用户名: 密码: 验证码:
武夷山不同海拔土壤动物对凋落物分解的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择福建省武夷山国家自然保护区不同海拔高度的4个植被垂直带:中亚热带常绿阔叶林(500m)、针叶林(1200m)、亚高山矮林(1800m)和高山草甸(2100m)为研究样地。采用随机区组设计野外实验,对4个样地中土壤动物群落多样性和土壤指标进行了野外调查和室内测定,并就环境因子沿海拔变化对土壤动物群落结构与动态的影响进行研究,同时,探讨了土壤动物群落沿海拔的变化及其对凋落物分解影响的过程与机理。主要研究结果及其意义如下:
     1、沿着海拔高度的上升,总类群数、总密度和群落多样性指数呈显著减少趋势。这一发现将有助于理解土壤动物对山地气候垂直梯度变化的响应。
     2、沿着海拔高度的上升,导致了土壤物理、化学和生物学特性显著的演替变化,并对土壤动物群落多样性产生了显著影响,同时,不同动物类群对土壤化学性质有不同的响应特征。这一发现有助于理解环境梯度变化对土壤动物群落的影响。
     3、沿着海拔高度的上升,凋落物袋中土壤动物群落多样性及其对凋落物分解的贡献呈显著的减少趋势。并且,土壤动物多样性的变化是影响凋落物分解沿海拔变化的重要调控因子。这一发现有助于理解土壤动物对凋落物分解的调控机理。
Soil fauna, the most active portion in belowground systems, play crucial roles in processes such as nutrient cycling and energy transformation in terrestrial ecosystems. Litter decomposition is an important biological process driven by a range of complex and interacting physical factors, such as climate, substrate, soil organisms, and physical and chemical properties of soils. Little is known about the response of soil biota to globe climate changes, and the possible effects of soil communities on the process of decomposition. Altitudinal gradients often produce climatic effects that would result from latitudinal changes, and so have been used as surrogates for latitudinal gradients. Our study examined the changes of soil faunal diversity under the effects of soil and climate characteristic and its contributions to leaf litter decomposition of a single substrate (Castanopsis carlesii) along an elevation gradient across four types of zonal vegetations in southeastern China: evergreen broadleaf forest (EVB): coniferous forest (COF): dwarf forest (DWF): and alpine meadow (ALM) during April 2007 to 2008.
     The major finding and its significance are as following:
     1. We examined the structure and makeup of soil fauna along an elevation gradient in the Wuyi mountains. The number, density, and diversity decreased significantly, which supply some data for faunal distribution study in subtropics and aides in understanding of faunal response to altitude changes.
     2. We found the positive influences of soil physical, chemical, and biological characteristic on faunal constitution along an elevation gradient in the Wuyi mountains. The result may be helpful to understand the effects of climate, vegetation, and soil on faunal structure and diversity, and the responses of fauna to climate changes.
     3. Faunal diversity and its contribution to litter decomposition decreased along the elevation gradients. We suggest that soil faunal diversity and its environment may be important driver in litter decomposition.
引文
陈鹏.1983.土壤动物的采集和调查方法.生态学杂志,(3): 46~51.
    陈鹏,富德义.1984.长白山土壤动物在物质循环中作用的初步探讨.生态学报,4(2): 172 ~179.
    陈鹏. 1996.动物生态地理研究.成都:成都地图出版社.
    陈国定,朱文,黎明达等.1992.应用甲螨监测土壤污染.中国环境监测,8(1): 6 ~10.
    代静玉,秦淑平,周江敏. 2004.水杉凋落物分解过程中溶解性有机质的分组组成变化.生态环境,13(2): 207-210.
    邓晓保,邹寿青,付先惠等.2003.西双版纳热带雨林不同土地利用方式对土壤动物个体数量的影响.生态学报,23(1): 130 ~138.
    傅必谦.1996.我国土壤动物群落学研究进展.生物学通报,31(12): 8 ~9.
    傅必谦,陈卫,董晓晖等.2002.北京松山四种大型土壤动物群落组成和结构.生态学报,22(2): 215~223.
    郭永灿,王振中,张友梅等.2000.土壤污染对土壤动物同工酶与氨基酸含量的影响.见尹文英等着.中国土壤动物.北京:科学出版社,325~333.
    胡圣豪.2000.青冈林落叶分解过程中甲螨群落的演替.见尹文英等着.中国土壤动物.北京:科学出版社,191~198.
    胡锋,刘满强,李辉信. 2004.土壤动物对土壤质量的影响及研究进展.见:中国土壤学会面向农业与环境的土壤科学.北京:科学出版社,160~173
    胡肄慧,陈灵芝,陈清朗,等. 1987.几种树木枯叶分解速率的试验研究.植物生态学与地植物学学报, 11(2): 124~132.
    黄玉梅.2004.土壤动物群落多样性研究进展.西部林业科学,33(3): 63~68.
    柯欣,赵立军,尹文英.1999.青冈林土壤动物群落结构在落叶分解过程中的演替变化.动物学研究,20(3): 207~213.
    柯欣,赵立军,尹文英.2001a.青冈林土壤跳虫群落结构在落叶分解过程中的变化.生态学报,21(6): 982~987.
    柯欣,赵立军,尹文英.2001b.三种乔木落叶分解过程中跳虫群落结构的演替.昆虫学报,44(2): 221~226.
    柯欣,岳巧云,傅荣恕等.2002.浦东滩涂中型土壤动物群落结构及土质酸碱度生物评价分析.动物学研究,23(2): 129~135.
    梁文举,葛亭魁,段玉玺.2001a.土壤健康及土壤动物生物指示的研究与应用.沈阳农业大学学报,32(1): 70~72
    梁文举,黄国宏.2001b.土壤动物对大气CO2浓度升高响应研究的进展.世界科技研究与发展,23 (1): 69~73.
    林鹏,叶庆华. 1983.武夷山植被研究(一)黄岗山的植被分布概要.见:《武夷科学》编辑委员会编.武夷科学第二卷.福州:福建科学技术出版社, 16~22.
    廖崇惠,陈茂干.1990a.小良人工阔叶混交林中落叶消耗的过程与土壤动物的影响.热带亚热带森林生态系统研究,(6): 173~176.
    廖崇惠,陈茂干.1990b.热带人工林土壤动物群落的次生演替和发展过程探讨.应用生态学报,1(1):56~61.
    廖崇惠,李健雄.1997a.南亚热带森林土壤动物群落多样性研究.生态学报,17(5): 549~555.
