用户名: 密码: 验证码:
森林作业对小兴安岭针阔混交林土壤呼吸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北地区森林生态系统因其面积大,碳贮量高而在本地区和我国碳平衡中占有重要的地位。研究森林作业对小兴安岭针阔混交林土壤呼吸的影响,直接影响到本地区和我国的碳平衡和森林经营,因而具有重要的理论和现实意义。本研究采用红外气体分析法测定东北小兴安岭针阔叶混交林择伐、畜力集材、堆积清理和火烧清理等作业方式下,不同样地的土壤表面CO_2通量,利用挖壕法(Trenching plot)区分不同采伐强度下林地土壤呼吸各组分和集材道的异养呼吸,对土壤温度、湿度、林地土壤呼吸、集材道异养呼吸(RH)、迹地枯枝落叶层呼吸的昼夜动态和季节动态进行深入分析,利用模型分析和野外实测相结合的方法探讨采伐强度、土壤压实、堆积清理和火烧对土壤呼吸的影响。结果表明:
     (1)择伐作业对土壤呼吸的影响。不同采伐强度下,小兴安岭针阔混交林土壤呼吸速率均值范围在0.6-8.2μmol·m~(-2)·s~(-1)之间。雨季土壤呼吸明显大于旱季。生长季针阔混交林土壤通量值范围在1.68-18.82mol·m~(-2)之间,最大值和最小值分别出现在7月和11月。2006年通量为84.37mol·m~(-2)。不同采伐强度下旱季土壤温度和空气相对湿度对土壤呼吸的影响比在雨季明显。土壤温度和湿度共同解释了林地表面CO_2通量的68.10%-98.9%。结果表明,择伐作业对碳释放扰动不大,并没有破坏森林的固有规律。
     各组分中CO_2通量与土壤温度和湿度的相关性顺序为枯枝落叶层<根际<矿质土壤。呼吸速率均值与择伐强度相关性顺序为枯枝落叶层>根际>矿质土壤层。枯枝落叶层和矿质土壤层生长季呼吸速率平均值变化趋势较一致,均有较大的增幅,是控制择伐后林地土壤呼吸变化的关键组分。为降低择伐后林地CO_2排放增加速率,应采用中、小强度(52%以下)的择伐进行作业。
     (2)集材作业对土壤呼吸的影响。各样地土壤受不同干扰程度的压实情况:集材主道>集材支道>林内对照地。集材主道土壤(0-40cm)所受影响程度大于集材支道。经理论模型和实测数据对比,土壤CO_2浓度随着土壤压实程度提高而增大。
     集材道和对照林地土壤呼吸作用昼夜变化和季节变化皆表现为单峰曲线,且与5cm土壤温度相关性较高,与土壤水分日变化不明显。集材道土壤呼吸速率变幅大于林地。生长季平均土壤呼吸速率分别为2.36和3.22μmol·m~(-2)·s~(-1),集材道土壤呼吸速率约为林地的73%。集材道和针阔叶混交林地的Q_(10)值分别为2.77和2.72。
     小兴安岭针阔叶混交天然林集材道土壤异养呼吸速率受土壤温度和土壤湿度的共同影响,且集材道样地枯枝落叶层呼吸和无根土壤呼吸速率与土壤温度的相关性均高于土壤湿度。采用双因素关系模型(R=ae~(bT)W~c),土壤温度和土壤湿度共同解释了不同样地2006年、2007年枯枝落叶层呼吸和无根土壤呼吸速率季节变化的49%-90%和65%-93%,精度高于相应单因素模型。生长季对照林地、集材支道、集材主道无根土壤呼吸速率平均值分别为CO_2 1.36、1.13和0.94μmol·m~(-2)·s~(-1),变化范围则分别为CO_2 0.22-2.60、0.35-2.76和0.24-2.45μmol·m~(-2)·s~(-1);枯枝落叶层呼吸速率平均值分别为CO_2 1.16、1.02和0.93μmol·m~(-2)·s~(-1),变化范围则分别为CO_2 0.42-2.22、0.28-1.92和0.27-2.31μmol·m~(-2)·s~(-1)。集材主道土壤异养呼吸占土壤呼吸的比例最高(82.7%),对照样地最低(58.4%)。土壤异养呼吸中无根土壤呼吸和枯枝落叶层呼吸所占比例较为接近集材作业使枯枝落叶层呼吸略有降低。
     (3)迹地清理作业对土壤呼吸的影响。2006、2007年生长季堆积清理样地较对照样地土壤呼吸速率高16%-179%。堆积清理与对照地土壤呼吸和土壤温度都具有显著的指数关系。迹地堆积清理使得Q_(10)值从1.48增加到1.99。迹地堆积清理两年后,迹地堆积清理的样地0-10cm层土壤容重比未清除样地高20%;非毛管孔隙度、毛管孔隙度和土壤总孔隙度均显著减少,而对更深层土壤没有显著影响。采伐剩余物堆积腐烂,由于增加枯枝落叶和林下薪碳材,使得天然林由净碳支出23.62mol·a~(-1)变为净碳流入43.13mol·a~(-1),即堆积清理作业使森林由碳“源”变为碳“汇”。采伐剩余物增加导致了枯枝落叶层分解增加。测定期间土壤呼吸平均值及年呼吸量均升高近1倍。堆积清理增加的枯枝落叶层呼吸是其土壤呼吸显著升高的主要原因。
     枯落物分解产生CO_2占土壤总呼吸的比例为21%。枯枝落叶层土壤呼吸速率雨季明显高于旱季,且两种处理间土壤呼吸有显著差异。雨季土壤呼吸速率昼夜变化明显,旱季昼夜变幅很小。去除枯落物处理改变土壤呼吸速率与土壤温度的关系,使指数相关因子由0.7219变为0.5621。Q_(10)值分别为2.72和2.96。回归分析表明,去除枯落物处理并没有改变土壤呼吸速率与土壤含水量的相关性。
     火烧迹地和针阔叶混交林的土壤呼吸作用昼夜变化主要受温度影响,但雨季火烧迹地土壤呼吸速率决定因子被取代土壤水分。火烧迹地土壤呼吸速率日变幅大于林地,另外呼吸速率日变化峰谷值出现时间提前约2-3h。生长季火烧迹地和针阔叶混交林土壤呼吸速率平均值分别为2.8μmol·m~(-2)·s~(-1)和3.8μmol·m~(-2)·s~(-1),变化范围分别为0.7-5.58μmol·m~(-2)·s~(-1)和1.0-8.7μmol·m~(-2)·s~(-1)。用温度指数关系可以分别解释林地和火烧迹地土壤呼吸作用约77%和74%的变异,火烧迹地土壤呼吸速率约为林地的73%。火烧迹地和针阔叶混交林地的Q_(10)值分别为2.25和3.03。
     本研究在提供东北小兴安岭针阔叶混交林土壤碳贮量和土壤表面CO_2通量的大量实测数据的同时,也提供了一个木材生产作业对森林生态系统土壤呼吸动态影响的研究框架和基本研究方法。研究结果表明森林作业对小兴安岭针阔叶混交林的立地微环境产生影响,进而对土壤碳释放产生影响。因此,在全球气候变化条件下,其碳循环的源汇功能有可能发生变迁,迫切需要对考虑碳吸存的森林经营措施做进一步深入研究。
Forest ecosystems in northeastern China play an important role in both local and national carbon budgets because of the large area and huge amount of carbon storage. The study of effects of forest operation on soil respiration in conifer/broad-leaved mixed forests in Xiaoxing'anling directly affects the local and national carbon budgets and forest management. The study has important theoretical and practical meaning. In this study, the infrared gas exchange analyzer (LI-8100) was used to measure C0_2 fluxes on soil surface. Trenching plots were aligned to determine the heterothophic (RH) and autotrphic respiration (R_A) of soil components and on skidding trails under varied cutting intensity, and examine the effects of soil thermal and moisture content on soil respiration and heterotrophic respiration for different treatment, such as selective cutting, tractor or animal skidding, etc. The following results were obtained from this study:
     (1) Effects of selective cutting on soil respiration
     Under different cutting intensity, the soil respiration rates varied from 0.6-8.2μmol·m~(-2)·s~(-1) Higher soil respiration rates were reported in rainy season than the ones in dry season. During growing season, soil carbon fluxes varied from 1.68-18.82mol·m~(-2) with the highest in July and the lowest in November. The annual average carbon fluxes was 84.37mol·m~(-2) for the year of 2006.
