用户名: 密码: 验证码:
微分析系统在环境监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要介绍了三种微分析系统的开发及对环境污染物的检测研究,包括地表水中重金属离子的检测和生活污水处理厂水体中环境雌激素的检测。
     首先,我们研究了一种对铅离子进行选择性检测的流动注射微流控分析体系。其检测原理是基于一种荧光分子传感器(Calix-DANS4)对铅离子的高灵敏度和高选择性的响应。该荧光离子团是一种带有四个DANS1基团的杯芳烃。该铅离子检测微流控芯片由含有被动混合器的Y-型微通道和玻璃粘合而成。检测腔体的引入极大的提高了检测的灵敏度,检测时由光纤传导的两个365 nm紫外发光二极管对腔体中荧光分子同时激发,然后另一光纤组在和激发光垂直的角度进行荧光采集,并与光电倍增管耦合放大进行检测。在pH 3.2,乙腈/水=60/40,荧光分子浓度为1×10~(-6)摩尔/升时,该体系对铅离子的检测限可以达到2.5×10~(-8)摩尔/升,这已经低于世界卫生组织目前饮用水中铅离子含量指导标准中的最大值以及2013年的饮用水的欧洲标准。
     为了改善我们的流动注射微流控分析体系的灵敏度和选择性,以及消除其共存离子钙离子的干扰,我们在微流控分析前加入了固相萃取富集前处理过程。萃取柱是自制的填充了功能化3-氨基丙烷硅胶的Teflon微柱。在进行微柱固相萃取时,功能化硅胶在碱性条件下(pH=10)选择性吸附痕量铅离子,从而能与其他的干扰离子分离,特别是水中大量存在的钙离子和钠离子。在酸性条件下,铅离子能被可逆地从微柱上洗脱下来,富集倍数可达100倍。固相萃取前处理过程和荧光法微流控装置相结合,已被成功地用于自来水中铅离子的检测。该检测结果已用常规用于检测痕量铅离子的原子吸收光谱法进行了证明。
     在进行微流控体系分析检测时,我们发现体系外混合体系内检测和体系内由被动混合器混合再检测得到的滴定曲线存在很大的差异,初步表明该反应在我们的微流控体系中存在某些不完整性。利用一个快速反应模型在微流控体系中体系外混合和体系内混合的对比研究,我们证明了反应物在我们微流控分析体系中已经完全混合。为了更好地理解所研究荧光离子团和铅离子之间的络合作用,我们通过将微流控分析手段,停流方法(stopped-flow)和计算机模拟相结合的方法从理论和实验的角度同时研究该络合反应的机理和反应动力学,并分析和验证了已有实验结果的合理性。首先,我们进一步改善了我们的微流控分析体系的操作参数,如降低流速以增加传输时间,从而延长反应时间,这明显地缩小了和体系外混合得到的滴定曲线的差距。另外,通过改变微流控体系的几何构型,如延长的微通道,同样为了延长反应时间,两曲线已经接近重合,实验证明了该反应是个慢反应,在我们的微流控通道内,该络合反应尚未结束。然后,通过驰豫时间的分析方法,我们得到对于1:1络合反应,当荧光分子浓度远大于金属离子浓度时,铅离子浓度和驰豫时间的倒数成线性关系。我们用停流方法研究了在该反应条件下的反应速率,实验数据也证明在铅离子浓度大于等于十倍荧光分子浓度时,该线性关系成立,并由此得到络合反应的结合常数(k_1)。我们通过用软件SPECFIT对荧光光谱的分析和拟合得到了该反应的平衡常数,从来计算得到其解离常数(k_(-1))。最后,我们用另一软件Chemical kineticssimulator对该反应进行计算机模拟,得到了对应于我们的微流控体系条件的理论曲线,和我们的实验曲线基本相符。
     本论文中所研究的另一金属离子检测器是基于微腔激光的光流体传感器。该传感器的原理主要是微腔激光材料对金属离子的选择性吸附导致其折射率的改变,从来引起微腔激光光谱的移动。本论文的工作主要是对该微腔激光材料的研究。我们主要研究了嵌段共聚物,因为其微相分离的特殊性,疏水段可以容纳激光染料,而亲水段在水中溶胀后可以容纳金属离子,从而具有发激光和离子传感的双重性能。我们主要研究了两种嵌段共聚物(PS-b-P2VP,PS-b-P4VP),PS能容纳染料分子(DCM),P2VP和P4VP与金属离子间可能有相互作用。借助于原子力显微镜(AFM),我们研究了两种聚合物薄膜的表面形态,以及经过水处理和金属离子处理后的形态变化。借助于椭偏仪(ellipsometry),我们研究了两种聚合物薄膜的折射率,以及经过水处理和金属离子处理后的折射率变化。表面形态和折射率变化表明,PS-b-P4VP对锌离子有特殊的响应。该聚合物进一步用于制作微腔激光以及光流体,并在光流体中测试该微腔激光通过水和锌离子溶液后的光谱移动。初期的实验结果表明,锌离子能引起光谱移动,但真正的原因还需进一步证明和探索。
     本论文中研究的最后一种微分析方法是关于微型毛细管电泳安培检测对污水厂中环境雌激素的检测研究。该小型化的毛细管电泳安培检测与固相萃取前处理相结合的方法首次成功地对五种环境雌激素:2,4-dichlorophenol(DCP),4-tert-butylphenol(BP),bisphenol A(BPA),17α-ethynylestradiol(EE2)和4-n-nonylphenol(NP)进行了分离和检测。毛细管电泳的分离模式采用的是胶束电动色谱(MEKC),有效地改善了分离效果。为了改善灵敏度,在分析前采用了固相萃取将被分析物进行富集。我们对分离检测的条件(如缓冲液的pH值和浓度,胶束的浓度,分离电压,进样时间)进行了优化,在最优条件下,该五种分析物在12分钟内有效地得到分离和检测。该方法成功地用于污水厂中的该五种环境雌激素的检测。
This study describes the development and application of three microanalysis systems. The application domain is concentrated on environmental contaminations, mainly heavy metal ions in surface water and endocrine disrupting chemicals in sewage.