    廖崇惠,李健雄.1997b.热带、亚热带退化生态系统恢复过程中动物群落的演替与功能.见余作岳等主编.热带亚热带退化生态系统的恢复生态学.广州:广东科技出版社,192~213.
    廖崇惠,李健雄.2000.华南热带和亚热带森林土壤动物的群落结构.见尹文英等着.中国土壤动物.北京:科学出版社,77~100.
    廖崇惠,李健雄,杨悦屏等.2002.海南尖峰岭热带土壤动物群落-群落的组成及其特征.生态学报,22(11): 1866~1872.
    廖崇惠,李健雄,杨悦屏等.2003.海南尖峰岭热带林土壤动物群落一群落结构的季节变化及其气候因素.生态学报,23(1): 139~147.
    李德成,李忠佩,张桃林,等.自蚁活动与土壤环境之间的相互作用.土壤,2003, 35( 2) : 98~102.
    李朝达,杨大荣,肖宁年等.2000.西双版纳热带雨林的土壤动物.见尹文英等着.中国土壤动物.北京:科学出版社,100~105.
    林英华,张夫道,杨学云等.2004.农田土壤动物与土壤理化性质关系的研究.中国农业科学,37(6): 871~877.
    刘满强,胡锋,李辉信等.2002.退化红壤不同人工林恢复下土壤节肢动物群落特征.生态学报,22(1): 54~61.
    刘红,哀兴中.1999.泰山土壤动物群的生态分布.生态学杂志.18( 2): 13~16.
    刘红,袁兴中.2000.中国东部山地森林土壤动物多样性.山地学报,18(3): 221~225.
    莫江明,布朗,孔国辉,等. 1996.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究.植物生态学报, 20 (6): 534-542.
    孙帆,陈鹏,刘震.1991.吉林省土壤动物组成与生态分布的初步研究.地理学报,46(3): 310~318.
    刘新民,刘永江,郭砺. 1999,内蒙古典型草原大型土壤动物群落动态及其在放牧下的变化.草地学报,7(3): 228~235.
    刘增文.2002.森林生态系统中枯落物分解速率研究方法.生态学报,22(6): 954~956.
    刘光落,蒋能慧,张连第等.1996.土壤理化分析与剖面描述.北京:中国标准出版社.
    路有成,王宗英. 1994.九华山土壤动物的垂直分布.地理研究, 13(2): 74-81.
    青木淳一.1973.土壤动物学.东京:北隆馆.
    邱尔发,陈卓梅,郑郁善,等.2005.麻竹山地笋用林凋落物发生、分解及养分归还动态.应用生态学报,16(5): 811-814.
    宋雪英,宋玉芳,孙铁晰等.2004.土壤原生动物对环境污染的生物指示作用.应用生态学报,15(10): 1979~1982.
    田大伦,朱小年,蔡宝玉,等. 1989.杉木人工林生态系统凋落物的研究Ⅱ:凋落物的养分含量及分解速率.中南林学院学报, 9 (增): 45-55.
    田家怡,潘怀剑,傅荣恕.2001.黄河三角洲土壤动物多样性初步调查研究.生物多样性,9(3):228~236.
    王宗英,路有成,王慧芙.1996.九华山土壤螨类的生态分布.生态学报,16(1): 5 8~64.
    王振中,张友梅.1989.衡山自然保护区森林土壤动物群落研究.地理学报,44(2):205~213.
    王振中,张友梅.1990.湘江流域工业污染源对农田生态系统土壤动物群落影响的研究.应用生态学报,1(2): 156~164.
    王振中,张友梅,伍惠生.1992.湖南中部山地土壤线虫生态地理群落的研究.湖南师范大学自然科学学报,15(3):72~78.
    王振中,张友梅,郭永灿等.2000.农药污染与土壤动物.见尹文英等着.中国土壤动物.北京:科学技术出版社,307~319.
    王振中,张友梅,邢协加.2002.土壤环境变化对土壤动物群落影响的研究.土壤学报,39(6): 892~897.
    王健,李朝品,张超等.2002.土壤中甲螨孽生与铬污染相关性研究.中国微生态学杂志,14(4): 211~213.
    王邵军,蔡秋锦,阮宏华.2007.土壤线虫群落对闽北森林植被恢复的响应.生物多样性, 15 : 356-364.
    吴东辉,胡克.2003.大型土壤动物在鞍山市大孤山铁矿废弃地生态环境恢复与重建中的指示作用.吉林大学学报(地球科学版),33(2): 213~216.
    吴东辉,胡克,尹秀琴.2004.松嫩草原中南部退化羊草草地生态恢复与重建中大型土壤动物群落生态特征.草业学报,5: 121~126.
    忻介六等1985.昆虫形态分类学.上海:复旦大学出版社.
    肖慈英,黄青春,阮宏华.2002.松、栎纯林及混交林凋落物分解特性研究.土壤学报,39(5): 763-767.
    熊燕,刘强,陈欢,彭少麟, 2005.鼎湖山季风常绿阔叶林凋落叶分解与土壤动物群落动态和多样性.生态学杂志,24: 1120~1126.
    许新建,陈金耀,俞新妥.1995.武夷山六种杉木伴生树种落叶养分归还的研究.福建林学院学报,15(3): 213-217.
    杨玉盛,郭剑芬,陈银秀,等.2004.福建柏和杉木人工林凋落物分解及养分动态的比较.林业科学,40(3): 19-25.
    杨效东,沙丽清.2001.西双版纳“龙山”片断热带雨林中行土壤动物群落组成与多样性研究.应用生态学报,12(2): 261~265.
    杨效东.2004.热带季节雨林凋落物分解过程中的中型土壤节肢动物的群落结构及动态.生物多样性,12(2): 252~261.
    杨效东,唐建维. 2004.西双版纳不同演替状态热带次生林土壤节肢动物群落特征.应用生态学报, 2004, 15( 6): 988~994.
    尹文英等.1992.中国亚热带土壤动物,北京:科学出版社.
    尹文英.1993.土壤动物学的研究近况.生命科学,(3): 1~4.
    尹文英.1997.中国土壤动物学研究10年进展.中国科学基金,(1): 48~51
    尹文英等.1998.中国土壤动物检索图鉴.北京:科学出版社.
    尹文英等.2000,中国土壤动物.北京:科学出版社.
    尹文英.2001.土壤动物学研究的回顾与展望.生物学通报,36(8): 1~3.
    殷秀琴,李建东.1998.羊草草原土壤动物群落多样性的研究.应用生态学报,9(2): 186~188.