     Under different cutting intensity, soil temperature and air humidity had more significant effects on soil respiration in dry season while less effect was noticed during rainy season. The comprehensive statistical models of Rs with soil temperature, soil moisture and their interactions as independent variables explained 68.10%-98.9% variations in Rs. It indicated that selective cutting had little impacts on soil carbon effux. The highest correlation between C0_2 flux and soil temperature and moisture was showed in mineral soil, followed by root, then by litterfall. However, the correlation between R and cutting intensity was the strongest in litter, followed by root and mineral soil. Trends of Litterfull respiration and mineral respiration are the same, both of them have large increase. They are the important part to control total respiration after cutting. In order to reduce C efflux, we should choose small intensity or middle intensity.
     (2) Effects of skidding operation on soil respiration
     The sequence of different compaction is main skidding road> small skidding trail>control field. Main skidding road have more influence than small skidding trail. Soil CO_2 concentration became bigger as increase of the soil compaction in comparison of theoretical model to field data.
     The curve has a high dot that stand by the diurnal and seasonal variations of soil respiration. Soil temperature at 5cm deep did significantly on soil respiration, but soil moisture not. The skidding road soil has bigger variance than the control field. The average CO_2 flux of skidding road and control field are 2.36 and 3.22μmol·m~(-2)·s~(-1). The propoty of skidding road CO_2 flux is 73% by the control field. The temperature sensitivity coefficient of soil respiration (Q_(10)) for the skidding road and control fields are 2.77and 2.72.
     Soil temperature and soil moisture affect soil respiration effux. Soil temperature is more important than soil moisture. By the mode of R=ae~(bT)W~c, soil temperature ,soil moisture and their interactions as independent variables explained 49%-90% variations in R_L.and 65%-93% variations in R_M.The modle is better than the oneonly includding soil temperature or soil moisture. In the growing season, the average soil littefull respiration flux are CO_2l.36、1.13 and 0.94μmol·m~(-2)·s~(-1), varied from CO_2 0.22-2.6、0.35-2.76 and 0.24-2.45μmol·m~(-2)·s~(-1);and the soil minaral respiration are CO_2 1.16、1.02和0.93μmol·m~(-2)·s~(-1), varied from CO_2 0.42-2.22、0.28-1.92 and 0.27-2.31μmol·m~(-2)·s~(-1) in the main skidding road, small skidding trail and control field.The heterothophic respiration of main skidding road is highest, 82.7%,and the control field is lowest, 58.4%.R_L and R_M are almost equal prpperty in the R_H.And skidding operation make soil litterfull respiration flux lowerand the control field.
     (3) Effects of slash disposal on soil respiration
     In 2006 and 2007, soil respiration in cumulated cleaning higher 16%-179% than control field.Soil temperature has significantly exponent relationship with cumulated cleaning field and control field. Q_(10) value add to 1.99 from 1.48. 0-10cm The soil physical propoty in cumulated cleaning field have more effect than forest fields. Because added cutting surplus, make forest -23.62mol·a~(-1) to 43.13mol·a~(-1)C, this is better to forest C operation.
     CO_2 come from litterfall is 21% to all the soil respiration.It's higher in rainy season than in dry season,and they have big disparity. Soil respiration varies fast and big in rain season. Getting off the litterfall change the relationship of R-T, make R~2 to the 0.5621 from 0.7219.Q_(10) are 2.72 and 2.96.And Getting off the litterfall did not change the relationship of R-W.
     Soil temperature conthol soil respiration diurnal change. And in rainy season, soil moisture takeover temperature.R change bigger than control fields and the extreme value are ahead 2-3 h. the average soil respiration flux are CO_2 2.8 and 3.8/μmol·m~(-2)·s~(-1), varied from 0.7-5.58μmol·m~(-2)·s~(-1) in fired field and 1.0-8.7μmol·m~(-2)·s~(-1) in the control field.Temperature can explain the variation 77% and 74% in fired field and control field.Soil respiration in fired field is 73% of control field, Q_(10) values are 2.25 and 3.03.
