCl是将军菊苣种子萌发期和营养生长期幼苗的耐受浓度;0.2mmol/L SNP不但能有效缓解盐胁迫对菊苣种子萌发的抑制,而且还能明显提高盐胁迫下幼苗地上部分的生物量,增强菊苣的盐适应;这种缓解效应可能是通过以下几种途径来实现的:1.SNP预处理增强了菊苣幼苗的保水能力,促进渗透调节物质脯氨酸的合成与积累,同时促进小分子糖类向果聚糖特别是蔗果四糖转化,使果聚糖含量增加;2.SNP增强了菊苣幼苗中POD同工酶的活性,并使其同工酶谱带增加,同时促使SOD和CAT活性增加,而减少MDA含量;3.SNP促进了菊苣幼苗中抗应激蛋白HSP90和CiDHN1mRNA的表达,并提高了幼苗中CiDHN1的含量。
     由此可见,SNP预处理可以通过菊苣幼苗内渗透调节物质、抗氧化酶系统与抗应激蛋白等途径发挥协同作用以提高菊苣幼苗的盐适应能力。
Seed germination and plant growth can be largely inhibited under salt stress. Nitric oxide (NO) as a signaling molecule or effector molecule participates in a variety of physiological processes in plants and plays an important role. This paper was aimed at investigating the impacts of NaCl (0~280mmol/L) on seed germination, growth and physiological response of chicory (Cichorium intybus L. cv. Commander) seedlings, evaluating the effects of sodium nitroprusside (SNP, common used as NO donor,0.2mmol/L), on osmotic regulation substances of chicory seedlings in vegetative stage(VS) under different concentrations of NaCl (140or280mmol/L), and the roles of SNP (0.1mmol/L) on antioxidant enzyme activity, gene expression and protein contents of HSP90and CiDHNl. The main research results are as follows:
     1The germination energy, germination percentage, germination index and vigor index were all inhibited significantly under salt stress (100~280mmol/L) in profound dose-dependent and time-dependent manners. Germination percentage in180mmol/L NaCl group was decreased by50%compared with the control, and the seed germination could be completely inhibited by salt stress (280mmol/L NaCl).
     The plumules, plant heights, primary and secondary roots of chicory seedlings were also inhibited in an obvious concentration (dose)-dependent effect. The inhibition effect of salt stress on primary roots was stronger than on that of plumule, and this inhibiting effect on plant heights was more obvious than that of secondary roots at vegetative stage. Fresh weights and dry weights of roots of seedlings were improved under low salt concentration (50~70mmol/L), but inhibited under high salt concentration (>100mmol/L). The length, width and area of new leaves were all decreased significantly with the increase of salt concentrations (P<0.05). Fresh weight and dry weight of seedling leaves had the similar performance to seedling roots.
     2As for the anti-oxidant parameters, the contents of malondialdehyde (MDA), plasma membrane permeability (MP) and proline in chicory seedlings under salt stress were increased compared with the control group. Meanwhile, the vigor of seedling roots decreased gradually with the increase of salt concentrations. Both the MDA content and proline content were remarkably higher than those of the control group at70mmol/L, whereas the MP was significantly higher than the control group at140mmol/L (P<0.05). Salt stress disturbed the process of chlorophyll synthesis and metabolism. Chlorophyll content of chicory seedlings showed a trend of increase at first and then decrease with the rise of salt concentrations of salt stress. Na+contents in chicory roots and leaves of treatment group were significantly increased while K+contents decreased, which decreased significantly in roots (P<0.05). There was no obvious change of Ca2+contents in the tested groups. Both the K+/Na+ratio in roots, leaves and Ca2+/Na+ratio in leaves were all significantly decreased (P<0.05).
     3Treatment with different SNP concentrations (0.10~0.30mmol/L) supplemented to salt solution could alleviate the inhibition of salt stress on seed germination and seedling growth, and the optimal concentration of SNP was0.2mmol/L. The seed germination percentage, germination energy, germination index and vigor index were all significantly higher than the corresponding salt exposing alone group (P<0.05). In addition, SNP pretreatment (0.2mmol/L) alleviated the inhibition role on seedlings growth induced by salt stress (140mmol/L for15d) to a maximum level in all SNP-treated groups.
     4The data from detecting the osmotic regulation substances showed that chicory relative water content (RWC) was decreased significantly while the proline content was significantly increased (P<0.05) under salt stress (6~15d) compared with the control. The results of high-performance liquid chromatography (HPLC) analysis further indicated that the contents of fructose, glucose, sucrose and1-kestose increased while nystose content decreased in a time-dependent manner (6~15d). However, the declination of RWC of chicory seedling leaves induced by salt stress was significantly alleviated by SNP pretreatment with a dramatic rise in the contents of proline and nystose (P<0.05) compared with the group treated by salt alone, while with a decline of fructose, glucose and sucrose.
     5Antioxidant enzymes system involved in the physiological responses and acclimation when plants under salt stress. The activities of superoxide dismutase (SOD) and catalase (CAT) were weakened while peroxidase (POD) activity and MDA content were obviously increased under salt stress. The inhibition of salt stress on root length, fresh weight and dry weight of chicory seedlings could be alleviated by SNP pretreatment, and MDA content of chicory seedlings pretreated with SNP decreased significantly(P<0.05). SOD and POD isozyme bands increased, and their activities were significantly increased (P<0.05), CAT activity has also an increased trend. Pretreatment with hydrogen peroxide (0.5mmol/L) has the same effect as above.
     6Real-time fluorescent quantitative PCR and enzyme linked immune analysis indicate that the relative expression of heat shock protein (HSP90) and dehydration (CiDHNl) mRNA increased under salt stress, and the relative expression of CiDHNl mRNA was significantly higher than the control (P<0.01) at2h after exposure to salt stress. HSP90content has no obvious change, but the content of CiDHN1gradually increased in a time-dependent manner (2-48h), and showed extremely significant difference at24h (P<0.001) and very significant (P<0.01) difference at48h compared with the control. The relative expression of mRNA of HSP90and CiDHN1in chicory seedlings pretreated with SNP prior to salt stress were further increased, and they were significantly increased at8h and24h respectively compared with the corresponding single salt treatment group (P<0.05). HSP90content had no obvious change in chicory seedlings pretreated with SNP while CiDHN1content gradually increased during salt stress(2-48h). The relative expression of HSP90and CiDHNl mRNA and protein contents showed the similar tendency in chicory seedlings pretreated with hydrogen peroxide (H2O2,0.5mmol/L), but the effect is less than the SNP.
     The results indicated that the tolerance level of chicory seedlings at germination and vegetative stage to salinity was70mmol/L NaCl. Treatment or pretreatment with0.2mmol/L SNP not only alleviated the inhibition on seeds germination, but also promoted biomass on the ground part of seedlings under salt stress and improved salt adaptation of chicory. The inhibition-alleviating effect of SNP pretreatment may be worked through the following ways:1. Pretreated with SNP, water retention capacity of chicory seedlings was strengthened, the synthesis and accumulation of proline was promoted, while small molecular sugars transforming into fructan, especially nystose was also promoted, and resulted in increased fructan content.2. Pretreated with SNP, the activity of POD isozyme in chicory seedlings was enhanced, and POD isozyme bands were also increased; at the same time, SOD and CAT activities were also increased while the MDA content was reduced.3. Pretreated with SNP, the relative expression of HSP90and CiDHNl mRNA were promoted and CiDHNl contents were also significantly increased. Therefore, the salt adaptability of chicory seedlings was improved through the combination results of osmotic regulation substances, antioxidant enzyme system and anti-stress proteins system.
引文
[1]Thai Rice Exporters Association.2011; http://www.thairiceexporters.or.th/production.html.
    [2]Food and agriculture organization (FAO).2008. Land and plant nutrition management service. [2008-4-25] http://www.fao.org/ag/agl/agll/spush.