    殷秀琴,仲伟彦,王海霞等.2002.小兴安岭森林落叶分解与土壤动物的作用.地理研究,21(6): 689~699.
    殷秀琴,吴东辉,韩晓梅.2003.小兴安岭森林土壤动物群落多样性的研究.地理科学,23(3): 316~322.
    张雪萍,仲伟彦,马志伟.1996.阔叶树落叶分解过程与土壤动物的作用.林业科技,21(3): 1~4.
    张雪萍,候威岭,陈鹏.2001.东北森林土壤动物同功能种团及其生态分布.应用与环境生物学报,7(4): 370~374.
    张荣祖,杨明宪,陈鹏等.1980.长白山北坡森林生态系统土壤动物初步调查.森林生态系统研究,(1): 133~152.
    张荣祖,殷绥公,王世彰等.2000.中温带长白山土壤动物的组成与生态分布.见尹文英等着.中国土壤动物.北京:科学技术出版社,27~57.
    张友梅,王振中,邓继福等.2000.重金属污染与土壤动物.见尹文英等着中国土壤动物.北京:科学技术出版社,319~325.
    赵立军,尹文英.1988.西天目山森林土壤弹尾目昆虫变动规律的初步研究,昆虫学研究集刊,8: 53~60.
    仲伟彦,殷秀琴,陈鹏. 1998.帽儿山不同林型土壤动物的对比研究,东北师大学报自然科学,(1): 69~74.
    仲伟彦,殷秀琴,陈鹏.1999.帽儿山森林落叶分解消耗与土壤动物关系的研究.应用生态学报,10(4): 511~512.
    钟觉民.1985.昆虫分类图谱.南京:江苏科学技术出版社.
    钟觉民.1990.幼虫分类学.北京:农业出版.
    郑乐怡,归鸿.1999.昆虫分类(上、下).南京:南京师范大学出版社.
    朱鹤健,林振盛,陈珍皋等.1982.武夷山土壤垂直分布特征.见:《武夷科学》编辑委员会编.武夷科学第一卷.福州:福建科学技术出版社, 152~164.
    Aber, J.D., Melillo, J.M. 1980. Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can. J. Bot., 58, 416~421.
    Abbott, D.T., Crossley, D.A. Jr. 1982.Woody litter decomposition following clearcutting. Ecology, 63, 35~42.
    Addison, J.A., Trofymow, J.A., MMarshall, V.G.. 2003. Functional role of Collembola in successional coastal temperate forests on Vancouver Island ,Canada. Applied Soil Ecology, 24, 247~261.
    Aerts, R., 1997. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439~449.
    Agrios, G..N. 1997. Plant Pathology, pp. 93–114. Academic Press, San Diego, USA.
    Alward, R.D., Detling J.K., Milchunas, D.G.. 1999. Grassland vegetation changes and nocturnal global warming.Science, 283,229~231.
    Amelsvoort, P.A.M.V, Van Domgen M., van der Werff P.A. 1988. The impact of Collembola Humification and mineralization of soil organic matter, Pedobiologia, 31,103~111.
    Anderson, J. M. 1975. Succession diversity and trophic relationships of some soil animals in decomposing leaf litter. Journal of Animal Ecology, 44, 475~495.
    Anderson, J.M. and Swift, M.J. 1983. Decomposition in tropical forests. In: Sutton S L, Whitmore T C, Chadwick A C, ed.Tropical Rain Forest: Ecology and Management. Blackwell Scientific, Oxford, UK, 287~309.
    Anderson, J. M. and Meson, P. 1984. Interactions between micro-organisms and soil Invertebrates in nutrient flux pathways of forest ecosystems.In: Anderson, J. M., Rayner,A. D.M. and Walton, D.W. H.(Eds) Invertebrates-Microbial Interactions, Cambridge University Press, Cambridge, 59~88.
    Andron, O., Lindberg, T., Bostrom, U. et al .1990. Organic carbon and nitrogen flows.In: Andron, O., Lindberg, T., Paustian, K. et al. (Eds) Ecology of Arable land-organisms, carbon and nitrogen cycling. Ecol. Bull.,40, 85~126.
    Aoki, J. 1967. Microhabitats of Oribatid Mites on a Forest Floor. Bulletin of the National Science Museum of Tokyo, 10,133~140.
    Asikidis, M.D. and G.P. Stamou. 1991. Spatial and temporal patterns of an oribatid mite community in an evergreen-sclerophyllous formation (Hortiatis, Greece). Pedobiologia, 35, 53-63.
    Attiwill PM. 1968. The loss of elements from decomposing litter. Ecology, 49(1), 142~145.
    Barajas, G, Alvarez, J. 2003. The relationships between litter fauna and rates of litter decomposition in a tropical rain forest. Applied Soil Ecology, 24, 91~100
    Bardgett, R. D., Frankland, J. C., Whittaker, J. B. 1993. The effects of agricultural management on the soil biota of some upland grasslands. Agriculture Ecosystems and Environment, 45, 25~45.
    Bardgett, R.D., Wardle, D.A., Yeates, G.W. 1998a. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30, 1867~1878.
    Bardgett, R.D., Keiller, S., Cook, R, Gilburn, A.S. 1998b. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biology and Biochemistry, 30, 531~539.
    Bardgett, R.D. 1999. Belowground herbivory promotes soil nutrient transfer and root growth in grassland. Ecology Letters, 2, 357~360.
    Bardget, R. D. and Wardle, D.A. 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84(9), 2258~2268.
    Bradford, M. A., Tordoff, G. M., Eggers, T., Jones, T. H. and Newington, J. E. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99, 317~323.
    Brown, V.K., Gange, A.C. 1989. Differential-effects of aboveground and belowground insect herbivory during early plant succession. Oikos, 54, 67~76.
    Beyer, W.N. 1987. Gery Hensler and John Moore, Relation of pH and other soil variables to concentrations of Pb,Cu,Zn,Cd and Se in earthworms,Pedobiologia, (30),167~172
    Berg, B, Staaf, H. 1981.Leaching,accumulation and release of nitrogen in decomposing forest litter[A].In:Clark FE ed.Terrestrial Nitrogen Cycles,processes,Ecosystem Strategies and Management Impacts. Ecol .Bull. NFR, 33, 163~178.
    Berg, B, Muller M, Wessen, B .1987. Decomposition of red clover (Trifolium pratense) roots. Soil Biol.Biochem.,19, 589~594.
    Berg, B, Berg, M.P, Bottner, P. 1993. Litter mass-loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20, 127~153.