     This study provided a great deal of measured data and reseach framework for the effect of forest operation to belowground carbon pool and flux in representative forest ecosystems in northeastern China, and illustrated that soil CO_2 efflux in these ecosystems was affected by wood production operation and the microenvironment.
     Therefore, the carbon sink/source capacity of those ecosytems may change under global climate change conditions, which emphasized the siginificance and necessity of further studies on this subject.
引文
[1]J. T. Houghton, Y. Ding, D. J. Griggs et al. Climate Change 2001: The Scientific Basic. Cambridge: England: Cambridge University Press,2001
    [2]P. Tans, I. P. Fung, T. Takahashi. Observational Constraints on the Global Atmospheric CO_2 Budget. Science. 1990,247:1431-1438
    [3]T. Nakazawa. The Variability and Cycle of Carbon Dioxide and Methane. Global Environmental Research. 1997,2:5-14
    [4]M. Battle, M. L. Bender, P. Tans et al. Global Carbon Sinks and Their Variability Inferred from Atmospheric O_2 and CO_2. Science. 2000,287:2467-2470
    [5]叶笃正,符涂斌,蓝文杰.全球变化科学进展与未来趋势.地球科学进展.2002,17(4):467-469
    [6]P. M. Cox, R. A. Betts, C. D. Jones. Acceleration of Global Wanning Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature. 2000,408:184-187
    [7]H. Riitta, I. A. Goran, L. Sune et al. The Likely Impact of Elevated CO_2, Nitrogen eposition, Increased Temperature and Management on Carbon Sequestration in Temperate and Boreal Forest Ecosystems: A Literature Review. New Phytologist, . 2007,173:463-480
    [8]R. K. Dixon, S. Brown, R. A. Houghton. Carbon Pools and Flux of Global Forest Ecosystems. Science. 1994,263:185-190
    [9]R. Valentini, G. Matteucci, A. Dolman. Respiration as the Main Determinant of Carbon Balance in European Forests. Nature. 2000,404:861-865
    [10]B. Bolin. Change of Land Biota and Their Importance for the Carbon Cycle. Science. 1977,196:613-616
    [11]G. M. Woodwell, R. H. Whittaker, W. A. Refiners et al. The Biota and the World Cabon Budget. Science. 1978,199:141-146
    [12]M. L. Goulden, J. W. Monger, S. Fan et al. Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual Climate Variability. Science. 1996,271:1576-1578
    [13]P. Martin. Global CO_2 Monitoring Network. Science. 1998,281:1805
    [14]方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报.2001,25(5):594-602
    [15]E. A. Davidson, K. Savage, P. Bolstad et al. Belowground Carbon Allocation in Forests Estimated from Litterfall and Irga Based Soil Respiration Measurements. Agricultural and Forest Meteorology. 2002,113:39-51
    [16]D. S. Jenkinson, D. E. Adams, A. Wild. Model Estimates of CO_2 Emission from Soil in Response to Global Warming. Nature. 1991(351):304-306
    [17]P. Fallcowski, R. J. Scholes, E. Boyle. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science. 2000,290:291-296
    [18]刘纪远,于贵瑞,王绍强等.陆地生态系统碳循环及其机理研究的地球信息科学方法初探.地理研究.2003,22(4):397-405
    [19]曲建升,孙成权,张志强等.全球变化科学中的碳循环研究进展与趋向.地球科学进展.2003,18(6):980-987
    [20]沈微,王立海.森林作业对林地土壤呼吸的影响.森林工程.2005,21(5):12-14
    [21]王立海.木材生产时空组织研究.北京:中国林业出版社,1997
    [22]P. J. Hanson, N. T. Edwards, C. Garten et al. Separating Root and Soil Microbial Contributions to Soil Respiration: A Review of Methods and Observations. Biogeochemistry. 2000,48:115-146
    [23]W. M. Post, W. R. Emanel, P. J. Zinke et al. Soil Pool and World Life Zones. Nature. 1982,298:156-159
    [24]侯琳,雷瑞德,王得祥等.森林生态系统土坡呼吸研究进展.土壤通报.2006,37(3):589-594
    [25]K. Nakane, T. Kohno, T. Horikoshi. Root Respiration Rate before and Just after Clear-Felling in a Mature, Deciduous,Broad-Leaved Forest. Ecological Research. 1996,11:111- 119
    [26]D. E. Lytle, C. S. Cronan. Comparative Soil CO_2 Evolution, Litter Decay, and Root Dynamics in Clearcut and Uncut Spruce-Fir Forest. Forest Ecology andManagement. 1998,103:121-128
    [27]A. Sowerby, H. Blum, T. R. G. Gray et al. The Decomposition of Lolium Perenne in Soils Exposed to Elevated CO_2 Comparisons of Mass Loss of Litter with Soil Respiration and Soil Microbial Biomass. Soil Biology Biochemistry. 2000,32:1359-1366
    [28]K. Kalbitz, S. H. Solinger, J. Park et al. Controls on the Dynamics of Dissolved Organic Matter in Soils: A Review. Soil Science Society. 2000,165:277-304
    [29]B. Michalzik, K. Kalbitz, J. H. Park et al. Fluxes and Concentrations of Dissolved Organic Carbon and Nitrogen a Synthesis for Temperate Forests. Biogeochemistry. 2001,52:173- 205
    [30]C. A. Maier, L. W. Kress. Soil Co_2 Evolution and Root Respiration in 11 Year-Old Loblolly Pine Plantations as Affected by Moisture and Nutrient Availability. Canadian Journal of forest research. 2000,30(3):347-359