    [3]李建国,濮励杰,朱明,张润森.土壤盐渍化研究现状及未来研究热点[J].地理学报,2012,67(9):1233-1245
    [4]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845
    [5]Kiaer LP, Felber F, Flavell A, Guadagnuolo R, Guiatti D, Hauser TP, Olivieri AM, Scotti I, Syed N, Vischi M, Wiel C van de, J(?)rgensen RB. Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L[J]. Genet Resour Crop Evol,2009, 56:405-419
    [6]江苏新医学院.中药大词典(下)[M].上海:上海人民出版社,1989:194-383
    [7]Hocking DF, Withey R. Chicory witloof-a new vegetable crop [J]. Rural Newsletter,1987, 103:19-21
    [8]Meijer WJM, Mathijssen EWJM. Crop characteristics and inulin production in chicory [J]. Euro. J. Agron,1992,1:99-108
    [9]Arya PS, Saini SS.'Kalpa Sel 1'chicory. Ideal flavouring agent for coffee [J]. Indian Hort, 1984,18:55-56
    [10]S^kara A, Poniedzialek M, Ciura J, J,drszczyk E. Cadmium and lead accumulation and distribution in the organs of nine crops:Implications for phytoremediation[J]. Pol J Environ Stu, 2005,14:509-516
    [11]张杏锋,夏汉平,李志安,李海防,熊燕梅.牧草对重金属污染土壤的植物修复综述[J].生态学杂志,2009,28(8):1640-1646
    [12]维吾尔药志编委会.维吾尔药志(上册)[M].(修订版)乌鲁木齐:新疆科技卫生出版社,1999:100
    [13]中国药品生物制品检定所.中国民族药志[M].北京:人民卫生出版社,1990:476-481
    [14]王佺珍,崔健.菊苣的药理药效研究及开发前景.中国中药杂志,2009,34(17):2269-2272
    [15]党毅,肖培根,杨显荣.中国保健食品的现状及展望[J].北京中医药大学学报,1998, 21(5):8-9
    [16]李三相,肖宁,王弋博,兰小平,李勃.盐胁迫对4种豆科植物种子萌发特征的影响[J].种子,2011,30(8):108-111
    [17]杨景宁,王彦荣.NaCl胁迫对四种荒漠植物种子萌发的影响[J].草业学报,2012,21(5):32-38
    [18]杨淑萍,危常州,梁永超.盐胁迫对不同基因型海岛棉种子萌发特性的影响[J].中国棉花,2012:6-10
    [19]卢艳敏.不同盐胁迫对高羊茅种子萌发的影响[J].草业科学,2012,29(7):1088-1093
    [20]丛丽丽,张蕴薇,陈新,李永祥,张新全.盐胁迫对虉草种子萌发与幼苗生理生化的影响[J].草业科学,2011,28(12):2136-2142
    [21]李占成,张丽丽,李玮,李海.盐胁迫对糜子种子发芽的影响[J].作物杂志,2011,6:122-123
    [22]王玉祥,徐珊,陈爱萍,张博.盐胁迫对奇台红豆草种子萌发的影响[J].中国农学通报,2011a,27(20):40-44
    [23]王玉祥,刘芳,陈爱萍,张博.NaCl胁迫对三叶草种子耐盐性的评价[J].新疆农业大学学报,2011b,34(1):16-19
    [24]隋德宗,王保松,施士争.盐胁迫对5个柳树无性系幼苗根系生长发育的影响[J].江苏林业科技,2007,34(4):5-8
    [25]闫永庆,朱虹,刘兴亮,石溪婵,祖元刚.盐胁迫对紫穗槐生长发育及生理特性的影响[J].东北农业大学学报,2008,39(12):31-35
    [26]张跃安,马秀杰.盐胁迫对燕麦幼苗生长的影响[J].农业与技术,2011,31(5):1-43
    [27]洪森荣,尹明华.盐胁迫对杂交水稻试管苗生长发育和部分生理生化指标的影响[J].杂交水稻,2008,23(4):69-72
    [28]高林,陈春丽.NaCl胁迫对水稻品种中花11幼苗根系生长发育的影响.种子,2012,31(7):7-12
    [29]徐静,董宽虎,高文俊,谢开云.NaCl和Na2SO4胁迫下冰草幼苗的生长及生理响应[J].中国草地学报,2011,33(1):36-41
    [30]吴成龙,周春霖,尹金来,刘兆普,徐阳春,沈其荣.NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响[J].西北植物学报,2006,26(11):2289-2296
    [31]付华,张启星,曹桂兰,王兴盛,韩龙植.盐胁迫下不同来源粳稻选育品种的主要农艺 性状鉴定分析[J].植物遗传资源学报,2013,14(1):37-45
    [32]吴菊,赵会娟,鲍维巨,林杰,范海芬.NaCl胁迫对黄瓜生长发育及产量的影响[J].浙江农业科学,2012a,9:1259-1262
    [33]吴菊,林杰,杨飞,叶舟华,鲍维巨,应海良.NaCl胁迫对3个番茄品种生长发育及产量的影响[J].安徽农业大学学报,2012b,39(2):216-220
    [34]王宝山.逆境植物生物学概论.In:逆境植物生物学.北京:高等教育出版社,2010
    [35]Hernandez JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves[J]. Physiol Plant,2002,115:251-257
    [36]Perez-Lopez U, Robredo A, Lacuesta M, Sgherri C, Munoz-Ruedo A, Navari-Izzo F, Mena-Petite A. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated by CO2[J]. Physiol Plant,2009,135:29-42
    [37]史军辉,王新英,刘茂秀.NaCl胁迫对胡杨幼苗叶生理生化指标的影响[J].新疆农业科学2012,49(11):2022-2028
    [38]周万海,师尚礼,周娟娟.NaCl胁迫对甘肃红豆草生理特性的影响[J].草原与草坪,2012,32(3):1-5
    [39]李如升,石德成.NaCl胁迫对甘草幼苗的生长及相关生理指标的影响[J].江苏农业科学,2012,2:257-258
    [40]Yan P, Li JW, Zeng LY. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice(Glycyrrhiza uralensis Fisch) [J]. Plant Growth Regul,2006, 49:157-165
    [41]夏方山,董秋丽,董宽虎.盐胁迫对碱地风毛菊苗期生理特性的影响[J].草原与草坪,2010,30(3):21-28
    [42]宁建凤,郑青松,邹献中,孙丽丽,姚瑶,陈勇,巫金龙,魏岚.罗布麻对不同浓度盐胁迫的生理响应[J].植物学报,2010,45(6):689-697
    [43]时丽冉,牛玉璐,李明哲.苣荬菜对盐胁迫的生理响应[J].草业学报,2010,19(6):272-275
    [44]曹辉,于晓英,邱收,李婷.盐胁迫对董草生长及其相关生理特性的影响[J].湖南农业大学学报(自然科学版),2007,33(6):690-693
    [45]陈爱萍,王玉祥,张博.NaCl胁迫对6个苜蓿品种的部分生理指标的影响[J].新疆农业大学学报,2011,34(5):403-406
    [46]Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Sofo A. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species[J]. Acta Physiol Plant, 2012,34:203-213
    [47]Moller MI, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants[J]. Annu Rev Plant Biol,2007,58:459-481
    [48]Azevedo Neto AD, Gomes-Filho E, Prisco JT. Salinity and oxidative stress. In:N.A. Khan, S. Sarvajeet (Eds.), Abiotic Stress and Plant Responses[M], IK International, New Delhi,2008, pp58-82
    [49]陈涛,王贵美,沈伟伟,李小珍,祁建民,徐建堂,陶爱芬,刘晓倩.盐胁迫对红麻幼苗生长及抗氧化酶活性的影响[J].植物科学学报,2011,29(4):493-501
    [50]刘爱荣,张远兵,方园园,李伟,陈志扬.盐胁迫对金盏菊生长、抗氧化能力和盐胁迫蛋白的影响[J].草业科学,2011,20(6):52-59
    [51]王文,蒋文兰,谢忠奎,张德罡,寇江涛.NaCl胁迫对唐古特白刺幼苗生理指标的影响[J].草地学报,2012,20(5):907-913
    [52]刘延吉,张珊珊,田晓艳,任大明.盐胁迫对NHC牧草叶片保护酶系统MDA含量及膜透性的影响[J].草原与草坪,2008,2:30-34
    [53]顾大形,郭子武,李迎春,杨清平,可晓,庄明浩,李应,陈双林.四季竹耐盐能力的季节性差异[J].生态学报2011,31(10):2932-2939
    [54]陈健妙,郑青松,刘兆普,刘联,隆小华.两种麻疯树苗对盐胁迫的生理生态响应[J].生态学报,2010,30(4):933-940
    [55]Turan S, Tripathy BC. Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma,2013,250 (1):209-220
    [56]王文斌,金润熙,邓西平,郭尚洙,王征宏,赵紫平.苜蓿幼苗芽、根器官对盐胁迫的生理生化响应[J].西北农林科技大学学报(自然科学版),2009,37(5):217-223
    [57]朱会娟,王瑞刚,陈少良,张云霞,李妮亚,邵杰.NaCl胁迫下胡杨(Populus euphratica)和群众杨(P.popularis)抗氧化能力及耐盐性[J].生态学报,2007,27(10):4113-4121
    [58]胡晓立,李彦慧,陈东亮,冯晨静,杨建民.3种李属彩叶植物对NaCl胁迫的生理响应[J].西北植物学报,2010,30(2):370-376
    [59]武香,倪建伟,张华新,刘涛,张丽.盐胁迫对3种白刺渗透调节物质的影响[J].东北林业大学学报,2012,40(1):44-69
    [60]Kholova J, Sairam RK, Meena RC, Srivastava GC. Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity[J]. Biol Plantarum,2009,53 (2):249-256
    [61]王树凤,胡韵雪,李志兰,孙海菁,陈益泰.盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J].生态学报,2010,30(17):4609-4616
    [62]Kishor KPB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:Its implications in plant growth and abiotic stress tolerance[J]. Curr Sci,2005,88(3):424-438
    [63]Yang YL, Wei XL, Shi RX, Fan Q, An LZ. Salinity-induced physiological modification in the callus from halophyte Nitraria tangutorum Bobr[J]. J Plant Growth Regul,2010,29:465-476
    [64]李悦,陈忠林,王杰,徐苏南,侯伟.盐胁迫对翅碱蓬生长和渗透调节物质浓度的影响[J].生态学杂志,2011,30(1):72-76