    Bever, J. D., Westover, K. M. and Antonovics, J. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561~573.
    Bohan, G.C., Richard, D.B. 2001. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biology &Biochemistry, 33, 2073~2081
    Bongers, T.and Ferris, H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol., 14, 224~227.
    Bradford, M. A.,Jones, T. H., Bardgett, R. D., et al. 2002. Impacts of soil faunal community composition on model grassland ecosystems. Science, 298, 615~618.
    Bradford, M. A., Tordo, G..M., Eggers, T. et al. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99, 317~323.
    Bohan, G..C., Richard, D.B. 2001. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biology and Biochemistry, 33, 2073~2081.
    Briones, M. J. I. and Ineson, P. Decomposition of eucalyptus leaves in litter mixtures. Soil Biol. Biochem., 1996, 28, 1381~1388.
    Brown, V. K. and Garage, A. C. 1989a. Herbivory by soil-dwelling insects depresses plant species richness. Functional Ecology, 3, 667~671.
    Brown, V K. and Garage, A. C. 1989b. Differential effects of above- and below-ground insect herbivory during early plant succession. Oikos, 54, 67~76.
    Brown, V. K. and Garage, A. C. 1990. Insect herbivory below ground. AduEcol.Res., 20, 1~58.
    Brown, V. K. and Garage, A. C. 1992. Secondary plant succession: how is it modified by insect herbivory? Yegetatio, 10(l), 3~13.
    Brussaard, L, Behan-Pelletier, V. M, Bignell, D. et al. 1997. Biodiversity and ecosystem functioning in soil. Ambio., 26, 563~570.
    Brussaard, L. 1998. Soil fauna, guilds, functional groups and ecosystem processes. Applied Soil Ecology, 9, 123~135.
    Bubb, K.A., Xu, Z.H., Simpson, J.A. 1998. Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southern Queensland, Australia. Forest Ecology and Management, 110, 343~352.
    Chapin, F. S. ,Zavaleta, E. S., Eviner, V. T.,et al. 2000. Consequences of changing biodiversity. Nature, 405, 234~242.
    Chauvel, A., Grimaldi, M., Barros, E. 1999. Pasture damage by an Amazonian earthworm. Nature 398, 32~33.
    Coleman, D.C., Crossley, D.A. 1996. Fundamentals of Soil Ecology. Academic Press, San Diego, California, USA. Coleman, D.C., Whitman, W.B. 2005. Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 49, 479~497.
    Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturali, 111,119~1114.
    Crossley, D. A., Hoglund, M. P., 1962. A litter-bag method for the study of microarthropods inhabiting leaf litter. Ecology, 43,571~573.
    Copley, J. 2000. Ecology goes undergrand. Nature, 406, 452~454.
    Cortet, J., Gomot-De Vauflery, A., Poinsot-Balaguer, N., et al. 1999. The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 35, 115~134.
    Coulson, J.C. and Butterfield, J. 1978. An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. Journal of Ecology, 66, 631~650.
    Couteaux, M., Bottner, P., Berg, B., 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63~66.
    Crossely, D. A., and Jr, Hoglund, M. P. 1962. A litter-bag method for the study of microarthropods inhabiting leaf litter. Ecology, 43, 571~573.
    Curry, J. P., Good, J. 1992. Soil faunal degradation and restoration. Advances in Soil Science, 17, 171~215.
    De Lucia, E.H., Hamilton, J.G., Naidu, S.L.,et al. 1999. Net primary production of a forest ecosystem with experimental CO2 enrichment.Science, 284,1177~1179.
    Daubenmire, R., Prusso, D.C. 1963. Studies of the decomposition rite of tree litter. Ecology, 44(3), 589~592.
    Dauber, l. and Volkmar, W. 2000. Microbial activity and functional diversity in the mounds of three differebt ant species. Soil Biol. Biochem., 32(1), 93~ 99.
    De Deyn, G..B.,Raaijmakers, C.E., Zoomer, H.R.,et al. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature, 6933, 711~713.
    Demon, C. S., Bardgett, R. D., Cook, R. et al. 1999. Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biology and Biochemistry, 31,155~165.
    Doran, J.W., Jones, A. J. 1996. Methods for Assessing Soil Quality. NewYork: SSSA.
    Dowding, P. 1974. Nutrient losses from litter on IBP tundra sites. In Holding AI,ets.Soil Organisms and Decomposition in Tundra. Stockholm, Sweden: Tundra Biome Steering Committee,363~373.
    Ewel, J. J., Mazzarino, M. J., Berish, C. W. 1991. Tropical soil fertility under monocultures and successional communities of different structure. Ecological Applications, 1, 289~302.
    Elkins, N.Z. and Whitford, W.G.. 1982. The role of microarthropods and nematodes in decomposition in a semi-arid ecosystem. Oecologia, 55, 303~310.
    Ekschmitt, K., Uu, M., Vetter, S., 2005. Strategies used by soil biota to overcome soil organic matter stability: why is dead organic matter left over in the soil? Gsoderma, 128, 167~176.
    Fager, E. W. 1968. The community of invertebrates in decaying wood. Journal Animal Ecology, 37,121~142.
    Farrar, J., Hawes, M., Jones, D., et al. 2003. How roots control the flux of carbon to the rhizosphere. Ecology, 84, 827~837
    Fenton, G..R. 1947. The soil fauna with special reference to the ecosystem of forest soil. J. Anim. Ecal., 16, 76~93.
    Forsslund, K.H. 1945. Studier overdet large djurlivet Inordsvensk skogsmark. Medd. Skogsforsoksanst, 34(1), 1~283.
    Fujikawa, T. 1970a. Relation between oribatid fauna and some environments of Nopporo National Forest in Hokkaido (Acarina:
    Cryptostigmata) II. Oribatid Fauna in soils under four different vegetations. Applied Entomology and Zoology, 569~83.
    Gallardo, A, Merino. 1992. Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain . Biogeochemistry, 15, 213~228.
    Gallardo, A., Merino. 1993. Leaf decomposition in two Mediterranean ecosystems of Southwest Spain: influence of substrate quality.Ecology, 74(1), 152~161.
    Gange, A. C. 2000. Arbuscular mycorrhizal fungi, Collembola and plant growth.Trends m Ecology and Evolution, 15(9), 369~372.
    Gange, A.C, and Brown, V. K. 2002. Soil food web components affect plant community structure during early succession.Ecological Research, 17(2), 217~227.
    Gillet, S., Ponge, J. F. 2003. Changes in species assemblages and diets of Collembola along a gradient of metal pollution applied Sail Ecology, 22, 127~138.