    [31]B. E. Haynes, S. T. Gower. Belowground Carbon Allocation in Unfertilized and Fertilized Red Pine Plantations in Northern Wisconsin. Tree Physiology. 1995,15:317-325
    [32]D. W. Johnson, D. R. Geisinger, R. F. Walker et al. Soil Pcofumigated and Nitrogen Fertilized Ponderosa Pine. Plant and soil. 2000,165:129-138
    [33] R. Brume. Mechanisms of Carbon and Nutrient Release and Retention in Beech Forest Gaps. Plant and Soil. 1995,168(169):593-660
    [34] L. M. Cisneros-Dozal, S. Trumbore, P. J. Hanson. Partitioning Sources of Soil Spired Co, and Their Seasonal Variation Using a Unique Radiocarbon Tracer. Global Change Biology. 2006,12(2):194-204
    [35] E. A. G Schuur, S. E. Trumbore. Partitioning Sources of Soil Respiration in Boreal Black Spruce Forest Using Radiocarbon. Global Change Biology. 2006,12(2):165-176
    [36] S. Trumbore. Carbon Respired by Terrestrial Ecosystems-Recent Progress and Challenges. Global Change Biology. 2006,12(2):141-153
    [37] J. B. Gaudinski, S. E. Trumbore, E. A. Davidson et al. Soil Carbon Cycling in a Temperate Forest: Radiocarbon Based Estimates of Residence Times, Sequestration Rates and Partitioning of Fluxes. Biogeochemistry. 2000,51:33-69
    [38] A. Rey, E. Pegoraro, V. Tedeschi et al. Annual Variation in Soil Respiration and Its Components in a Coppice Oak Forest in Central Italy. Global Change Biology. 2002,8(9):851-866
    [39] M. P. Waldmp, M. K. Firestone. Altered Utilization Patterns of Young and Old Soil C by Microorganisms Caused by Temperature Shifts and N Additions. Biogeochemistry. 2004,67:235-248
    [40] Q. Liu, N. T. Edwards, W. M. Post et al. Temperature-Independent Diet Variation in Soil Respiration Observed from a Temperate Deciduous Forest. Global Change Biology. 2006,12(11):2136-2145
    [41] K. C. Ewel, W. P. Cropper, H. L. Gholz. Soil CO_2 Evolution in Florida Slash Pine Plantations. Ⅰ. Changes through Time. Canadian Journal of Forest Research. 1986,17:325- 329
    [42] M. G. Weber. Forest Soil Respiration after Cutting and Burning in Immature Aspen Ecosystems. Forest Ecology and Mannagement. 1990,31:1-14
    [43] R. D. Boone, K. J. Nadelhoffer, J. D. Canary et al. Roots Exert a Strong Influence on the Temperature Sensitivity of Soil Respiration. Nature. 1998,396:570-572
    [44] J. Irvine, B. E. Law. Contrasting Soil Respiration in Young and Old-Growh Ponderosa Pine Forests. Global Change Biology. 2002,8:1183-1194
    [45] 王立海.木材生产季节作业量合理分配的研究.东北林业大学博士学位论文.1991
    [46] 赵秀海,范秀华,张伟森.拖拉机对集材道土壤及苗木生长影响的研究.林业科学.1994,30(2):159-165
    [47] J.R.Williamson. The Effects of Mechanic Forest Harvesting Operations on Soil Properties and Site Productivity. Research Report No.5, Tasmanian Forest Research council, Australia.1990
    [48]B.J.Atwell.Response of Roots to Mechanical Impedance.Environ.Exp.Bot.1993,33(1):27-40
    [49]E.L.Greacen.Compaction of Forest Soils:A Review.Aust.J.Soil Res.1980,18:163-189
    [50]R.Sands,E.L.Graecen,C.J.Gerard.Compaction of Sandy Soils in Radiata Pine Forests.I.A Penetrometer Study.Aust.J.Soil Res.1979,17:101-113
    [51]M.J.Goss.Effects of Mechanical Impedance on Root Growth in Barley(Hordeum Vulgare L.I.)Effects on Elongation and Branching of Seminal Root Axes.J.Exp.Bot.1977,28:96-111
    [52]H.M.Taylor,L.F.Ratliff.Root Elongation Rates of Cotton and Peanuts as a Function of Soil Strength and Soil Water Content.Soil Sci.1969,108(2):113-119
    [53]H.M.Taylor,G M.Roberson,J.Parker.Soil Strength-Root Penetration Relationships for Medium-to Coarse-Textured Soil Materials.Soil Science.1966,102:18-22
    [54]W.E.Larson,S.C.Gupta,R.A.Useche.Compression of Agricultural Soils from Eight Soil Orders.Soil Sci.Soc.Am.J.1980,44:450-457
    [55]A.R.Grable,E.G.Siemer.Effects of Bulk Density,Aggregate Size,and Soil Water Suction on Oxygen Diffusion,Redox Potentials,and Elogation of Corn Roots.Soil Sci.Soc.Am.Proc.1968,32:180-186
    [56]S.Brais.Persistance of Soil Compaction and Effects on Seedling Growth in Northwestern Quebec.Soil Sci.Soc.Am.J.2001,65:1263-1271
    [57]G.A.Gomez,R.F.Powers,M.J.Singer et al.Soil Compaction Effects on Growth of Young Ponderosa Pine Following Litter Removal in California's Sierra Nevada.Soil Sci.Soc.Am.J.2002,66:1334-1343
    [58]C.L.Tuttle,M.S.Golden,R.S.Meldahl.Soil Compaction Effects on Pinus Taeda Establishment from Seed and Early Growth.Can.J.For.Res.1988,18(5):628-632
    [59]R.R.Maud.The Compaction of Sugar-Belt Soils at Various Moisture Levels.Proc S Afr Sug Technol Ass.1960,34:154-160