    [65]王龙强,蔺海明,米永伟.盐胁迫对枸杞属2种植物幼苗生理指标的影响[J].草地学报,2011,19(6):1010-1016
    [66]王康,刘艳香,董洁,周禾,董宽虎.盐胁迫对菊苣幼苗脯氨酸积累及其代谢途径的影响[J].草地学报,2011,19(1):102-106
    [67]杨颖丽,张菁,杨帆,李小宁,马海珍.盐胁迫对两种小麦渗透性调节物及脯氨酸代谢的影响[J].西北师范大学学报(自然科学版),2013,49(1):72-77,91
    [68]王玉祥,张博,王涛.盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响[J].草业科学,2009,26(3):53-56
    [69]Grieve CM, Maas EV. Betaine accumulation in salt-stress sorhum[J]. Physiol Plantarum, 1984,61(2):167-171
    [70]赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报,2005,31(1):103-106
    [71]Timothy AG, Sandra SS, Carmen C. Assigning enzymatic function to betaine-homocysteine S-methyltransferase-2 (BHMT2) as an S-methylmethionine (SMM)-specific homocysteine (Hcy) methyl transferase[J]. FASEB J.,2006,20 (Meeting abstract supplement):A606
    [72]Munoz-Clares RA, Mujica-Jimenez C. Substrate-induced inactivation of the chloroplastic betaine aldehyde dehydrogenase[J]. FASEB J.,2007,21 (Meeting abstract supplement):LB26
    [73]Koyro HW, Ahmad P, Geissler N. Abiotic Stress Responses in Plants:An Overview. In: Ahmad P and Prasad MNV (eds.), Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change, Springer Science+Business Media, LLC 2012, pp8
    [74]邹丽娜,周志宇,颜淑云,秦或.盐分胁迫对紫穗槐幼苗生理生化特性的影响[J].草业学报,2011,20(3):84-90
    [75]郭艳超,王文成,周汉良,刘同才,王玉花.盐胁迫对甜菜叶、根主要生理指标的影响[J].中国糖料,2011,3:20-22
    [76]Mcsteen P, Zhao Y. Plant hormones and signaling:common themes and new developments[J]. Cell,2008,14(4):467-473
    [77]张敏,蔡瑞国,李慧芝,李建敏,戴忠民,王振林,尹燕枰.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008,28(1):310-320
    [78]石松利,王迎春,周健华,周红兵.盐分生境下长叶红砂和红砂内源激素含量及其生境差异性[J].应用生态学报,2011,22(2):350-356
    [79]闫艳华,姜国斌,侯和胜,金华,马金龙,王颖.杨树内源激素对NaCl胁迫的响应[J].西北农业学报,2011,20(9):160-164
    [80]Buchanan BB, Gruissem W, Jones RL. Biochemistry & Molecular Biology of Plants [M]. In: Maryland R:The American Society of Plant Physiologists,2000
    [81]宋红苗,陈显扬,李银心.植物热激蛋白90的结构和功能.植物生理学通讯,2007,43(6):1002-1008
    [82]Pareek A, Singla SL, Kush AK, Grover A. Distribution patterns of HSP 90 protein in rice[J]. Plant Sci,1997,125:221-230
    [83]Liu DL, Zhang XX, Cheng YX, Takano T, LiuSK. rHsp90 gene expression in response to several environmental stresses in rice(Oryza sativa L.) [J]. Plant Physiol Biochem,2006,44: 380-386
    [84]Kumar RR, Goswami S, Sharma SK, Singh K, Gadpayle KA, Singh SD, Pathak H, Rai RD. Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat[J]. J. Plant Biochem Biotechnol,2013,22(1):16-26
    [85]Vaseva I, Akiscan Y, Demirevska K, Anders I, Feller U. Drought stress tolerance of red and white clover-comparative analysis of some chaperonins and dehydrins[J]. Sci Hortic,2011,130: 653-659
    [86]Horvath I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L. Heat shock response in photosynthetic organisms:Membrane and lipid connections[J]. Prog Lipid Res,2012,51:208-220
    [87]李剑,赵常玉,张富生,王锁民,包爱科,张金林.LEA蛋白与植物抗逆性[J].植物生理学通讯,2010,46(11):1101-1108
    [88]Hundermark M, Hincha DK. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana[J].BMC Genomics,2008,9:118
    [89]周丽,姬向楠,何非,潘秋红,段长青.植物胚胎发育晚期丰富蛋白的结构与功能[J].热带生物学报,2012,3(2):191-196
    [90]Klima M, Vitamvas P, Zelenkova S, Vyvadilova M, Prasil IT. Dehydrin and proline content in Brassica napus and B. carinata under cold stress at two irradiances. Biol Plantarum,2012,56 (1):157-161
    [91]Jyothsnakumari G, Thippeswamy M, Veeranagamallaiah G, Sudhakar C. Differential expression of LEA proteins in two genotypes of mulberry under salinity. Biol Plantarum,2009, 53(1):45-150
    [92]Upendra K, Shekhawat S, Srinivas L, Ganapathi TR. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydringene, contributes affirmatively to drought and salt-stress tolerance in banana[J]. Planta,2011,234:915-932
    [93]Brini F, Hanin M, Lumbreras V, Irar S, Page's M, Masmoudi K. Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance[J]. Plant Sci,2007,172:20-28
    [94]李玉坤,王学敏,王赞,李俊,Vladicir C, Nikolay D,孙桂枝,高洪文.东方山羊豆脱水蛋白基因的克隆及初步分析[J].草业学报,2012,21(1):176-183
    [95]Ruibal C, Salamo IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S. Differential contribution of individual dehydri n genes from Physcomitrella patens to salt and osmotic stress tolerance[J]. Plant Sci,2012,190:89-102
    [96]杜世章.植物在盐胁迫下诱导表达的大分子蛋白[J].绵阳师范学院学报,2010,29(8):49-55,79
    [97]Hong JK, Jung HW, Lee BK, Lee SC, Lee YK, Byung Kook Hwang. An osmotin-like protein gene, CAOSM1, from pepper:differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress[J]. Physiol Mol Plant P,2004,64:301-310
    [98]何宝坤,李德全.植物渗调蛋白的研究进展.生物技术通报,2002,2:6-10
    [99]Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol,2003,6: 441-445
    [100]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59: 651-681
    [101]Rozema J, Flowers T. Crops for a salinized world[J]. Science,2008,322:1478-1480
    [102]Ashraf M, Foolad MR. Roles of glycine betaine and proline inimproving plant abiotic stress resistance. Environ Exp Bot,2007,59:206-216
    [103]Hufton CA, Besford RT, Wellbm RA. Effects of NO Pollution on growth, nitrate reductase activities and associated protein contents in glass house lettuce trown hydroponically in winter CO2 enrichment. New Phytol,1996,133:495-501
    [104]Delledonne M, Xia YJ, Dixon RA, Lamb C. Nitric oxide function as a signal in plant disease resistance[J]. Nature,1998,394:585-588
    [105]Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose[J]. Proc Natl Acad Sci USA,1998,95:10328-10333
    [106]张金林,陈托兄,王锁民.6-苄氨基嘌呤(BA)和脱落酸(ABA)对大麦Na+、K+选择性和游离脯氨酸分配的调节[J].草业学报,2006,15(5):63-69
    [107]田聪,张清斌,顾祥,韩青,朱忠艳,王承军,穆尼热.外源植物激素对东方山羊豆响应盐胁迫的调控效应初探[J].草业科学,2012,29(12):1910-1914
    [108]廖祥儒,贺普超,朱新产.玉米素对盐渍下葡萄叶圆片H202清除系统的影响[J].植物学报,1997,39(7):641-646
    [109]张林青.油菜素内酯对盐胁迫下番茄幼苗生理指标的影响[J].北方园艺,2013,1:1-3