    Gilyarov, M. S. 1947. Distribution of humus, root-system and soil invertebrates within the soil of the walnut forest of the ferghana mowitain range. Dokl. Akad. Nauk Sssr, 55, 49~52.
    Gisin, H. 1943. Okologrie and lebens gemeinsch aften der Collembollen in schweizerischen excursionsgebiet Basels. Rev.Suisse Zoo1, 50, 131~224.
    González, G, Ley, R. E., Schmidt, S. K., Zou, X., Seastedt, T.R. 2001. Soil ecological interactions: comparisons between tropical and subalpine forests. Oecologia, 128, 549~556.
    Groffman, P.M., Bohlen, P.J., Fisk, M.C., Fahey, T.J. 2004. Exotic earthworm invasion and microbial biomass in temperate forest soils. Ecosystems, 7, 45~54.
    Grossley, D.A. and Hoglund, M.P. 1962. A litterbag method for the study of microarthropods inhabiting leaf litter. Ecology, 43, 571~573.
    Gyedu-Ababio, T. K., Furstenberg, J. P., Baird, D., et al. 1999. Nematodas as indicators of pollution: A case study from the Swartkops River system, South Africa. Pedobiologia, 397, 155~169.
    Hagvar, S. and KjDndal, B.R. 1981. Succession, diversity, and feeding habits of microarthropods in decomposing leaf litter. Oecologia, 38, 93~99.
    Hagvar, S., 1982. Collembola in Norwegian coniferous forest soils. I. Relations to plant communities and soil fertility.Pedobiologia, 24,255-296.
    Haimi, J., Fritze, H. and Moilanen. 2000. Responses of soil decomposes animals to wood-ash fertilization and burning in a coniferous forest stand. Forest Ecology and Management, 129, 53~61.
    Harris, K. K., Boerner, R. E. J. 1990. Effects of belowground grazing by Collembola on growth, mycorrhizal infection, and P uptake by Geranium robertianum. Plant and Soil, 129, 203~210.
    Hartmut, K.1998.Secondary succession of soil mesofauna:A thirteen year study.App Soil Ecol, 9,81~86. Hasegawa, M., Hiroshi, T. 1995. Changes in feeding attributes of four collembolan populations during the decomposition process of pine needles. Pedobiologia, 39, 155~169.
    Hasegawa, M.., 1997. Changes in Collembola and Cryptostigmata communities during the decomposition of pine needles.Pedobiologia, 41, 225~241.
    Hattenschwiler, S., Tiunov, A.V., Scheu, S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology and Systematics, 36, 191~218.
    He, X.T., Stevenson, F.J., Mulvaney, R.L., et al. 1988. Incorporation of newly immobilized 15N into stable organic forms in Soil. Soil Biol. Biochem., 20, 75~81.
    Heal, O. W., Anderson, J. M., Swift, J. M. 1997. Plant litter quality and decomposition:an historical overview. In: Cadisch, G, Giller, K. E. ed. Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK.
    Heaney, A., and Proctor, J. 1989. Chemical elements in litter on Volcan Barva, Costa Rica. In: Proctor J. Ed.Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific, Oxford. England, 225~271.
    Hedlund, K., Santa Regina, L, Van der Putten, W. H., et al. 2003. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos, 103, 45~58.
    Holah, J.C., Alexander, H.M. 1999. Soil pathogenic fungi have the potential to affect co-existence of two tallgrass prairie species. Journal of Ecology, 84, 598~608.
    Hooper, D. U., Dangerfild, J. M., Brussaard, L., et al. 2000. Interactions between above and belowground biodiversity in terrestrial ecosystem: patterns, mechanisms, and feedback. Bioscience, 50, 1049~1061.
    Hooper, D. U., Chapin, F. S., Ewell, J. J., Hector, A., Inchausti, P., Lavorel, S., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecology Monograph, 75, 3~35.
    .Huston, M.A., Aarssen, L.W., Austin, M.P., Cade, B. S., Fridley, J. D., Garnier, E., 2000. No consistent effect of plant diversity on productivity. Science, 289, 1255.
    Hornsby, D.C.,Lockaby, B.G., Chappelka, A.H.1995. Influence of microclimate on decomposition in loblolly pine stands: a field microcosm approach. Canadia Journal of Forest Research, 25(10), 1570~1577.
    House, G.J. and Stinner, R.E. 1987. Decomposition of plant residues in no-tillage agroecosystem: inflluence of litter bag mesh size and soil arthropods. Pedobiologia, 30, 351~360.
    Hunt, H.W., Coleman, D.C., Ingham, E.R. et al. 1987. The detrital food web in a shortgrass prairie. Biol Fertil Soils, 3, 57~68. Hunta, V., Persson, T., Setala, H. 1998. Functional implications of soil fauna diversity in boreal forests. Applied Soil Ecology, 10, 277~288.
    Hunter, M.D., and Price, P.W. 1992. Playing chutes and ladders; heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724~732.
    Ingham, R. E., Trofymov, J. A., Ingham, E. R., et al. 1985. I nteractions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs, 55, 119~140.
    Janzen, H.H., 2006. The soil carbon dilemma: Shall we hoard it or use it? Soil Biology and Biochemistry, 38, 419~424.
    Jenney, H.S., Gessel, P., Bingham, F.T. 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Science, 68, 419~432.
    Jones, T.H. and Bradford, M.A. 2001.Assessing the functional implications of soil bipdiversity in ecosystems. Ecological Research, 16, 845~858.
    Jun-ich Aoki. 1973. Soil Zoology, Tokyo: Beilonwan, 1~240.
    Kaczmarek, M, 1975. An analysis of Collembola communities in different pine forest environments. Ekol, Pol., 23, 265~293.
    Ke, X., Winter, K., Filser, J. 2005. Effects of soil mesofauna and farming management on decomposition of clover litter: a microcosm experiment. Soil Biology and Biochemistry, 37, 731~738.
    Knops, J.M.H., Wedin, D.and Tilman, D. 2001. Biodiversity and decomposition in experimental grassland ecosystem. Oecologia, 126, 429~433.
    Kreuzer, K., Bonkowsk, M., Langel, R.L., 2004. Decomposes animals (Lumbricidae, Collembola) and organic matterdistribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biology and Biochemistry, 36, 2005~2011.
    Kubiena, W.L.1943. Investigation microscopique de I'humus. Zweltforstwiri, 10, 387~410.
    Kurcheva, G..F. 1960. The role of invertebrates in the decomposition of the oak leaf. Pedobiologia, (4), 16-23.