    [60]A.Macfadyen.Simplemethods for Measuring and Maintaining the Proportion of Carbon Dioxide in Air,for Use in Ecological Studies of Soil Respiration.Soil Bio.Biochem.1970,2:9-18
    [61]H.Koizumi.Effects of Carbon Dioxide Concentration on Microbial Respiration in Soil,Ecol,Res.1991,6(3):227-232
    [62]D.G.Harris,C.G,M.V.Bavel.Root Respiration of Tobacco,Corn and Cotton Plants.Agron.J.1957,49:182-184
    [63]D.G.Harris,C.G.M.v.Bavel.Growth Yield and Water Absorption of Tobacco Plants as Affected by the Composition of the Root Atmosphere.Agron.J.1957,49
    [64] E.W.Russell.土壤条件与植物生长.北京科学出版社.1979:319
    [65] 梁永超.土壤通气性与植物根系代谢.土壤学进展.1994,22(3):34-39
    [66] M. Rodeghiero, A. Cescatti. Main Determinants of Forest Soil Respiration Along an Elevation/Temperature Gradient in the Italian Alps. Global Change Biology. 2005,11(7):1024-1041
    [67] S. Kang, S. Doh, D. Lee et al. Topographic and Climatic Controls on Soil Respiration in Six Temperate Mixed-Hardwood Forest Slopes, Korea. Glob ChangeBiol. 2003,9:1427-1437
    [68] C. M. Gough, J. R. Seller. The Influence of Environmental, Soil Carbon, Root and Stand Characteristics on Soil CO_2 Efflux in Loblolly Pine (Pins Taeda L.) Plantations Located on the South Carolina Coastal Plain. Forest Ecology and Management. 2004,191:353-363
    [69] M. McGroddy, W. L. Silver. Variations in Belowground Carbon Storage and Soil Coi Flux Rata Along a Wet Tropical Climate Gradientl. Biotropica. 2000,32(4):614-624
    [70] I. A. Janssens, K. I. M. Pilegaard. Large Seasonal Changes in Q_(10) of Soil Respiration in a Beech Forest. Global Change Biology. 2003,9(6):911-918
    [71] M. Reichstein, A. Rey, A. Freibauer et al. Predicting Temporal and Large-Scale Spatial Variability of Soil Respiration from Moisture Availability, Temperature and Vegetation Productivity Indices. Global Biogeochemical Cycles. 2003,17:1104-1116
    [72] J. L. Campbell, O. J. Sun, B. E. Law. Supply-Side Controls on Soil Respiration among Oregon Forests. Global Change Biology. 2004,10(11): 1857-1869
    [73] S. E. Trumbore. Age of Soil Organic Matter and Soil Respiration: Radiocarbon Constraints on Belowground C Dynamics. Ecological Application. 2000,10:399-411
    [74] C. P. Giardina, M. G. Ryan. Evidence That Decomposition Rates of Organic Carbon in Mineral Soil Do Not Vary with Temperature. Nature. 2000,404:858-861
    [75] J. R. Butnor, K. H. Johnsen, R. A. M. Oren et al. Reduction of Forest Floor Respiration by Fertilization on Both Carbon Dioxide-Enriched and Reference 17-Year-Old Loblolly Pine Stands. Global Change Biology. 2003,9(6):849-861
    [76] P. C. Eriksson, P. Holmgren. Estimating Stone and Boulder Content in Forest Soils-Evaluating the Potential of Surface Penetration Method. Catena. 1996,28:121-134
    [77] J. W. Raich, A. Tufekcioglu. Vegetation and Soil Respiration: Correlations and Controls. Biogeochemistry. 2000,48:71-90
    [78] I. A. Janssens, H. Lankreijer, G. Matteucci et al. Productivity Overshadows Temperature in Detenttining Soil and Ecosystem Respiration across European Forests. Global Change Biology. 2001,7(3):269-278
    [79] D. L. Kehing, J. A. Burger, G. S. Edwards. Estimating Root Respiration Microbial Respiration in the Rhizosphere and Root Free Soil Respiration in Forest Soils. Soil biology and biochemistry.1998,30(7):32-43
    [80]C.K.Wang,J.Y.Yang.Rhizospheric Sad Heterotrophic Components of Soil Respiration in Six Chinese Temperate Forests.Global Change Biology.2007,13(1):123-131
    [81]N.Buchmann.Biotic and Abiotic Factors Controlling Soil Respiration Rates in Picae Abies Stands.Soil Biology Biochemistry.2000,32:1625-1635
    [82]J.Yan,Y.Wang,G.Zhougg.Estimates of Soil Respiration and Net Primary Production of Three Forests at Different Succession Stages in South China.Global Change Biology.2006,12(5):810-821
    [83]Y P.Wang,D.Baldocchi,R.Leuning et al.Estimating Parameters in a Land-Surface Model by Applying Nonlinear Inversion to Eddy Covariance Flux Measurements from Eight Fluxnet Sites.Global Change Biology.2007,13(3):652-670
    [84]G.L.Tierney,T.Fahey.Fine Root Turnover in a Northern Hardwood Forest:A Direct Comparison of the Radiocarbonand Minirhizotron Methods.Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere.2002,32:1692-1697
    [85]C.M.Thirukkumaran,D.Parkinson.Microbial Respiration,Biomass,Metabolic Quotient and Litter Decomposition in a Lodgepole Pine Forest Floor Amended with Nitrogen and Phosphorous Fertilizers.Soil Biology&Biochemistry.2000,32:59-66
    [86]J.Pumpanen,H.Vesniemi,M.peramaki et al.Seasonal Patterns of Soil CO_2 Efflux and Soil Air CO_2 Concentration in a Scot Pine Forest:Comparison of Two Chamber Techniques.Glaobal Change Biology.2003,9:371-382