    [110]陈颖,徐彩平,汪南阳,胡菲,王光萍,黄敏仁.盐胁迫下水杨酸对南林895杨组培苗抗氧化系统的影响[J].南京林业大学学报(自然科学版),2011,36(6):17-22
    [111]符秀梅,李小靖,吴辉,朱红林,韩杜,夏幽泉,陈银华.乙烯对盐胁迫过程中玉米种子活力和超氧化物歧化酶活性的影响[J].河南农业科学,2010,4:79-82
    [112]周万海,师尚礼,寇江涛.盐胁迫下外源NO对苜蓿幼苗生长及氮代谢的影响[J].应用生态学报,2012,23(11):3003-3008
    [113]Li JT, Qiu ZB, Zhang XW, Wang LS. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress[J]. Acta Physiol Plant,2011,33:835-842
    [114]Andre Dias de Azevedo Netoa, Jose Tarquinio Priscob, Joaquim Eneas-Filhob, Jand-Venes Rolim Medeirosb, Eneas Gomes-Filhob. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants[J]. J Plant Physiol,2005,162:1114-1122
    [115]赵艳艳,胡晓辉,邹志荣,燕飞.不同浓度5-氨基乙酰丙酸(ALA)浸种对NaCl胁迫下番茄种子发芽率及芽苗生长的影响[J].生态学报,2013,33(1):62-70
    [116]周月,徐亮,杨立,赵许朋,汤绍虎.外源ALA对盐胁迫下豌豆幼苗生理特性的影响[J].西南师范大学学报(自然科学版),2012,37(8):111-115
    [117]张春平,何平,刘海英,谢英赞,韦品祥,袁凤刚,胡世俊.外源性5-氨基乙酰丙酸对盐胁迫下决明子萌发及幼苗生理特性的影响[J].中草药,2012,43(4):778-787
    [118]李斌,郭世荣,孙锦,陆晓民,李娟.外源Spd对盐胁迫下黄瓜幼苗生长和活性氧代谢的影响.江苏农业学报,2012,28(1):152-157
    [119]金桂芳,于海彬.有机胺(PTMAC)对盐胁迫小麦幼苗抗氧化能力的影响[J].生物技术通报,2012,10:83-87
    [120]Chen HX, Li PM. Alleviation of photoinhibition by calcium supplement in salt-treated Rumex leaves[J]. Physiol Plantarum,2007,129:386-396
    [121]赵长江,薛盈文,杨克军,王玉凤,李蒙蒙,高中超,赵瑞广.外源钙对盐胁迫下玉米幼苗不同器官离子含量的影响[J].玉米科学,2012,20(3):68-72
    [122]沈慧,米永伟,王龙强.外源硅对盐胁迫下黑果枸杞幼苗生理特性的影响[J].草地学报,2012,20(3):553-558
    [123]常云霞,徐克东,周琳,陈龙.抗坏血酸对盐胁迫下小麦幼苗生长抑制的缓解效应[J].麦类作物学报,2013,33(1):151-155
    [124]米永伟,陈垣,郭凤霞,王龙强.盐胁迫下黑果枸杞幼苗对外源甜菜碱的生理响应[J].草业科学,2012,9:1417-1421
    [125]连俊方,闫道良,郭坤,热依汗古丽·热西提.海藻糖对NaCl胁迫下多年生黑麦草苗期生长和离子平衡的影响[J].安徽林业科技,2012,38(4):9-12
    [126]刘强,王庆成,孙晶,徐静.NaHCO3胁迫下外源海藻糖对南蛇藤几种与抗逆性有关的生理生化指标变化的影响[J].植物生理学通讯,2008,44(5):853-856
    [127]赵福庚,束怀瑞.脂肪酸对盐胁迫大麦根系质膜结合多胺含量和膜上Na+/H+逆向运 输的影响[J].科学通报,2002,47(8):608-612
    [128]袁会敏,周健民,段增强,王火焰.盐胁迫下大气CO2浓度升高对黄瓜幼苗生长、光合特性及矿质养分吸收的影响[J].土壤,2008,40(5):797-801
    [129]Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annu Rev Plant Biol,2008,59:21-39
    [130]Palavan-Unsal N, Arisan D. Nitric oxide signalling in plants[J]. Bot Rev,2009,75: 203-229 Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses[J]. Plant Sci,2007,172:876-887
    [131]Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A. Do nitric oxide donors mimic endogenous NO-related response in plants? [J] Planta,2006,224:363-1372
    [132]Bethke PC, Libourel IGL, Jones RL. Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 2006,57:517-526
    [133]Libourel IGL, Bodegom van PM, Fricker MD, Ratcliffe RG. Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol,2006,142:1710-1717
    [134]Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot,2009,67:222-227
    [135]Ribeiro Jr EA, Cunha FQ, TamashiroWMSC. Growth phase dependent subcellular localization of nitric oxide synthase in maize cells [J]. FEBS Lett,1999,445:283-286
    [136]Guo FQ, Crawford NM. Arabidopsis nitric oxide synthasel is targeted to mitochondria and protects against oxidative damage and dark-induced senescence[J]. Plant Cell,2005,17: 3436-3450
    [137]胡凡波,刘玲,隆小华,刘兆普.外源NO对NaCl胁迫下长春花幼苗生物量和叶绿素荧光的影响[J].生态学杂志,2011,30(8):1620-1626
    [138]Crawford NM, GuoFQ. New insights into nitric oxide metabolism and regulatory functions[J]. Trends Plant Sci,2005,10:195-200
    [139]Wu XX, Zhu WM, Zhang H, Ding HD, Zhang HJ. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.) [J]. Acta Physiol Plant,2011,33:1199-1209
    [140]Beligni MV, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues[J]. Planta,1999a,208:337-344
    [141]Beligni MV, Lamattina L. Is nitric oxide toxic or protective? [J] Trends Plant Sci,1999b,4: 299-300
    [142]张秀玮,董元杰,邱现奎,王全辉,王艳华,胡国庆.外源NO对不同作物种子萌发、幼苗生长及抗氧化酶活性的影响[J].植物营养与肥料学报,2012,18(2):397-404
    [143]邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度效应[J].生态学报,2008,28(1):302-309
    [144]Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci,2002,163:515-523
    [145]孙立荣,郝福顺,吕建洲,吕鹏飞,赵世领.外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响.生态学报,2008,28(11):5714-5722
    [146]Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed[J]. Plant Physiol,2004,134:849-857
    [147]张春平,何平,喻泽莉,杜丹丹,韦品祥.外源Ca2+及NO供体硝普钠(SNP)对盐胁迫下紫苏种子萌发及幼苗抗氧化酶活性的影响[J].中国中药杂志,2010,35(23):3114-3119
    [148]谭伊文,许岳飞,周禾.胁迫下一氧化氮对高羊茅种子萌发和幼苗生长的影响.草地学报,2010,18(3):394-398
    [149]周万海,师尚礼,寇江涛.一氧化氮对NaCl胁迫下苜蓿种子萌发的影响[J].核农学报,2012,26(4):710-716
    [150]Xu S, Lou TL, Zhao N, Gao Y, Dong LH, Jiang DJ, Shen WB, Huang LQ, Wang R. Presoaking with hemin improves salinity tolerance during wheat seed germination[J]. Acta Physiol Plant,2011,33:1173-1183
    [151]Leshem YY, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. Foliage[J]. J Plant Physiol,1996,148:258-263
    [152]Hu X, Neill SJ, Tang Z, Cai W. Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol,2005,137:663-670
    [153]Correa-Aragunde N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato[J]. Planta,2004,218:900-905
    [154]Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development[J]. Plant Physiol,2004,135:279-286
    [155]Lanteri ML, Pagnussat GC, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber [J]. J Exp Bot,2006,57:1341-1351
    [156]景欣,张旸,李玉花.植物耐盐研究进展[J].生物技术通讯,2010,21(2):290-294
    [157]Zhang F, Wang YP, Yang YL, Wu H, Wang D, Liu JQ. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ, 2007,30:775-785
    [158]Wang HH, Liang XL, Wan Q, Wang XM, Bi YR. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress[J]. Planta 2009,230:293-307
    [159]Xie YJ, Ling TF, Han Y, Liu KL, Zheng QS, Huang LQ, Yuan XX, He ZY, Hu BG, Fang L. Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots[J]. Plant Cell Environ,2008,31:1864-1881
    [160]Ruan HH, Shen WB, Xu LL. Nitric oxide involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress[J]. Acta Bot Sin,2004a,46 (11): 1307-1315