     A microfabricated device has been developed for the selective detection of lead in water. It is based on the use of a selective and sensitive fluorescent molecular sensor (Calix-DANS4) for lead which contains a calix[4]arene bearing four dansyl groups. The principle of this sensor is photoinduced charge transfer (PCT) which can cause a slight blue shift of both the absorption and fluorescence spectra in acidic condition after binding with lead ion. The microchip-based lead sensor is a Y-shape microchannel structured with a passive mixer and stuck on a glass substrate. The detection is performed by using a configuration in which the sensing molecules are excited by two optical fibres, each connected to a 365 nm UV LED, and the emitted light is collected by another optical fibre coupled with a photomulti-plier.A detection limit of 2.5×10~(-8) mol L~(-1) (i.e. 5.2μg L~(-1)) could be reached, which is lower than the maximum level of lead allowed in drinking water after 2013, according to European regulation.
     In order to improve the sensitivity of the previous microfluidic device and to get rid of interfering calcium ion, we developped a solid phase extraction preconcentration (SPE) stage with a micro-column filled with silica beads functionalized with aminopropyl groups (APS). During SPE, the APS groups selectively adsorb the lead ions at basic pH (pH = 10) which allows its separation from others (Ca~(2+), Na~+). In acidic medium (pH = 2), lead is reversibly released and can be recovered in a 100 times more concentrated. The combination of SPE and previous fluorimetric microfluidic device was carried out for lead solutions of known concentrations in tap water. The results were proved by Atomic Absorption Spectroscopy.
     The study of the mechanism of the complexation between fluorescence molecular sensor (Calix-DANS4) and lead ion allows us to optimize the chip where the complexation occurs. The large difference between the calibration curves obtained for reactants mixed inside the chip and for injection of a premixed solution shows that the complexation is not finished at the end of the microchannel. A new microchip with a longer channel has permitted to approach the equilibrium state. Conventional stopped-flow method was also applied here to determine the real reaction kinetics and rate constants. The results show that this complexation at pH 3.2 is a relatively slow reaction, which takes several minutes for weak Pb~(2+) concentrations. It proves that the complexation in our microfluidic chips has not yet finished, as the transit times in all these microfluidic chips are less than 40 s.