    Laakso, J. and Setala, H. 1999. Sensitivity of primary production to changes in the architecture of belowground food webs. Dikos, 87, 57~64.
    Larkin, R.P., Hopkins, D.L., Martin, F.N. 1993. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conductive to Fusarium wilt of watermelon. Phytopathology, 83, 1097~1105.
    Lavelle, P., 2002. Functional domains in soils. Ecology Resource, 17, 441~450.
    Lisanework, N., Michelsen, A. 1994.Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland Forest Ecology and Management, 65, 149~164.
    Loreau, M. and Hector, A. 2001. Partitioning selection and complementarity in diversity experiments. Nature, 412, 72~76.
    Lussenhop, J. 1996. Collembola as mediators of microbial symbiont effects upon soybean. Soil Biology and Biochemistry, 28, 363~369.
    Margalef, D.R.1958. Information theory in ecology. General Systems, 3, 36~71.
    Matthew, W.W. and Zou, X. M. 2002. Soil macrofauna and litter nutrients in three tropical tree plantation on a disturbed site in Puerto Rico. Forest Ecology and Management, 170, 161~ 171.
    Mc Claugherty, C.A., Pastor J, Aber J.D., et al. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology, 66, 266~275.
    Mc Hale, P.J., Mitchell, M.J., Bowles, F.P. 1998. Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research, 28(9), 1365~1372.
    Mc Leana, M.A. and Parkinsonb, D. 2000. Field evidence of the effects of the epigeic Dendrobaena on the microfungal community in pine forest floor.Soil Biol.Biochem, 32 (3), 351~ 360.
    Melillo, J. M. 1999.Warm, warm on the range.Science, 283, 183~184.
    Micks, P., Downs, M.R., Magill, A.H., et al. 2004. Decomposing litter as a sink for 15N-enriched additionsto an oak forest and a red pine plantation. Forest Ecology and Management, 1967, 71-87.
    Mikoda, J. 2001. Responses of microbial-feeding nematodes to organic matter distribution and predation in experimental soil habitat. Soil Biol. Biochem., 33(6): 811~817.
    Mikola, P. 1960. Comparative experiment on decomposition rates of forest littr in southern and northern Finland. Oikos, 11, 161~166.
    Mikola, J. and Setala, H. 1998. Productivity and trophic-level biomasses in a microbial-based soil food web. Oikos, 82, 158~168.
    Mikola, J., Yeates, G.W., Wardle, D. et al. 2001.Response of soil food-web structure to defoliation of different plant species combinations in an experimental grassland commuinty. Soil Biology and Biochemistry, 33, 205~214.
    Mondini, C., Contin, M., Leita, L., et al. 2002.Response of microbial biomass to air-drying and rewetting in soils and compost. Geoderma, 105: 111-124.
    Moore, J.C., Walter, D.E., Hunt, H.W., 1988. Arthropod regulation of micro- and mesobiota in below-ground detrital food webs.Annual Review of Entomology, 33, 419~439.
    Moore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q, Hastings, A., Johnson, N. C., McCann, K. S.,
    Melville, K., Morin, P. J., Nadelhoffer, K., Rosemond, A. D., Post, D. M., Sabo, J. L., Scow, K. M., Vanni, M. J., Wall, D. H., 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584~600.
    Moose, J. C, Mc Cann, K., Setala, H., et al. 2003. Top-down is bottom-up: Does predation in the rhizosphere regulate aboveground dynamics? Ecology, 84 (4), 848~57.
    Moose, J.C., Walter, D.E. and Hunt, H.W. 1988. Resource compartmentation and the stability of real ecosystems. Nature, 333, 261~263.
    Moore, J.C, Mc Cann, K, Set?l?, H, et al. 2003. Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology, 84, 846~857.
    Miiller, G.A. 1962. Centrifugal-flotation extraction technique and its comparison with two funnel extractors. In: Murphy, P. (ed.), Progress in soil zoology. Butterworths, 207~211.
    Mulder, E.G., Lie, T.A., Woldendorp, J.W. 1969. Biology and soil fertility. In: Soil Biology Reviews of research. France: Unesco Paris, 163~208.
    Naeem, S., Thompson, L. J., Lawler, S. P., et al. 1994. Declining biodiversity can alter the performance of ecosystems. Nature, 368, 734~737.
    Neher, D. A. 2001.Role of nematodes in soil health and their use as indicators.J. Nematol., 33, 161~168.
    Norgrove, L., Hauser, S. 2000. Leaf properties, litter fall, and nutrient inputs of Terminalia ivorensis at different tree stand densities in a tropical timber_food cmultistrata system. Canadian Journal of Forest Research, 30(9), 1400~1409. Olff, H., Hoorens, B., de Goede, R.G.M., Van der Putten, W.H., Gleichman, J.M. 2000. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia, 125, 45~54.
    O’Neil, E.G., Norby, R.J., 1996.Litter quality and decomposition rates of foliar litter produced under CO2 enrichment. In: Koch, G.W., Mooney, H.A. eds.Carbon Dioxide and Terrestrial Ecosystems.San Diego: Academic Presss, 87~103.
    Packer, A., Clay, K. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278~281.
    Pausas, J.G., Casals, P., Romanyà, J., 2004. Litter decomposition and faunal activity in Mediterranean forest soils: effects of N content and the moss layer. Soil Biology and Biochemistry, 36, 989~997.
    Patten, B.C., Witkamp, M., 1967. Systems analysis of 134cesium kinetics in terrestrial microcosms. Ecology, 48, 813~824.
    Pedersen, L.B., Hansen, J.B. 1999.A comparison of litterfall and element fluxes in even aged Norway spruce, Sitka spruce and beech stands in Denmark. Foret Ecology and Management, 114, 55~70.
    Peters, R. H. 1983. The ecological implications of body size. Cambridge Univ. Press.
    Petersen, H. 1978. Some properties of two high-gradient extractors for soil microarthropods, and an attempt to evaluate their extraction efficiency. Natura Jutlandica, 20, 95~121.
    Petersen, H., Luxton, M. 1982. A comparative analysis of soil faunal populations and their role in decomposition processes.Oikos, 39,287~388.
    Pearse, A.S.1946. Observations on the microfauna of the Duke forest.Ecol.Monogr, 16,127~160
    Peterjohn, W.T, Melillo, J.M, Steudler, P.A., et al. 1994. Responses of trace gas fluxes and N availability to experiment elevated soil temperatures.Ecological Applications, 4, 617~625.