    [161]肖强,陈娟,吴飞华,郑海雷.外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响.作物学报,2008,34(10):1849-1853
    [162]樊怀福,郭世荣,李娟,杜长霞,黄保健.外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响[J].生态学杂志,2007,26(12):2045-2050
    [163]Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings[J]. Aust J Plant Physiol, 2001,28:1055-1061
    [164]Ruan HH, Shen WB, Xu LL. Nitric Oxide Modulates the Activities of Plasma Membrane H+-ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress[J]. Acta Botanica Sinica,2004b,46 (4):415-422
    [165]Lopez-Carrion AI, Castellano R, Rosales MA, Ruiz JM, Romero L. Role of nitric oxide under saline stress:implications on proline metabolism. Biol Plant,2008,52:587-591
    [166]Misra AN, Misra M, Singh R. Nitric oxide ameliorates stress responses in plants[J]. Plant Soil Environ,2011,57 (3):95-100
    [167]王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展[J].植物学报,2009,44(5):517-525
    [168]胡德斌.高产优质饲草菊苣的栽培和利用[J].广西热带农业,2003,1:28-29
    [169]葛俊彦.植被恢复区高产优质牧草引种栽培实验研究[J].池州学院学报,2008,22(5):62-65
    [170]王俭珍,崔健.牧草菊苣及其利用潜力Ⅱ利用价值和开发潜力[J].草业科学,2010a,27(2):150-156
    [171]孙娈姿,呼天明,王佺珍.菊苣根提取物除草活性的研究[J].草地学报,2010,18(3):473-476
    [172]韩永芬,熊先勤,左相兵,陈培燕.普那菊苣引种选育研究[J].贵州农业科学,2006,34(增刊):29-33
    [173]Guangdi Li, Peter D. Kemp. Forage Chicory (Cichorium intybus L.):A review of its agronomy and animal production[J]. Adv Agron,2005,88:187-221
    [174]Fraser TJ, Rowarth JS. Legumes, herbs or grass for lamb growth[J]. Proceedings of the New Zealand Grassland Association,1996,58:49-52
    [175]Barry TN. The feeding value of chicory (Cichorium intybus) for ruminant livestock[J]. J. Agric. Sci.,1998,131:251-257
    [176]Hoskin SO, Stafford KJ, Barry TN. Digestion, rumen fermentation and chewing behavior of red deer fresh chicory and perennial ryegrass[J]. J. Agric. Sci.,1995,124:289-295
    [177]Fulkerson WJ, Horadagoda A, Neal JS, Barchia I, Nandra KS. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows:Herbs and grain crops[J]. Livest Sci,2008,114:75-83
    [178]余昌培,秦家秀,党兴静,颜俤.贵州省盘县菊苣引种试验[J].草业科学,2011,28(9):1632-1635
    [179]孟林,张国芳,李潮流.饲用菊苣引种及其高产栽培技术研究[J].草业学报,2005,14(1):82-88
    [180]王玉麒.菊苣饲喂奶牛的试验研究[J].养殖技术顾问,2010,7:121-122
    [181]张俊宝,张霞光.优质牧草菊苣饲喂波尔山羊杂山羊试验效果[J].吉林畜牧兽医,2002,7:21
    [182]张海棠,王艳荣,郭东升.新鲜牧草饲喂生长育肥猪效果的研究[J].黑龙江畜牧兽医,2006,12:51-52
    [183]Liu HY, Ivarsson E, Jonsson L, Holm L, Lundh T, Lindberg JE. Growth performance, digestibility, and gut development of broiler chickens on diets with inclusion of chicory (Cichorium intybus L.) [J]. Poultry Sci,2011,90:815-823
    [184]左相兵,韩永芬,陆荣清,陆以宽,熊洪辉.在饲料中添加普那菊苣饲喂朗德鹅的效果研究[J].贵州畜牧兽医,2006,30(1):4-5
    [185]任克良,闫柳松,任家玲,李燕平,梁全忠.普那菊苣栽培技术及饲喂肉兔效果试验[J].中国养兔杂志,2003,4:12-14
    [186]Waghorn GC, Burke JL, Kolver ES. Principles of feeding value. S.I. New Zealand Society of Animal Production,2007, p 309
    [187]Golding KP, Kemp PD, Kenyon PR, Morris ST. High weaned lamb live weight gains on herbs[J]. Agronomy New Zealand,2008,38:33-39
    [188]Wilson E. Summer lamb finishing on high-quality permanent sward mixes. BSc Honours thesis, Massey University, New Zealand,2009
    [189]Lindsay CL, Kemp PD, Kenyon PR, Morris ST. Summer lamb finishing on forage crops[J]. Proceedings of the New Zealand Society of Animal Production,2007,67:121-125
    [190]Scales GH, Knight TL, Svaille DJ. Effect of herbage species and feeding level on internal parasites and production performance of grazing lambs[J]. New Zeal. J. Agr. Res.,1995, 38:237-247
    [191]Moorhead AJE, Judson HG, Stewart AV. Liveweight gain of lambs grazing'Ceres Tonic' plantain (Plantago lanceolata) or perennial ryegrass (Lolium perenne) [J]. Proceedings of the New Zealand Society of Animal Production,2002,62:171-173
    [192]Fraser TJ, Cosgrove GP, Thomas WJ, Stevens DF, Hickey MJ. Performance of Grasslands Puna chicory[J]. Proceedings of the New Zealand Grassland Association,1988,49:193-196
    [193]Marley CL, Fraser MD, Fychan R, Theobald VJ, Jones R. Effect of forage legumes and anthelmintic treatment on the performance, nutritional status and nematode parasites of grazing lambs[J]. Veterinary Parasitology,2005,131:267-282
    [194]Fraser MD, Speijers MHM, Theobald VJ, Fychan R, Jones R. Production performance and meat quality of grazing lambs finished on red clover, lucerne or perennial ryegrass swards[J]. Grass Forage Sci,2004,59:345-356
    [195]Laurenzo, Grimm. Preparation of inulin products:united states patent,5968356[P]. 1999-10-19
    [196]Miremadi F, Shah NP. Applications of inulin and probiotics in health and nutrition[J]. International Food Research Journal,2012,19(4):1337-1350
    [197]Van Loo J, Bosscher D, Janssens GP. Prebiotic inulin interacts with the caecal fermentation in the horse. Horse health nutrition:Third European Equine Health and Nutrition Congress,17 and 18 March 2006, Faculty of Veterinary Medicine of Ghent University, Merelbeke, Belgium:75-82
    [198]Chen Y, Chen T. Improvement of layer performance by dietary prebiotic chicory oligofructose and inulin[J]. Int J Poult Sci.,2005,4:103-108
    [199]Chen Y, Chen T. Effects if chicory fructans on egg cholesterol in commercial layers[J]. Int J Poult Sci.2005;4:109-114
    [200]Mahious AS, Gatesoupe FJ, Hervi M, Metailler R, Ollevier F. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C.1758) [J]. Aquac Int.2006,14:219-29
    [201]Van Leeuwen P, Verdonk JMAJ. The gastrointestinal degradation of inulin preparations and their effects on production performance and gut microflora in calves.2004. Animal Sciences Group Wagingen UR, Lelystad, Netherlands, Project nr 825.20552.02, Report No:04/100287: 1-31
    [202]Marley CL, Cook R, Keatinge R, Barrett J, Lampkin NH. The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites[J]. Veterinary Parasitology,2003,112:147-155