    [87]C.Fang,J.B.Moncrieff.The Dependence of Soil Efflux on Temperature.Soil Biological and biochemistry.2001,133:135-165
    [88]J.Loyd,J.A.Taylor.On the Temperature Dependence of Soil Respiration.Functional Ecology.1994,8:315-323
    [89]E.A.Davidson,E.Belk,R.D.Boone.Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Hardwood Forest.Global Change Biology.1998,4(2):217-227
    [90]X.Z.Liu,S.Q.Wan,B.Su et al.Response of Soil CO_2 Efflux to Water Manipulation in a Tallgrass Prairie Ecosystem.Plant and Soil.2002,240:213-223
    [91]C.Farig,J.B.Moncrieff.A Model for Soil CO_2 Production and Transport 1:Model Development.Agricultural and Forest Meteorology.1999,95:225-236
    [92]I.Reich,C.Potter,D.Bhagawati.Interannual Variability in Global Soil Respiration,1980-94.Global Change Biology,.2002,8:800-812
    [93]P.E.Wiseman,J.R.Seller.Soil CO_2 Efflux across Four Age Classes of Plantation Loblolly Pine(Pleastaeda L.)on the Virginia Piedmont.Forest Ecology and Management.2004,192:297-311
    [94]周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡.植物生态学报.2000,24(5):518-522
    [95]沙万英,邵雪梅,黄玫.20世纪80年代以来中国气候变暖及其对自然区划界线的影响.中国科学D辑.2002,32(4):317-326
    [96]罗勇,蓝文杰,王绍武.气候突变的情景及其对美国国家安全的寓意——简评美国国防部“秘密”报告.气候变化通讯.2004,3(1):11-13
    [97]方精云,王如松,高林等.中国陆地生态系统碳循环及其全球意义:现代生态学的热点问题研究.北京:中国科技出版社.1996
    [98]单正军,蔡道基,任阵海.土壤有机质矿化与温室气体释放初探.环境科学学报.1996,16(2):150-154
    [99]房秋兰,沙丽清.西双版纳热带季节雨林与橡胶林土集呼吸.植物生态学报.2006,30(1):97-103
    [100]刘建军,王得祥,雷瑞德等.秦岭天然油松、锐齿株林地土壤呼吸与CO_2释放.林业科学.2003,39(2):8-13
    [101]杨玉盛,陈光水,王小国等.皆伐对杉木人工林土壤呼吸的影响.土壤学报.2005,42(4):584-590
    [102]易志刚,蚁伟民,周国逸等.鼎湖山三种主要植被类型土壤碳释放研究.生态学报.2003,23(8):1673-1678
    [103]蒋高明,黄银晓.北京山区辽东栎林土壤释放CO_2的模拟实验研究.生态学报.1997,11(5):477-482
    [104]蒋延玲,周广胜,赵敏等.长白山阔叶红松林生态系统土壤呼吸作用研究.植物生态学报.2005,29(31):411-414
    [105]周存宇,周国逸,王迎红等.鼎湖山针阔叶混交林土壤呼吸的研究.北京林业大学学报.2005,27(4):23-27
    [106]王旭,周广胜,蒋延玲等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较.植物生态学报.2006,30(6):887-893
    [107]沙丽清,征郑,唐建维等.西双版纳热带季节雨林的土壤呼吸研究.中国科学D辑地球科学.2004,34(增刊Ⅱ):167-74
    [108]常宗强,冯起,吴雨霞等.祁连山亚高山灌丛林土壤呼吸速率的时空变化及其影响分析.冰川冻土.2005,27(5):666-672
    [109]褚金翔,张小全.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分.生态学报.2006,26(6):1693-1700
    [110]杨金艳,王传宽.东北东部森林生态系统土壤呼吸组分的分离里化.生态学报.2006,26(6):1640-1647
    [111]刘颖,韩士杰,胡艳玲等.土壤温度和湿度对长白松林土壤呼吸速率的影响.应用生态学报.2005,16(9):1581-1585
    [112]C. K. Wang, J. Y. Yang, Q. Z. Zhaag. Soil Respiration in Six Temperate Forests in China. Global Change Biology. 2006,12(11):2103-2114
    [113]王森,刘亚琴,郝占庆等.长白山阔叶红松林生态系统的呼吸速率.应用生态学报.2006,17(10):1789-1795
    [114]X. L. Tang, G. Y. Zhou, S. G. Liu et al. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China. Journal of Integrative Plant Biology. 2006,48(6):654-663
    [115]骆士寿,陈步峰,李意德等.海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究.生态学报.2001,21(12):2013-2017
    [116]罗辑,杨忠.贡嘎山东壤蛾眉冷杉林区土壤CO_2排放.土壤学报.2000,37(3):402-409
    [117]张丽华,陈亚宁,李卫红等.干旱荒漠区不同土地利用/覆盖类型土壤呼吸速率的季节变化.中国科学D辑,地球科学.2006,36(增刊Ⅱ):68-76
    [118]刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸.植物生态学报.1998,22(2):119-126
    [119]王文杰,王慧梅,祖元刚等.林木非同化器官与土壤呼吸的温度系数Q_(10)值的特征分析.植物生态学报.2005,29(4):680-691
    [120]陈全胜,李凌浩,韩兴国等.土壤呼吸对温度升高的适应.生态学报.2004,24(11):2649-2655
    [121]Y. Liu, S. J. Han, X. F. Li et al. The Contribution of Root Respiration of Pinus Koraiensis Seedlings to Total Soil Respiration under Elevated CO_2 Concentrations. Journal of Forestry Research. 2004,15(3):187-191
    [122]J. Olson, J. Watts, L. Allison. Carbon in Live Vegetation of Major World Ecosystems. Report. Oak Ridge National Laboratory, Oak Ridge, Tennessee. 1983
    [123]S. L. Fu, W. X. Cheng, R. Susfalk. Rhizosphere Respiration Varies with Plant Species and Phenology: A Greenhouse Pot Experiment. Plant and Soil. 2002,239:133-140
    [124]W. H. Schlesinger. Carbon Balance in Terrestrial Detritus. Annual Review of Ecology and Systematics. 1977,8:51-81
    [125]M. Ohashi, K. Gyokusen, A. Saito. Measurement of Carbon Dioxide Evolution from a Japanese Cedar (Cryptom Eria Japonica D. Don ) Forest Floor Using an Open-Flow Chamber Method. Forest Ecology and Management. 1999,123:105-114
    [126]K. Nakane, M. Yamamoto, H. Tsuhota. Estimation of Root Respiration Rate in a Mature Forest Ecosystem. Japanese Journal of Ecology. 1983,33:397- 408
    [127]D. Toland, D. Zak. Seasonal Patterns of Soil Respiration in Intact and Clearcut Northern Hardwood Forests. Canadian Journal of Forest Research. 1994,24:1711-1716
    [128]J. Raich, C. Potter, D. Bhagawati. Inter-Annual Variability in Global Soil Respiration, 1980-1994.Glob ChangeBiol.2002,8:800-812
    [129]张东秋,石培礼,张宪州.土壤呼吸主要影响因素的研究进展.地球科学进展.2005,20(7):778-785