    Pielou, E.C.1975. Ecological Diversity. Wiley Inc., New York.
    Ponge, J. F., Gilleta, S., Dubs, F. 2003. Collembolan communities as bioindicators of land use intensification. Soil Biology and Biochemistry, 35, 813~826.
    Prasse, I. 1985. Indications of structural changes in the communities of microarthropods of the soil in an agro-ecosystem after applying herbicides. Agriculture, Ecosystems and Environment, 13, 205~215.
    Raghubanshi, A.S., Srivastava, S.C., Singh, R.S. 1990. Nutrient release in leaf litter. Nature, 346,2.
    Raiesi, G.F. 1998. Impacts of elevated CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem. Global Change Biol., 4, 667~677.
    Read, D.J., Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytologist, 157, 475~492.
    Reddy, M.V., Venkataiah, B., 1989. Influence of microarthropod abundance and climatic factors on weight loss and mineral nutrient content of Eucalyptus leaf litter during decomposition. Biology and Fertility of Soils, 8, 319~324.
    Ritter, E. 2005.Litter decomposition and nitrogenmineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biology and Biochemistry, 37, 1~11.
    Ruan, H. H., Li, Y. Q., Zou, X. M., 2005. Soil communities and plant litter decomposition as influenced by forest debris: Variation across tropical riparian and upland sites. Pedobiologia, 49, 529~538.
    Sally, G.L., Donald, M.W. 1982. Seasonal and annual variation in litter arthropod populations. 1n: Egbertg LJ ed. Litter Arthropods and Their Predators-The Ecology of Tropical Forest Seasonal Rhythms and Long-term Changes.Washington, D.C: Smithsonian Institution Press, 355~387.
    Sariyildiz, T., Anderson, J.M. 2003. Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry, 35, 391~399.
    Sarr,Agbogbaa C,Russell-Smith A, et al. 2001. Effects of soil faunal activity and woody shrubs on water infiltration rates in a seanr-arid fallow of Senegal. Applied Soil Ecology, 16: 283- 290.Santos, P.F. and Whitford, W.G. 1981.The effects of microarthropods on litter decomposition in a Chihuahuas desert ecosystem. Ecology, 62, 654~663.
    Schaefer, M. 1993. Interspecific intractions in the soil community. Acta Zool.Fennica, 196, 101~106.
    Scheu, S. 2002. The soil food web: structure and perspectives. European Journal of Soil Biology, 38, 11~20.
    Schlesinger, W.H. 1999. Carbon and agriculture: carbon sequestration in soils. Science, 284, 2095.
    Seastedt, T. R., Reddy, M. V and Cline, S. P. 1989. Microarthropods in decaying wood from temperate coniferous and deciduous forests. Pedobiologia, 33, 69~77.
    Setala, H., Huhta, V., 1991. Soil fauna increase Betula pendula growth : laboratory experiments with coniferous forest floor. Ecology, 72, 665~671.
    Setala, H. 1995. Growth of Betula pendula and Pinus sylvestris seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology, 76, 1844~1851.
    Setala, H., Laakso, J., et al. 1998. Functional diversity of decomposer organisms in relation to primary production. Applied Soil Ecology, 9, 25~31.
    Setala, H., Rissanen, J., Markkola, A.M. 1997. Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment. Oikos, 80, 112~122.
    Singh, K P, Singh, P.K, Tripathi, S. K. 1999. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil Singrauli, India. Biology and Fertility of Soil, 29, 371~378.
    Sjogren,H., Ek, M., Arnebrandt, K. and Soderstrom, B. 1994. Exramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Applied Soil Ecology, 1(2), 155~169.
    Shaw, M.R., Harte, J., 2001. Control of litter decomposition in a subalpine meadow-sage brush steppe ecotome under climate change. Ecological Applications, 11, 1206~1223.
    Siemann E, Tilman D, Haarstad J, Ritchie M. 1998. Experimental tests of the dependence of arthropod diversity on plant diversity. The American Naturalist, 152, 738~750
    Southwood, T.R.E., Brown, V.K., Reader, P.M.1979. The relationships of plant and insect diversities in succession.Biological Journal of the Linnean Society, 12, 327~348
    Smith, J. L., Norton, J.M, Paul, E.A., et al. 1989. Decomposition of 14C- and 15N-labeled organisms in soil under anaerob conditions. Plant and Soil, 116, 115~118.
    Song, Y.C. 1988. The essential characteristics and main types of the broad-leaved evergreen forest in China. Ptocoenologia, 16(1), 105~123.
    Spehn, E. M., Joshi, J., Schmid, B. et al. 2000. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil, 224, 217~230.
    Sugden, A., Stone, R. and Ash, C. 2004. Ecology in the Underworld. Science, 304, 16~13.
    Swift, M. J. 1977. The ecology of wood decomposition. Science progress, 64, 175~199.
    Swift, M.J., Heal, O.W. and Anderson, J.M.O. 1979. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications Press, London.
    Swift, M.J., Heal, O.W., Anderson, J.M. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkley, California, USA.
    Takeda, H, 1987. Dynamics and maintenance of collembolan communit structure in a forest soil ecosystem. Res. Popul. Ecol., 29, 291~346.
    Takeda, H., 1988. A 5 year study of pine needle litter decomposition in relation to mass loss and faunal abundances. Pedobiologia, 32, 221~226.
    Takeda, H., 1995. Changes in the collembolan community during the decomposition of needle litter in a coniferous forest. Pedobiologia, 39, 304~317.
    Taylor, B.R., Parkinson, D., Parsons, W. F. J. 1989. Nitrogen and lignin content as predictor of litter decay rates: a microcosm test. Ecology, 70, 97~104
    Thomas, W.A. 1968. Decomposition of loblolly pine needles with and without addition of dogwood leaves. Ecology, 49(3), 568~571.
    Tian, G, Kang, B.T., Brussaard, L. 1992. Biological effects of plan residues with contrasting chemical composition under humid tropical conditions-decomposition and nutrient release. Soil Biology and Biochemistry, 24, 1051~1060.
    Tilman, D., Downing, J. A., 1994. Biodiversity and stability in grasslands. Nature 367, 363-365.
    Tilman, D., Wedin, D. and Knops, J., et al. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718~720.
    Ulrich, I. 2000. Changes in the fauna and its contribution tomass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia, 44, 105~118
    Usher, M.B., Booth, R.G., Sparlies, K.E, 1982. A review of progress in understanding the organization of communities of soil arthropods. Pedobiologia, 23, 126~144.