     Another microanalysis system for metal ion sensing is an optofluidic sensor which combines optical elements (such as waveguide, laser...) and microfluidics for biological and chemical assays. A preliminary study of polymer microcavity laser for metal ions sensor in microfluidic channel is introduced in this thesis. The search of the microcavity laser materials is focused on diblock copolymers, especially two diblock copolymers (PS-b-P2VP, PS-b-P4VP), which can form microphase separation to load laser dye (e.g. DCM) in the hydrophobic phase and metal ion in the hydrophilic phase. The morphologies and refractive index of their cast films are studied before fabricating the microcavity laser. Their responses to different environments (e.g. water, metal ion solutions...) are characterized by AFM and ellipsometry. The results show that PS-b-P4VP can exhibit remarkable changes both of morphology and refractive index when contacting with zinc ion solution, while zinc ion has no effect on PS-b-P2VP. The first optofluidic sensor is fabricated with a microcavity laser which is made of PS-b-P4VP doped with a laser dye (DCM) and placed in a PDMS microfluidic channel. Its laser spectral shifts in presence of pure water and zinc ion are both observed.
     Endocrine Disrupting Chemicals (EDCs) are anthropogenic substances that can interfere with the endocrine systems of living organisms. Their harmful effects on human health, when they reach a certain amount, have been discovered and are still being studied precisely. An integrated analytical method to monitor five environmental endocrine disrupting chemicals (EDCs): 2,4-dichlorophenol (DCP), 4-tert-butylphenol (BP), bisphenol A (BPA), 17α-ethynylestradiol (EE2) and 4-n-nonylphenol (NP), is developed for the first time. This third microanalysis system is based on a solid-phase extraction and miniaturized micellar electrokinetic chromatography (MEKC) with amperometric detection (AD). In order to get the optimum conditions of their separation and detection, several parameters including pH and concentration of running buffer, concentration of micelle, separation voltage and injection time are studied and optimized. The five EDCs are well separated under the optimum conditions within 12 min. This method is successfully applied for the determination of these five EDCs in sewage influent sample. Satisfactory extraction performances from sewage sample are obtained by solid-phase extraction (SPE), using a HLB (waters) cartridge. Quantitative analysis shows that DCP, BP and BPA exist atμg L~(-1) level in the selected sample, while EE2 and NP are not detected.
引文
[1] K. Schwab, J. Arlett, J.Worlock, and M. Roukes. Thermal conductance through discrete quantum channels. Physica E, 9:60-68, 2001.
    [2] K. Schwab, E. Henriksen, J.Worlock, and M. Roukes. Measurement of the quantum of thermal conductance. Nature, 404:974-977, 2000.
    [3] K. E. Petersen. Silicon as mechanical material. Proceedings of the IEEE, 70(5):420-457, 1982.
    [4] A. Manz, N. Graber, and H.M. Widmer. Miniaturised total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B, 1:244-248,1990.
    [5] D. Ross, T.J. Johnson, and L.E. Locascio. Imaging of electroosmotic flow in plastic microchannels. Analytical chemistry, 73:2509-2515,2001.
    [6] S.L.R. Barker, D. Ross, M.J. Tarlov, M. Gaitan, and L.E. Locascio. Control of flow direction in microfluidic devices with poly electrolyte multilayers. Analytical chemistry, 72:5925-5929, 2000.
    [7] R.F. Ismagilov, D. Rosmarin, P.J.A Kenis, D.T. Chiu, W. Zhang, H.A. Stone, and G.M. Whitesides. Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. Analytical chemistry, 73:4682-4687, 2001.
    [8] Y. Xia and G.M. Whitesides. Soft lithography. Angewandte Chemie International Edition., 37:551-575,1998.
    [9] Y. Xia and G.M. Whitesides. Soft lithography. Annual Review of Materials Research, 28:153-184,1998.
    [10] B.H. Weigl, R.L. Bardell, and C.R. Cabrera. Lab-on-a-chip for drug development. Advanced Drug Delivery Reviews, 55(3):349-377, 2003.
    [11] H. Becker and L.E. Locascio. Polymer microfluidic devices. Talanta, 56(2):267-287, 2002.
    [12] T. Chovan and A. Guttman. Microfabricated devices in biotechnology and biochemical processing. Trends in Biotechnology, 20(3): 116-122,2002.