    [203]Lisbeth ET, Bach Knudsen KE, Jensen TK, Anja SC, Kristian M, Roepstorf A. The effect of fermentable carbohydrates on experimental swine dysentery and whip worm infections in pigs[J]. Veterinary Microbiology,2007,119:152-163
    [204]Petkevicius S, Thomsen LE, Bach Knudsen KE, Murrell KD, Roepstorf A, Boes J. The effect of inulin on new and on patent infections of Trichuris suis in growing pigs[J]. Parasitology, 2007,134:121-127
    [205]Kidane A, Houdijk JGM, Athanasiadou S, Tolkamp BJ, Kyriazakis I. Effects of maternal protein nutrition and subsequent grazing on chicory (Cichorium intybus) on parasitism and performance of lambs[J]. J Anim Sci,2010,88:1513-1521
    [206]King BJ, Robertson SM, Wilkins JF, Friend MA. Short-term grazing of lucerne and chicory increases ovulation rate in synchronised Merino ewes[J]. Anim Reprod Sci,2010,121: 242-248
    [207]Waghorn GC, Tavendale MH, Woodfield DR. Methanogenesis from forages fed to sheep[J]. Proc. N. Z. Grassland Assoc,2002,64:167-171
    [208]Swainson NM, Hoskin SO, Clark H, Brookes IM. The effect of coconut oil and monensin on methane emissions from sheep fed either fresh perennial ryegrass pasture or chicory [J]. Aust. J. Exp. Agric,2008,48:lxxviii-lxxviii
    [209]Sun XZ, Hoskin SO, Zhang GG, Molano G, Muetzel S, Pinares-Patino CS, Clark H, Pacheco D. Sheep fed forage chicory(Cichorium intybus) or perennial ryegrass (Loliurn perenne) have similar methane emissions[J]. Anim Feed Sci Tech,2012,172:217-225
    [210]Jensen MT, Jensen BB, Laue A, Agergaard N, Bibby BM. Effect of various carbohydrate sources on the production of skatole in the hind gut of pigs and skatole concentration in blood plasma[J]. EAAP Publ,1997,92:80-83
    [211]Kjos NP, (?)verland M, Fauske AK, S(?)rum H. Feeding chicory inulin to entire male pigs during the last period before slaughter reduces skatole in digesta and backfat[J]. Livestock Science,2010,134:143-145
    [212]Zammerinia D, Wood JD, Whittington FM, Nute GR, Hughes SI, Hazzledine M, Matthews K. Effect of dietary chicory on boar taint[J]. Meat Science,2012,91:396-401
    [213]Rasmussen MK, Brunius C, Zamaratskaia G, Ekstrand B. Feeding dried chicory root to pigs decrease androstenone accumulation in fat by increasing hepatic 3β-hydroxysteroid dehydrogenase expression[J]. J Steroid Biochem,2012,130:90-95
    [214]Jeusette I, Grauwels M, Cuvelier C, Tonglet C, Istasse L, Diez M. Hypercholesterolaemia in a family of rough collie dogs[J]. J Small Anim Pract,2004,45:319-324
    [215]Diez M. Influence of a blend of fructo-oligosaccharides and sugar beet fiber on nutrient digestibility and plasma metabolite concentrations in healthy Beagles[J]. Am J Vet Res,1997,58: 1238-1242
    [216]Hesta M, Roosen W, Janssens G, Millet S, De Wilde R. Prebiotics affect nutrient digestibility but not faecal ammonia in dogs fed increased dietary protein levels[J]. Br J Nutr, 2003,90:1007-1014
    [217]Hesta M. The effect of oligofructose and inulin on faecal characteristics and nutrient digestibility in healthy cats[J]. J Anim Physiol Anim Nutr (Berl).2001,85:135-141
    [218]Den Hond EM, Geypens B, Ghoos Y. Effect of high performance chicory inulin on constipation[J]. Nutr Res,2000,20:731-736
    [219]Cummings JH, Christie S, Cole TJ. A study of fructo-oligosaccharides in the prevention of travellers'diarrhoea[J]. Aliment Pharmacol Ther,2001,15:1139-1145
    [220]Messaoudi M, Rozan P, Nejdi A, Hidalgo S, Desor D. Behavioural and cognitive effects of oligofructose enriched inulin in rats[J]. Br J Nutr,2005,93 Suppl (1):27-30
    [221]Kunelius HT, McRae KB. Forage chicory persists in combination with cool season grasses and legumes[J]. Can. J. Plant Sci.,1999,79:197-200
    [222]Jung GA, ShaVer JA, Varga GA, Everhart JR. Performance of'Grasslands Puna' chicory at different management levels[J]. Agron. J.,1996,88:104-111
    [223]杨亚丽.普那菊苣引种栽培试验[J].河北农业科学,2008,12(10):21-22
    [224]全国草品种审定委员会.2007年审定登记品种(21个)简介[J].草业科学,2008,25(3):134-141
    [225]Rumball W.'Grasslands Puna'chicory (Cichorium intybus L.) [J]. NZ J. Exp. Agric.,1986, 14:105-107
    [226]Rumball W, Keogh RG, Miller JE, Claydon RB. Cutivar release 'Choice' forage chicory (Cichorium intybus L.) [J]. NZ J. Agric. Res.,2003a,46:49-51
    [227]Rumball W, Skipp RA, Keogh RG, Claydon RB. Cutivar release 'Puna Ⅱ' forage chicory (Cichorium intybus L.) [J]. NZ J. Agric. Res.,2003b,46:53-55
    [228]Foster JG, Fedders JM, Calpham WM, Robertson JW, Bligh DP, Turner KE. Nutritive value and animal selection of forage chicory cultivars grown in central Appalachia[J]. Agron. J., 2002,94:1034-1042
    [229]王俭珍,崔健.牧草菊苣及其利用潜力.Ⅰ品种及生产性能[J].草业科学,2010b,27(1):144-150
    [230]王留香.“甜心”菊苣在长江流域生长特性及饲用品质的研究[D].扬州大学,硕士论文,2006
    [231]Guangdi DL, Zhongnan N, Bonython A, Suzanne P. Boschma, Richard CH, Andrew DC, Greg M L, Bronwen C, Brian SD, Alison BS, Harden S, Steve J. Hughes. Evaluation of chicory cultivars and accessions for forage in south-eastern Australia[J]. Crop Pasture Sci,2010,61: 554-565
    [232]郭丹丹.NaCl胁迫对菊苣种子萌发的影响[J].现代农业科技,2012,24:286,294
    [233]Boyd DC, Rogers ME. Effect of salinity on the growth of chicory (Cichorium intybus cv. Puna)-a potential dairy forage species for irrigation areas[J]. Aust J Exp Agri,2004, 44:189-192
    [234]孙磊,隆小华,刘兆普,李青,李洪燕.海水灌溉欧洲菊苣盐肥耦合效应[J].生态学杂志,2010,29(1):39-42
    [235]赵宇玮,王英娟,步怀宇,郝建国,贾敬芬.AtNHX1基因对菊苣的转化和耐盐性研究[J].草业学报,2009,18(3):103-109
    [236]张丽君,程林梅,杜建中,王亦学,郝耀山,李贵全,孙毅.导入APX基因提高了普那菊苣植株的抗逆性[J].草地学报,2012,20(1):152-158
    [237]张丽君,程林梅,杜建中,郝曜山,王亦学,李贵全,孙毅.导入TaNHX2基因提高了转基因普那菊苣的耐盐性[J].生态学报,2011,31(18):5264-5272
    [238]刘巍,于志水,纪纯阳,金红,赵继梅.植物盐胁迫研究进展[J].防护林科技,2008,:57-61
    [239]孔东,史海滨,魏占民,陈亚新,张丽辉,霍再林,李延林,王长生.干旱区不同水盐处理对向日葵生理性状的影响研究[J].灌溉排水学报,2004,23(1):44-51
    [240]罗燕,白史且,彭燕,张玉.菊苣种质资源研究进展[J].草业科学,2010,7:123-132.