    Van Cleve, K., Oechel, W.C, Hom, J.L. 1990. Response of black spruce (Picea mariana) ecosystem to soil temperature modification in interior Alaska.Canadian Journal of Forest Research, 20, 1530~1535.
    Van der Putten, W.H. 2003. Plant defense belowground and spatiotempo-ral processes in natural vegetation. Ecology, 84, 2269~2280
    Van der Putten, W.H., Troelstra, S.R. 1990. Harmful soil organisms in coastal foredunes involved in degeneration of Ammophila arenaria and Calammophila baltica. Canadian Journal of Botany, 68, 1560~1568.
    Van der Putten, W.H., van Dijk, C., Peters, B.A.M. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53~56.
    Vannier, G. 1987. The porosphere as an ecological medium emphasized in Professor Ghilarov’s work on soil animal adaptations. Biology and Fertility of Soils, 3, 39~44.
    Verhoef, H.A. and Meintser, S. 1990. The role of soil arthropods in nutrient flow and the impact of atmospheric deposition. In: Proc. Xth Int. Soil Zool. Coll.,Bangalore, India.
    Vegter, J.J., De Bie, P., Dop, H. 1988. Distributional ecology of forest floor Collembola (Entomobryidae) in the Netherlands. Pedobiologia, 31, 65-73.
    Vossbrinck, C. R., Coleman, D. C., Woolley, T. A. 1979. Abiotic and biotic factors in litter decomposition in a semiarid grassland. Ecology, 60, 265~271.
    Visser, S., 1985. Role of the soil invertebrates in determining the composition of soil microbial communities. In: Fitter, A.H., Atkinson, D., Read, D.J., Usher, M.B. (Eds.), Ecological Interactions in Soil. Blackwells, Oxford, pp. 297~317.
    Vitousek, P.M. 1994. Beyond global warming: ecology and global change.Ecology, 75, 1861~1876.
    Wall, D.H., Moore, J.C. 1999. Soil biodiversity, mutualism, and ecosystem processes. BioScience, 49, 109~117.
    Wallwork, J.A., 1976. The Distribution and Diversity of Soil Fauna. Academic Press, New York, 355 pp.
    Wang, S.J., Ruan, H.H., Wang, B. 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil biology and biochemistry, 41, 891~897.
    Wardle, D.A and Barker, G M. 1997. Competition and herbivory in establishing grassland communities: implications for plant biomass,species diversity and soil microbial activity. Oikos, 80, 470~480.
    Wardle, D.A. and Lavelle, P. 1997. Linkages between soil biota, plant litter quality and decomposition. In: Cadish, G, and Giller, K. E. (eds), Driven by nature. CAB International, 107~125.
    Wardle, D. A., Bonner, K. I., Nicholson, K. S., 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79, 247~258.
    Wardle, D. A. 1999a. How soil food webs make plants grow. Trends in Ecology and Evolution, 14(11), 418~420.
    Wardle, D. A., Bonner, G. M., et al. 1999b. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69, 535~568.
    Wardle, D.A. 2002. Communities and ecosystems: Linking the aboveground and belowground components. Princeton Univ.Press.
    Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Van der Putten, W.H., Wall, D.H. 2004. Ecological linkages between aboveground and belowground biota. Science, 304, 1629~1633.
    Whitford, W.G. 1989. Abiotic controls on the functional structure of soil food webs. Biology and Fertility of Soils, 8, 1~6.
    Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon, 21, 213–225.
    Wiens, J.A., 1984. Resource systems, populations, and communties.398~436. In Price PW, Slobodchikoff, C.N., and Gaud, W.S. (eds) A New Ecology. A Wiely Interscience, New York.
    Wise, D.H., Matthias, S. 1994. Decomposition of leaf litter in a mull bee forest:comparison between canopy and herbaceous species.Pedobologia,38, 269~288.
    Witkamp, M. 1966. Decomposition of leaf litter in relation to environment, microflora, and mocrobial respiration. Ecology, 194~201.
    Willis, E.O. 1976. Seasonal changes in the invertebrate litter fauna on Barro Colorado Island, Panama. Rev Brasil Biol, 36, 643~657.
    Wright, S. J. 1996. Plant species diversity and ecosystem functioning in tropical forests. In: Orians, G. H., Dirzo, R., Cushman, J. H., editors. Biodiversity and ecosystem processes in tropical forests. Springer-Verlag, Berlin, Germany, pp. 11-31.
    Connell, J.H., Slatyer, R.O. 1977. Mechanisms of succession in natural commumties and their role in community stability and organization, 111, 1119~1144.
    Xuluc, F.J., Vester, H.F.M., Bamyrez, N., 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondly forest in Campeche, Mexico. Forest Ecology and Management, 174, 401~412.
    Yamashita, T., Takeda, H. 1998. Decomposition and nutrient dy-namics of leaf bags of two mesh sizes set in two dipterocarp forest in Peninsular Malaysia. Pedobiologia, 42:11~21.
    Yeates, G.W. 1987. How plants affect nematodes. Adv. Ecol. Res., 17, 61~113.
    Yeates, G.W., Saggar, S., Denton, C. S. et al. 1998. Impact of clover cyst nematodes (Heterodera trfolii) infection on soil microbial activity in the rhizosphere of white clover (Trfolium repens): a pulse labelling experiment. Nematologica, 44, 81~90.
    Zak,D.R., DR,Tilman D,Parmenter RR, et a1.1994. Plant production and soil microorganisms in late-successional ecosystems:a continental-scale study. Ecology, 75(8), 2333~2347.
    Zhang, Z.H., Hong, Q., Xu, J.H., Zhang, X.Z., Li, S.P., 2006a. Isolation of fenitrothiondegrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation, 17, 275~283.
    Zhang, X.K., Li, Q., Wang, S.B., Jiang, Y., Liang, W., 2006b. Effect of zinc addition to soil on nematode community structure. Bulletin of Environmental Contamination and Toxicology, 76, 589~594.
    Zhang, P.J., Zheng, J.F., Pan, G.X., Zhang, X.H., Li, L.Q., Tippkotter, R., 2007a. Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids and Surfaces B. Biointerfaces, 58, 264~270.
    Zhang, W.D., Wang, X.F., Li, Q., Jiang, Y., Liang, W.J., 2007b. Soil nematode responses to heavy metal stress. Helminthologia,44, 87~91.
    Zlotin, R.I. 1971. Invertebrate animals as a factor of the biological turnover. In: IV Colloquium Pedobilogiae. Paris,France:Institut National de la Recherche Agronomique, 455~462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700