    [130]程慎玉,张宪州.土壤呼吸中根系与微生物呼吸的区分方法与应用.地球科学进展.2003,18(4):597-602
    [131]孟春,王立海,沈微.择伐对生长季针阔混交林土壤分室呼吸的影响.林业科学.2008,44(8):41-44
    [132]王旭,周广胜,蒋延玲.长白山阔叶红松林土壤呼吸作用.植物生态学报.2007,31(3):355-362
    [133]B. Law, D. Baldocchi, P. Anthoni. Below-Canopy and Soil CO_2 Fluxes in a Ponderosa Pine Forest. AgricForMeteorol. 1999,94:171-188
    [134]D. Epron, L. Farque, E. Lucot et al. Soil CO_2 Efflux in a Beech Forest: Dependence on Soil Temperature and Soil Water Content. Annals of Forest Science. 1999,56:221-226
    [135]C. Fang, J. B. Moncrieff, H. LGholz et al. Soil CO_2 Efflux and Its Spatial Variation in a Florida Slash Pine Plantations. Plant and Soil. 1998,205:135-146
    [136]J. Raich. Aboveground Productivity and Soil Respiration in Three Hawaiian Rain Forests. ForEcolManage. 1998,107:309-318
    [137]K. Michel, E. Matzner. Nitrogen Content of Forest Floor Oa Layers Affects Carbon Pathways and Nitrogen Mineralization. Soil Biology and Biochemistry. 2002, 34(11): 1807-1813
    [138]邱仁辉,杨玉盛,陈光水等.森林经营措施对土壤的扰动和压实影响.山地学报.2000,18(1):231-236
    [139]周新年,沈宝贵,吴远彬等.伐区采集作业综合效益评价的研究.山地学报.2002,20(3):331-337
    [140]张万儒,许本彤.森林土壤定位研究方法.北京:中国林业出版社.1986:30-34
    [141]D. L. Kelting, J. A. Burger, G. S. Edwards. Estimating Root Respiration Microbial Respiration in the Rhizosphere, and Root-Free Soil Respiration in Forest Soils. Soil Biol. Biochem. 1998,30(7):961-968
    [142]马雪华.森林水生态.北京:中国林业出版社.1993:91-132
    [143]郝占庆,王力华.辽宁东部山区主要森林类型土壤的水保持能力.应用生态学报.1998,9(3):237-241
    [144]王立海,田静,张锐.林地土壤压实对土壤呼吸影响的数学模型研究.森林工程.2007,23(1):5-7
    [145]杨玉盛,董彬,谢锦升等.森林土壤呼吸及其对全球变化的响应.生态学报.2004,24(3):583-591
    [146]杨玉盛,郭剑芬,林鹏等.格氏栲天然林与人工林枯枝落叶层碳库及养分库.生态 学报.2004,24(2):359-367
    [147]孙墨珑,杨学春.森林作业与森林环境.世界林业研究.1998(5)
    [148]满秀玲,屈宜春,蔡体久等.森林采伐与造林对土壤化学性质的影响.东北林业大学学报.1998,26(4):14-16
    [149]张正雄,赵尘,刘爱琴等.手扶拖拉机集材对人工林迹地土壤理化性质的影响.福建林学院学报.2003,23(4):309-311
    [150]满秀玲,于凤华,戴伟光等.森林采伐对土壤水分的影响.东北林业大学学报.1997,25(5):57-60
    [151]N. T. Edwards, B. M. Ross-Todd. Soil Crabon Dynamics in a Mixed Deciduous Forest Following Clear-Cutting with and without Residue Removal. Soil Science Society of America Journal. 1983,47:1014-1021
    [152]R. G. Striegl, K. P. Wickland. Effects of a Clear-Cut Harvest on Soil Respiration in a Jack Pine-Lichenwoodland. Canadian Journal of Forest Research. 1998,28:534-539
    [153]F. Ponder. Effect of Soil Compaction and Biomass Removal on Soil CO_2 efflux in a Missouri Forest. Communications in Soil Science and Plant Analysis. 2005,36:1301-1311
    [154]M. Rayment, P. G. Jarvis. Temporal and Spatial Variation of Soil CO_2 Efflux in a Canadian Boreal Forest. Soil Biol. Biochem. 2000,32:35-45
    [155]Y. Qi, M. Xu. Separating the Effects of Moisture and Temperature on Soil CO_2 Efflux in a Coniferous Forest in the Sierra Nevada Mountains. Plant Soil. 2001,237(1):15-23
    [156]S. K. Rout, S. R. Gupta. Soil Respiration in Relation to Abiotic Factors, Forest Floor Litter, Root Biomass and Litter Quality in Forest Ecosystems of Siwaliks in Northern India. Acta Oecol./Oecol. Plant. 1989,10:229-244
    [157]E. Davidson, K. Sawage, S. Trumbore et al. Vertical Partitioning of CO_2 Production within a Temperate Forest Soil. Global Change Biology. 2006,12:944-956
    [158]吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究.应用生态学报.1998,9(4):341-344
    [159]马红亮,朱建国,谢祖彬.大气CO_2浓度升高对植物.土壤系统地下过程影响的研究.土壤.2003,35(6):465-472
    [160]C. M. Fang, P. smith, J. B. Moncrieff et al. Similar Response of Lable and Resistant Soil Organic Matter Pools to Changes in Tempreture. Nature. 2005,433(6):57-59
    [161]W. J. Wang, H. M. Wang, Y. G. Zu. CO_2 Flux of a Larch Plantation in Northeast China. Beijing: Science Press. 2006
    [162]J. W. Raich, K. J. Nadelhoffer. Belowground Carbon Allocation in Forest Ecosystems:Global Trends. Ecology. 1989,70(5): 1346-1354
    [163]M.-M. Couteaux, P. Bottner, B. Berg. Litter Decomposition,Climate and Liter Quality. Trends in Ecology&Evolution. 1995,10(2):63-66
    [164]E. Ebermayer. Die Qesamte Lehre Der Waldstreu Mit Rucksicht Auf Die Chmidche Static Des. Waldbaues,Berlin,Julius Springer. 1876,187:116
    [165]J. R. Bray, E.Gorham. Litter Production in Forest of the World. EcoLRes. 1964,2:101- 157
    [166]吴承祯,洪伟,姜志林等.我国森林凋落物研究进展.江西农业大学学报.2000,22(3):405-410
    [167]陈全胜,李凌浩,韩兴国等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报.2004,24(4):831-836
    [168]陈全胜,李凌浩,韩兴国等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响.植物生态学报.2003,27(2):202-209
    [169]W. J. Wang, H. M. Wang, Y. G. Zu et al. Characteristics of Root, Stem, and Soil Resp Iration Q_(10) Temperature Coefficients in Forest Ecosystems. Acta Phytoecologica Sinica. 2005,29:680-691