    [241]国家质量技术监督局.GB/T 2930,4-2001-牧草种子检验规程发芽试验[S].北京:中国标准出版社,2001.
    [242]武路广,方志红,董宽虎.NaCl和Na2SO胁迫对白羊草种子萌发的影响[J].山西农业科学,2011,39(10):1115-1118,1133
    [243]李建设,沈国伟,任长忠,胡银岗,刘春贵.燕麦种子萌发和幼苗生长对不同盐胁迫的反应[J].麦类作物学报,2009,29(6):1043-1047
    [244]王忠.植物生理学[M].北京:中国农业出版社,2005
    [245]苏永全,吕迎春.盐分胁迫对植物的影响研究简述[J].甘肃农业科技,2007,3:23-27
    [246]陈玉梁,裴怀弟,石有太,陈炳东,王蒂.温度和盐胁迫对油葵种子萌发及幼苗生长的影响[J].中国油料作物学报,2011,33(4):374-378
    [247]王玉祥,陈爱萍,张博.不同苜蓿品种耐盐性初探[J].草业科学,2010,27(3):102-106
    [248]景艳霞,袁庆华.NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J].草业学报,2011,20(2):134-139
    [249]赖杭桂,李瑞梅,符少萍,郭建春.盐胁迫对植物形态结构影响的研究进展[J].广东农业科学,2011,12:55-57
    [250]庄文化,吴普特,冯浩,等.土壤中施用聚丙烯酸钠保水剂对冬小麦生长及产量影响[J].农业工程学报,2008,24(5):37-41
    [251]Zhu JK. Plant Salt Stress[J]. Trends plant sci,2001,6(2):66-71
    [252]Gama PBS, Inanaga S, Tanaka K, Nakazawa R. Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress[J]. Afr J Biotechnol,2007,6 (2):079-088
    [253]Maas EV. Salt tolerance of plants[J]. Applied agricultural research,1986,1:12-26
    [254]董志刚,程智慧.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价[J].生态学报,2009,29(3):1348-1355
    [255]Tahkokorpi M, Taulavuori E, Taulavuori K. Severe salt stress in Vaccinium myrtillus L.. in response to Na+ ion toxicity[J]. Environ Exp Bot,2012,76:49-53
    [256]Turkan I, Demiral T. Recent developments in understanding salinity tolerance[J]. Environ. Exp. Bot.,2009,67:2-9
    [257]刘建宁,石永红,侯志宏,王运琦,李鹏,邢亚亮,吴欣明,张燕.4份菊苣种质材料苗期抗旱性评价[J].草业学报,2012,21(2):241-248
    [258]黄益宗,张文强,招礼军,曹慧明.Si对盐胁迫下水稻根系活力、丙二醛和营养元素含量的影响[J].生态毒理学报,2009,4(6):860-866
    [259]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000:168-170
    [260]韦兰英,袁维圆,焦继飞,张建亮,尤业明,莫凌,黄玉清,李先琨.紫花苜蓿和菊苣比叶面积和光合特性对不同用量保水剂的响应[J].生态学报,2009,29(12):6772-6778
    [261]Steadman K J, Burgoon M S, Lewis B A, et al. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions [J]. J Sci Food Agri,2001,81:1094-1100
    [262]武维华.植物生理性[M].北京:科学出版社,2003:449-450
    [263]於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响[J].作物学报,2001,27(6):776-780
    [264]李会欣,吴明,方炎明,邵学新,梁威.NaCl胁迫对海滨木槿叶片生理特性的影响[J].植物资源与环境学报,2010,19(3):55-61
    [265]黄有军,夏国华,郑炳松,黄坚钦邵香君.芙蓉菊盐胁迫下的生长表现和生理响应[J].江西农业大学学报,2007,29(3):389-392
    [266]Pushpam R, Rangasamy SRS. Variations in chlorophyll contents of rice in relation to salinity[J]. Crop Research,2000,20(2):197-200
    [267]杨升,张华新,张丽.植物耐盐生理生化指标及耐盐植物筛选综述.西北林学院学报,2010,25(3):59-65
    [268]邹日,柏新富,朱建军.盐胁迫对三角叶滨藜根选择透性和反射系数的影响[J].应用生态学报,2010,21(9):2223-2227
    [269]Zhu JK. Salt and drought stress signal transduction in plants[J]. Ann. Rev. Plant Biol., 2002,53:247-273
    [270]朱义,谭贵娥,何池全,崔心红,张群.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报,2007,27,5447-5454
    [271]Gorham J, Bridaes J, Dubcovsky J, et al. Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat[J]. New Phytol,1997,137:109-116
    [272]Almansouri M, Kinet JM, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.)[J]. Plant Soil,2001,231:243-254
    [273]Siddiqui MH, Al-Whaibi MH, Basalah MO. Role of nitric oxide in tolerance of plants to abiotic stress [J]. Protoplasma,2011,248:447-45
    [274]Sekara A, Poniedzialek M, Ciura J, Jedrszczyk E. Cadmium and lead accumulation and distribution in the organs of nine crops:Implications for phytoremediation. Pol J Environ Stud, 2005,14:509-516
    [275]Athanasiadou S, Houdijk J, Kyriazakis I. Exploiting synergisms and interactions in the nutritional approaches to parasite control in sheep production systems. Small Ruminant Res, 2008,76:2-11
    [276]秦峰梅,张红香,武祎,周道玮.NaCl胁迫对黄花苜蓿发芽及幼苗生长的影响[J].草业学报,2010,19(4):71-78
    [277]葛超,赵成昊,王孝杰,陈得义,娄志东.一氧化氮促进种子萌发的生理研究进展[J].种子,2010,29(11):55-59
    [278]崔兴国,时丽冉.NO供体SNP对黄芪种子萌发和幼苗生长的影响[J].河北农业科学,2011,15(2):107-108
    [279]刘建新,王鑫,雷蕊霞.外源一氧化氮供体SNP对黑麦草种子萌发和幼苗生长的影响[J].生态学杂志,2007,26(3):393-398
    [280]杨青,宋杰,史功伟,王宝山.NaCl胁迫下外源NO供体硝普钠(SNP)对小麦种子萌发的影响[J].植物生理学通讯,2008,44(5):857-859
    [281]袁芳,杨剑超,陈敏,宋杰,隋娜,王宝山.NaCl胁迫下外源NO供体硝普钠(SNP)对盐地碱蓬种子萌发的影响[J],植物生理学通讯,2010,46(1):24-28
    [282]王羽梅,任安祥,潘春香.不同浓度NaCI对览菜幼苗生长、光合速率、离子吸收和甜菜碱含量的影响.植物生理学通讯,2003,39(1):13-16
    [283]董洁,董秋丽,夏方山,高洪文,董宽虎.不同盐碱化草地对菊芋生长特性及产量的影响.草原与草坪,2012,32(1):46-49
    [284]郑世英,商学芳,王丽燕,张秀玲.盐胁迫对不同基因型玉米生理特性和产量的影响.干旱区农业研究,2010,28(2):109-112
    [285]Song J, Shi G, Xing S, Chen M, Wang B. Effects of nitric oxide and nitrogen on seedling emergence, ion accumulation, and seedling growth under salinity in the euhalophyte Suaeda salsa. J Plant Nutr Soil Sci,2009,172:544-549
    [286]Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+antiport in the tonoplast. Planta,2006,224:545-555
    [287]Guo YQ, Tian ZY, Yan DL, Zhang J, Qin P. Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J,2009,6:67-73
    [288]Ahmad P, Sharma S. Salt stress and phyto-biochemical responses of plants. Plant Soil Environ.,2008,54:89-99
    [289]杨涓,许兴.盐胁迫下植物有机渗透调节物质积累的研究进展.宁夏农学院学报,2003,24(4):86-91
    [290]Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review. Ecotoxicol Environ Saf,2005,60:324-349
    [291]Megdiche W, Ben Amor N, Debez A, Hessini K, Ksouri R, Zuily-Fodil Y, Abdelly C. Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant,2007,29:375-384
    [292]Geissler N, Hussin S, Koyro HW. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot,2009, 65:220-231
    [293]Molassiotis A, Tanou G, Diamantidis G NO says more than'YES'to salt tolerance. Plant Signal Behav,2010,5:209-212
    [294]Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci,2011, 181:604-611
    [295]Leterrier M, Valderrama R, Chaki M, Airaki M, Palma MJ, Barroso BJ, Corpas JF. Function of Nitric Oxide Under Environmental Stress Conditions//Khan NA, Nazar R, Iqbal N, eds. Phytohormones and Abiotic Stress Tolerance in Plants. New York:Springer-Verlag Berlin Heidelberg:2012, pp 99
    [296]Kusch U, Greiner S, Steininger H, Meyer AD, Corbiere-Divialle H, Harms K, Rausch T. Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots. New Phytol,2009,184:127-140