    [13] W. Ehrfeld. Electrochemistry and microsystems. Electrochimica Acta, 48:2857-2868, 2003.
    [14] J.A. Rogers and R.G. Nuzzo. Recent progress in soft lithography. Materials today, 8(2):50-56, 2005.
    [15] A. Kumar and G.M. Whitesides. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol 'ink' followed by chemical etching. Applied Physics Letters, 63(14):2002-2004, 1993.
    [16] Y. Xia, E. Kim, X.M. Zhao, J.A. Rogers, M. Prentiss, and G.M. Whitesides. Complex optical surfaces formed by replica molding against elastomeric masters. Science, 273(5273):347-349,1996.
    [17] X.M. Zhao, Y. Xia, and G.M. Whitesides. Fabrication of three-dimensional microstructures: Microtransfer molding. Advanced Materials, 8:837-840,1996.
    [18] E. Kim, Y. Xia, and G.M. Whitesides. Polymer microstructures formed by moulding in capillaries. Nature, 376:581-584,1995.
    [19] E. Kim, Y. Xia, X.M. Zhao, and G.M. Whitesides. Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers. Advanced Materials, 9:651-654, 1997.
    [20] J.A. Rogers, K.E. Paul, R.J. Jackman, and G.M. Whitesides. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. Applied Physics Letters, 70(20):2658-2660, 1997.
    [21] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, and G.M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry, 70:4974-4984, 1998.
    [22] Kluwer Academic Publishers, editor. In proceedings of Micro Total Analysis Systems 1998, Dordrecht, The Netherlands, 1998.
    [23] P.Woias. Micropumps' past, progress and future prospects. Journal Sensors and Actuators B: Chemical, 105(1):28-38, 2005.
    [24] K. Yasuda and M. Ichiki. In Transducers'99, pages 128-129, Sendai, Japan, June 7-10 1999.
    [25] S.C. Jacobson, T.E. McKnight, and J.M. Ramsey. Microfluidic devices for electrokinetically driven parallel and serial mixing. Analytical chemistry, 71:4455-4459,1999.
    [26] R.H. Liu, K.V. sharp, M.G. Olsen, M.A. Stremler, J.G. Santiago, RJ. Adrian, H. Aref, and D.J. Beebe. In Transducers'99, pages 730-733, Sendai, Japan, June 7-10 1999.
    [27] J.W. Hong, K. Hosokawa, T. Fujii, M. Seki, and I Endo. Microfabricated polymer chip for capillary gel electrophoresis. Biotechnology Progress, 17(5):958-962,2001.
    [28] A.D. Stroock, S. K. W. Derringer, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides. Chaotic mixer for microchannels. Science, 295:647-651, 2002.
    [29] N.T. Nguyen, X. Huang, and T.K. Chuan. Mems-micropumps: a review. Journal of Fluids Engineering(ASME Transactions), 124(2):384-392,2002.
    [30] D.J. Laser and J.G. Santiago. A review of micropumps. Journal of Micromechanics and Microengineering, 14(6):35-64, 2004.
    [31] K. Handique, D.T. Burke, C.H. Mastrangelo, and M.A. Burns. On-chip thermopneumatic pressure for discrete drop pumping. Analytical Chemistry, 73:1831-1838, 2001.
    [32] M.W.J. Prins, W.J.J. Welters, and J.W. Weekamp. Fluid control in multichannel structures by electrocapillary pressure. Science, 291:277-280, 2001.
    [33] T.E. McKnight, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey. Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Analytical Chemistry, 73(16):4045-4049, 2001.
    [34] C.M. Hou and Y.C. Tai. Mems and its applications for flow control. Journal of Fluid Engineering, 118(3):437-447, 1996.
    [35] T. Vilkner, D. Janasek, and A. Manz. Micro total analysis systems. recent developments. Analytical Chemistry, 76(12):3373-3386, 2004.
    [36] J.H. Qin, Y.S. Fung, D.R. Zhu, and B.C. Lin. Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection. Journal of Chromatography A,1027:223-229, 2004.
    [37] V. Namasivayam, R.S. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D.T. Burke, and M.A. Burns. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. Journal of Micromechanics and Microengineering,14(1):81-90, 2004.