    [170]J. Cavelier, M. C. Penuela. Soil Respiration in the Cloud Forest and Dry Deciduous Forest of Serrania De Macuria. Colombia. Biotropica. 1990,22(4):346-352
    [171]L. Schwendenmann, E. Veldkamp, T. Brenes et al. Spatial and Temporal Variation in Soil CO_2 Efflux in an Old-Growth Neotropical Rain Forest, La Selva, Costa Rica. Biogeochemistry. 2003,64:111-128
    [172]王春林,周国逸,唐旭利等.鼎湖山针阔叶混交林生态系统呼吸及其影响因子.生态学报.2007,27(7):2659-2668
    [173]张小全,陈先刚,武曙红.土地利用变化和林业活动碳贮量变化测定与监测中的方法学问题.生态学报.2004,24(9):2068-2073
    [174]樊后保,黄玉梓,袁颖红等.森林生态系统碳循环对全球氮沉降的响应.生态学报.2007,27(7):2997-3009
    [175]林丽莎,韩士杰,王跃思.长白山阔叶红松林土壤CO_2释放.东北林业大学学报.2005,33(1):11-13
    [176]王文杰,刘玮,孙伟等.林床清理对落叶松人工林土壤呼吸和物理性质的影响,生态学报.2008,28(10):4750-4756
    [177]孟春,王立海,沈微.择伐对小兴安岭针阔叶混交林土壤呼吸的影响.应用生态学报.2008,19(4):729-734
    [178]孟春,王立海,沈微.针阔混交林择伐作业后土壤呼吸与土壤温度和湿度的关系.东北林业大学学报.2008,36(5):42-53
    [179]E. A. Davidson, E. Belk, R. D. Boone. Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Hardwood Forest. Global Change Biology. 1998,4:217-227
    [180]D. M. LINN, J. W. DORAN. Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Sci Soc AmJ. 1984,48:1267-1272
    [181]黄承才,葛滢,常杰等.中亚热带东部三种主要木本群落土壤呼吸的研究.生态学报.1999,19(3):324-328
    [182]孙向阳,乔杰,谭笑.温带森林土壤中的CO_2排放通量.东北林业大学学报.2001,29(1):35-39
    [183]杜睿,王庚辰,刘广仁等.内蒙古羊草草原温室气体交换通量的日变化特征研究.草地学报.1998,6(4):258-264
    [184]M. Xu, Y. Qi. Soil Surface CO_2 Efflux and Its Spatial and Temporal Variations in a Young Ponderosa Pine Plantation in Northern California. Global Change Biology. 2001,7:667-677
    [185]王立海.森林采伐迹地清理方式对迹地土壤理化性质的影响.林业科学.2002(6)
    [186]孙墨珑.森林采伐作业对林地土壤理化特性的影响.黑龙江省自然科学基金资助项目课题总结报告.1999
    [187]赵秀海.采伐迹地清理方式对水土流失及更新苗木的影响.土壤侵蚀与水土保持学报.1995
    [188]张敏,胡海清.林火对土壤微生物的影响.东北林业大学学报.2002(7)
    [189]何斌.马尾松采伐迹地炼山前后土壤养分变化的研究.广西农业生物科学.2002,9
    [190]杨玉盛,何宗明,马祥庆等.论炼山对杉木人工林生态系统影响的利弊及对策.自然资源学报.1997,12(2):153-159
    [191]刘爱琴.不同林地清理方式土壤微生物动态研究.福建林学院学报.1992,12
    [192]K. A. Vogt, C. C. Grier, D. J. Vogt. Production,Turnover,and Nutrient Dynamics of above-and Belowground Detritus in World Forest Advances in Ecological Research. 1986,15:303-377
    [193]G. A. Brook, M. E. Folkoff, E. O. Box. A World Model of Soil Carbon Dioxide. Earth Surface Processes and Landforms. 1983,8:79
    [194]R. D. Bowden, K. J. Nadelhoffer, R. D. Boone et al. Contributions of above Ground Litter, Below Ground Litter, and Root Respiration to Total Soil Respriation in a Temperate Mixed Hardwood Forest. Can. J. For. Res. 1993,23(7):1402-1407
    [195]J. Subke, M. Reichestein, J. D. Tenhumen. Expain Temporal Variation in Soil CO_2 Efflux in a Mature Spruce Forest in Southern Germany. Soil biology and biochemistry. 2003,35:1467-1483
    [196]J. Aber, J. Melillo, C. McClaugherty. Predicting Long-Term Patterns of Mass Loss, Nitrogen Dynamics,and Soil Organic Matter Formation from Initial Fine Litter Chemistry in Temperate Forest Ecosystems. Can.j.bot. 1990,68:2201-2208
    [197]R. Rees, S. C. Chang, C. P. Wang et al. Release of Nutrients and Dissolved Organic Carbon During Decomposition of Chamaecyparis Obtusa Var.Formosana Leaves in a Mountain Forest in Taiwan.Journal of Plant Nutrition and Soil Science. 2006
    [198] 周道玮,姜世成,田洪艳等.草原火烧后土壤水分含量的变化.东北师大学报自然科学版.1999,1
    [199] T. H. DeLuca, K. Zouhar. Effect S of Selection Harvest and Prescribed Fire on the Soil Nitrogen Status of Ponderosa Pine Forests. For. Ecol. Manage. 2000,138:263-271
    [200] T. J. Fahey, M. A. Arthur. Further Studies on Root Decomposition Following Harvest of a Northern Hardwoods Forest. Forest Sci. 1994,40:618-629
    [201] A. U. Mallik, D. Hu. Soil Respiration Following Site Preparation Treatments in Boreal Mixedwood Forest. For.Ecol. Manage. 1997,97:265-275
    [202] T. M. Ballard. Impact S of Forest Management on Northern Forest Soils. For. Ecol. Manage. 2000,133:37-42
    [203] E. B. Schilling, B. G. Lockaby, R. Rummer. Belowground Nutrient Dynamics Following Three Harvest Intensities on the Pearl River Floodplain, Mississippi. Soil Sci. Soc. AmJ. 1999,63:1856-1868
    [204] E. Baath, A. Frostegard, T. Pennanen et al. Microbial Community Structure and Ph Responses in Relation to Soil Organic Matter Quality in Wood-Ash Fertilised, Clear-Cut or Burned Coniferous Forest Soils. Soil Biol.Biochem. 1995,27:229-240
    [205] J. Pietikainen, H. Fritze. Clear-Cutting and Prescribed Burning in Coniferous Forest : Comparison of Effects on Soil Fungal and Total Microbial Biomass, Respiration Activity and Nitrification. Soil Biol Biochem. 1995,27:101-109
    [206] B. Lundgren. Bacteria in a Pine Forest Soil as Affected by Clear Cutting. Soil Biol. Biochem. 1982,14:537-542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700