    [297]孙磊,隆小华,李洪燕,刘兆普.不同浓度海水对菊苣幼苗生长及生理特性的影响[J].生态学杂志,2009,28(3):405-410
    [298]Taieb T, Ahmedou MV, Marta O, Habib K, Sergi M B. Salt-induced oxidative stress in rosemary plants:Damage or protection? Environ Exp Bot,2011,71:298-305
    [299]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2008:208-209
    [300]姜东,于振文,李永庚,韩红岩,余松烈.高产冬小麦茎中果聚糖代谢及氮素水平的调控.作物学报,2002,28(1):79-85
    [301]Ravi V, Wim VE. Plant fructans in stress environments:emerging concepts and future prospects. J Exp Bot,2008,59:2905-2916
    [302]Mittal S, Kumari N, Sharma V. Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, Dl and antioxidant enzymes. Plant Physiol Bioch, 2012,54:17-26
    [303]Livingston DP Ⅲ, Hincha DK, Heyer AG. The relationship of fructan to abiotic stress tolerance in plants//Norio S, Noureddine B, Shuichi O, eds. Recent Advances in Fructooligosaccharides Research. India:Research Signpost:2007,181-182 [304] Roberfroid MB. Inulin-type fructans:functional food ingredients. Boca Raton:CRC Press. 2005
    [305]Livingston DP Ⅲ, Hincha DK, Heyer AG. Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci,2009,66:2007-2023
    [306]Wang WX. Plant responses to drought salinity and extreme temperature:towards genetic engineerance for stress torlance[J]. Pltanta,2003,21B:1-14
    [307]王文斌.植物活性氧代谢及其利用[M].中国农业科学技术出版社,2011,26
    [308]张新兰.不同品种苜蓿叶片离体干旱胁迫过程中抗氧化酶活性动态[J].草业科学,2008,25(2):77-83
    [309]时丽冉,刘志华.干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J].草地学报,2009,18(5):673-677
    [310]刘建新,赵国林.干旱胁迫下骆驼蓬抗氧化酶活性与渗透调节物质的变化[J].2005,23(5):127-130
    [311]樊瑞苹,周琴,周波,江海东.盐胁迫对高羊茅生长及抗氧化系统的影响[J].草业学报,2012,21(1):112-117
    [312]郑世英,商学芳,余晓帅,王丽燕.盐胁迫下不同盐敏感型玉米抗氧化酶活性的变化[J].山东农业大学学报(自然科学版),2011,42(1):1-5
    [313]鲁萍,桑卫国,马克平.外来入侵种飞机草在不同环境胁迫下抗氧化酶系统的变化[J].生态学报,2006,26(11):3578-3585
    [314]何忠效,张树正(第2版).生物化学实验技术丛书电泳[M].科学出版社,1999,pp284-320
    [315]GP.曼琴科,华子春,郑伟娟等.酶的凝胶电泳检测[M].化学工业出版社,2007,164-165
    [316]陈乐,高翠萍,王璐,任尚佳,赵红辉,曹喜春.空间诱变对蒙农杂种冰草叶片过氧化物酶和酯酶同工酶的影响[J].内蒙古农业大学学报(自然科学版),2011,2:305-308
    [317]Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Enviro,2002,25: 239-250
    [318]Jing YX, Yuan QH. Effects of salt stress on seedling growth of alfalfa (Medicago sativa) and ion distribution in different alfalfa organs[J]. Acta Prataculturae Sinica,2011,2:134-139
    [319]Yildirim E, Taylor AG, Spittler TD. Ameliorative effects of biological treatments on growth of squash plants under salt stress[J]. Sci Hortic,2006,111:1-6
    [320]Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J]. J Exp Bot,2002,53:1237-1242
    [321]张春平,何平,杜丹丹,韦品祥,喻泽莉,谢英赞,刘海英.外源NO供体硝普钠(SNP)对盐胁迫下紫苏种子萌发及幼苗抗氧化酶活性的影响[J].中药材,2011,34(5):665-669
    [322]郑春芳,姜东,戴廷波,荆奇,曹卫星.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响[J].生态学报,2010,30(5):1174-1183
    [323]Zeng CL, Liu L, Wang BR, Wu XM, Zhou Y. Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress[J]. Biol Plantarum,2011,55 (2):345-348
    [324]Tanou G, Molassiotis A, Diamantidis G. Hydrogen peroxide and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants[J]. J Plant Physiol,2009,166:1904-1913
    [325]Jiang JL, Su M, Chen YR, Gao N, Jiao CJ, Sun ZX, Li FM, Wang CY. Correlation of drought resistance in grass pea(Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment[J]. Biologia,2013,68(2):231-240
    [326]Azevedo Neto de AD, Jose'Tarquinio Prisco, Joaquim Ene'as Filho, Jand-Venes Rolim Medeiros, Ene'as Gomes-Filho. Hydroge n peroxide pre-treatme nt indu ces saltstress acclimation in maize plants[J]. J Plant Physiol,2005,162:1114-1122
    [327]Zhang XL, Jia XF, Yu B, Gao Y, Bai JG. Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light[J]. Sci Hortic, 2011,129:656-662
    [328]Gondim FA, Gomes-Filho E, Costa JH, Alencar NLM, Prisco JT. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize [J]. Plant Physiol Bioch,2012,56:62-71
    [329]Toyomasu T, Zennyozi A. On the application of isoenzyme electrophoresis to identification of strains inLeurinus edodes[J]. Mushroom Sci,1981,11:675-684
    [330]Ranjeet R. Kumar, Suneha Goswami, Sushil K. Sharma, Khushboo Singh, Kritika A. Gadpayle, Singh SD, Pathak H, Rai DR. Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat[J]. J Plant Biochem Biotechnol, 2013,22(1):16-26
    [331]Tombuloglu H, Semizoglu N, Sakcali S, Kekec G. Boron induced expression of some stress-related genes in tomato[J]. Chemosphere,2012,86:433-438
    [332]Wahida A, Perveen M, Gelani S, Basra MAS. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J]. J Plant Physiol,2007,164:283-294
    [333]Mingeot D, Dauchot N, Cutsem PV, Watillon B. Characterisation of two cold induced dehydrin genes from Cichorium intybus L.[J]. Mol Biol Rep,2009,36:1995-2001
    [334]Salman A, Goupil P, Filgueiras H, Charles F, Ledoigt G, Sallanon H. Controlled atmosphere and heat shock affect PAL1 and HSP90 mRNA accumulation in fresh-cut endive (Cichorium intybus L.) [J]. Eur Food Res Technol,2008,227:721-726
    [335]Maroufi A, Bockstaele Van E, Loose De M. Validation of reference genes for gene expression analysis in chicory(Cichorium intybus) using quantitative real-time PCR[J]. BMC Mol Biol,2010,11:15
    [336]Zhang L, Fan YM, Shi F, Qin S, Liu B. Molecular cloning, characterization, and expression analysis of a cytosolic HSP90 gene from Haematococcus pluvialis[J]. J Appl Phycol, 2012,24:1601-1612
    [337]Yang YZ, He MY, Zhu ZG, Li SX, Xu Y, Zhang CH, Singer SD, Wang YJ. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress[J]. BMC Plant Biol,2012,140:1471-2229
    [338]Xu J, Zhang YX, Guan ZQ, Wei W, Han L, Cha TY. Expression and function of two dehydrins under environmental stresses in Brassica juncea L. [J] Mol Breeding,2008,21: 431-438
    [339]Shekhawat UKS, Srinivas L, Ganapathi TR. DHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana[J]. Planta,2011,234:915-932

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700