    [38] J.C. Roulet, R. Volkel, H.P. Herzig, E. Verpoorte, N.F. de Rooij, and R. Dandliker. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems. Analytical Chemistry, 74(14):3400-3407, 2002.
    [39] J.C. Sanders, Z.L. Huang, and J.P. Landers. Acousto-optical deflection-based whole channel scanning for microchip isoelectric focusing with laser-induced fluorescence detection. Lab on a Chip, 1:167-172,2001.
    [40] P.S. Dittrich and P. Schwille. Spatial two-photon fluorescence cross-correlation spectroscopy for controlling molecular transport in microfluidic structures. Analytical Chemistry, 74(17):4472-4479,2002.
    [41] J.P. Shelby and D.T. Chiu. Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detection. Analytical Chemistry, 75(6):1387-1392, 2003.
    [42] C.D. Garcia and C.S. Henry. Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Analytical Chemistry, 75(18):4778-4783, 2003.
    [43] N.E. Hebert, B. Snyder, R.L. McCreery, W.G. Kuhr, and S.A. Brazill. Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Analytical Chemistry, 75(16):4265-4271,2003.
    [44] C.C. Wu, R.G. Wu, J.G. Huang, Y.C. Lin, and H.C. Chang. Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection. Analytical Chemistry, 75(4):947-952,2003.
    [45] O. Klett and L. Nyholm. Separation high voltage field driven on-chip amperometric detection in capillary electrophoresis. Analytical Chemistry, 75(6): 1245-1250, 2003.
    [46] M. Galloway, W. Stryjewski, A. Henry, S.M. Ford, S. Llopis, R.L. McCarley, and S.A. Soper. Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. Analytical Chemistry, 74:2407-2415,2002.
    [47] J. Wang, G. Chen, and A. Muck. Movable contactless-conductivity detector for microchip capillary electrophoresis. Analytical Chemistry, 75(17):4475-4479,2003.
    [48] F. Laugere, R.M. Guijt, J. Bastemeijer, G. van der Steen, A. Berthold, E. Baltussen, P. Sarro, G. W. K. van Dedem, M. Vellekoop, and A. Bossche. On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices. Analytical Chemistry, 75(2):306-312,2003.
    [49] J. Huller, M.T. Pham, and S. Howitz. Thin layer copper ise for fluidic microsystem. Sensors and Actuators B, 91:17-20,2003.
    [50] S. Benetton, J. Kameoka, A.M. Tan, T. Wachs, H. Craighead, and J.D. Henion. Chipbased p450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. Analytical Chemistry, 75(23):6430-6436, 2003.
    [51] N. Sillon and R. Baptist. Micromachined mass spectrometer. Sensors and Actuators B, 83:129-137,2002.
    [52] J.A. Diaz, A.E.M. Vargas, F.C. Diaz, J.P. Squire, V. Jacobson, G. McCaskill, H. Rohrs, and R. Chhatwal. Test of a miniature double-focusing mass spectrometer for real-time plasma monitoring. TrAC Trends in Analytical Chemistry, 21(8):515-525, 2002.
    [53] B.F. Liu, M. Ozaki, Y. Utsumi, T. Hattori, and S. Terabe. Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Analytical Chemistry, 75(1):36-41, 2003.
    [54] W. Zhan, J. Alvarez, L. Sun, and R.M. Crooks. A multichannel microfluidic sensor that detects anodic redox reactions indirectly using anodic electrogenerated chemiluminescence. Analytical Chemistry, 75(6):1233-1238, 2003.
    [55] P.D.I. Fletcher, S.J. Haswell, and X.L. Zhang. Monitoring of chemical reactions within microreactors using an inverted raman microscopic spectrometer. Electrophoresis, 24(18):3239-3245, 2003.
    [56] M. Palumbo, C. Pearson, J. Nagel, and M.C. Petty. A single chip multi-channel surface plasmon resonance imaging system. Sensors and Actuators B, 90:264-270, 2003.
    [57] M.P. Duggan, T. McCreedy, and J.W. Aylott. A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3d architecture. Analyst, 128(11): 1336-1340,2003.
    [58] A. Hibara, M. Nonaka, M. Tokeshi, and T. Kitamori. Spectroscopic analysis of liquid / liquid interfaces in multiphase microflows. Journal of the American Chemical Society, 125(49): 14954-14955, 2003.
    [59] N. Pamme, R. Koyama, and A. Manz. Counting and sizing of particles and particle agglomerates in a microfiuidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab on a Chip, 3:187-192,2003.
    [60] C.D. Costin and R.E. Synovec. A microscale-molecular weight sensor: Probing molecular diffusion between adjacent laminar flows by refractive index gradient detection. Analytical Chemistry, 74(17):4558-4565, 2002.
    [61] M.L. Adams, M. Enzelberger, S. Quake, and A. Scherer. Microfiuidic integration on detector arrays for absorption and fluorescence micro-spectrometers. Sensors and Actuators A, 104:25-31,2003.
    [62] E. Tamaki, K. Sato, M. Tokeshi, M. Aihara, and T. Kitamori. Single-cell analysis by a scanning thermal lens microscope with a microchip: Direct monitoring of cytochrome c distribution during apoptosis process. Analytical Chemistry, 74(7): 1560-1564, 2002.
    [63] Y. Mizukami, D. Rajniak, A. Rajniak, and M. Nishimura. A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array. Sensors and Actuators B, 81:202-209, 2002.
    [64] S.L. Firebaugh, K.F. Jensen, and M.A. Schmidt. Miniaturization and integration of photoacoustic detection. Journal of Applied Physics, 92(3): 1555-1563,2002.
    [65] G. Jenkins and A. Manz. A miniaturized glow discharge applied for optical emission detection in aqueous analytes. Journal of Micromechanics and Microengineering, 12(5):N19-N22, 2002.
    [66] T. Nakagama, T. Maeda, K. Uchiyama, and T. Hobo. Monitoring nano-flow rate of water by atomic emission detection using helium radio-frequency plasma. Analyst, 128(6):543-546, 2003.
    [67] J.W. Chung, C.P. Grigoropoulos, and R. Greif. Infrared thermal velocimetry in mems-based fluidic devices. Journal of Microelectromechanical Systems,, 12:365-372, 2003.
    [68] C. Massin, F. Vincent, A. Homsy, and K. Ehrmann. Planar microcoil-based microfiuidic nmr probes. Journal of Magnetic Resonance, 164(2):242-255, 2003.
    [69] B. Sorli, J.F. Chateaux, M. Pitaval, and H. Chahboune. Micro-spectrometer for nmr:analysis of small quantities in vitro. Measurement Science and Technology, 15:877-880, 2004.
    [70] J.H. Walton, de J.S. Ropp, M.V. Shutov, and A. G. Goloshevsky. A micromachined double-tuned nmr microprobe. Analytical Chemistry, 75(19):5030-5036,2003.
    [71] H. Wensink, F. Benito-Lopez, D. C. Hermes, and W. Verboom. Measuring reaction kinetics in a lab-on-a-chip by microcoil nmr. Lab on a Chip, 5:280-284, 2005.
    [72] M.A.Burns, B.N. Johnson, S.N. Brahmasandra, K.Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H.Mastrangelo, and D.T. Burke. An integrated nanoliter dna analysis device. Science, 282:484-487,1998.
    [73] J.R. Webster, M.A.Burns, D.T. Burke, and C.H.Mastrangelo. Monolithic capillary electrophoresis device with integrated fluorescence detector. Analytical Chemistry, 73(7): 1622-1626,2001.
    [74] Q. Lu and G.E. Collins. Microchip separations of transition metal ions via led absorbance detection of their par complexes. Analyst, 126:429-432,2001.
    [75] S. Wang, X. Huang, Z.Fang, and P.K. Dasgupta. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Analytical Chemistry,73(18):4545-4549, 2001.
    [76] T. Zhang, Q Fang, S.L.Wang, L.F. Qin, P Wang, Z.Y. Wu, and Z.L. Fang. Enhancement of signal-to-noise level by synchronized dual wavelength modulation for light emitting diode fluorimetry in a liquid-core-waveguide microfluidic capillary electrophoresis system. Talanta, 68(1): 19-24, 2005.
    [77] B. Valeur. Molecular Fluorescence, WILEY-VCH, 2001.
    [78] A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, and T.E. Rice. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 97:1515-1566,1997.
    [79] B. Valeur and I. Leray. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 205:3-40,2000.
    [80] L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti, and D. Sacchi. Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanism. Chemistry - A European Journal, 2:75-82,1996.
    [81] Y. Al Shihadeh, A. Benito, J.M. Lloris, R. Martinez-Manez, T. Pardo, J. Soto, and M.D. Marcos. Polyaza and azaoxa macrocyclic receptors functionalised with fluorescent subunits; hg2+ selective signalling. Journal of the Chemical Society, Dalton Transactions(7): 1199-1205, 2000.
    [82] J. Ishikawa, H. Sakamoto, S. Nakao, and H. Wada. Silver ion selective fluoroionophores based on anthracene-linked polythiazaalkane or polythiaalkane derivatives. The Journal of Organic Chemistry, 64:1913-1921,1999.
    [83] R. Metivier, I. Leray, and B. Valeur. Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores. ChemistryalA European Journal, 10:4480-4490, 2004.
    [84] M.H. Ha-Thi, M. Penhoat, V. Michelet, and I. Leray. Highly selective and sensitive phosphane sulfide derivative for the detection of hg~(2+) in an organoaqueous medium. Organic letters, 9(6): 1133-1136, 2007.
    [85] M.V. Alfimov, Y.V. Fedorov, O.A. Fedorova, S.S. Gromov, R.E. Hester, I.K. Lednev, J.N. Moore, V.P. Oleshko, and A.I. Vedernikov. Synthesis and spectroscopic studies of novel photochromic benzodithiacrown ethers and their complexes. Journal of the Chemical Society, Perkin Transactions 2(2): 1441-1447, 1996.
    [86] I. Leray, J.-P. Lefevre, J.-F. Delouis, J. Delaire, and B. Valeur. Synthesis and photophysical and cation-binding properties of mono- and tetranaphthylcalix[4]arenes as highly sensitive and selective fluorescent sensors for sodium. Chemistry-A European Journal, 7(21):4590-4598, 2001.
    [87] X. Peng, J. Du, F. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun, and T. Xu. A selective fluorescent sensor for imaging cd~(2+) in living cells. Journal of the American Chemical Society, 129:1500-1501, 2007.
    [88] H. Zhang and D.M. Rudkevich. A fret approach to phosgene detection. Chemical Communications, (12): 1238-1239,2007.
    [89] H.J. Kim, S.Y. Park, S. Yoon, and J.S. Kim. Fret-derived ratiometric fluorescence sensor for cu~(2+). Tetrahedron, 64(7): 1294-1300,2008.
    [90] J.A. Sclafani, M.T. Maranto, T.M. Sisk, and S.A. Van Arman. An aqueous ratiometric fluorescence probe for zn(ii). Tetrahedron Letters, 37(13):2193-2196,1996.
    [91] B. Bodenant and F. Fages. Synthesis, metal binding, and fluorescence studies of a pyrene-tethered hydroxamic acid ligand. Tetrahedron Letters, 36(9): 1451-1454, 1995.
    [92] Y. Shiraishi, K. Ishizumi, G. Nishimura, and T. Hirai. Effects of metal cation coordination on fluorescence properties of a diethylenetriamine bearing two end pyrene fragments. The Journal of Physical Chemistry B, 111:8812-8822,2007.
    [93] M.C. Neuman and A.W. Mclntosh. Metal Ecotoxicity, Concepts and Applications. Lewis Publishers, Chelsea, MI, 1991.
    [94] G.R. Boyd, N.K. Tarbet, G. Kirmeyer, B.M. Murphy, R.F. Serpente, and M. Zammit. Selecting lead pipe rehabilitation and replacement technologies. Journal of the American Water Works Association, 93(7):74-87, 2001.
    [95] P. Jackson, T. van den Hoven, I. Wagner, and P. Leroy. The financial and economic implications of a change of the mac for lead. European Commission Report, 1995.
    [96] World Health Organization. Guidelines for drinking water quality, 2nd edition., volume 2. Recommendations, World Health Organization, Geneva, 1996.
    [97] World Health Organization. Guidelines for drinking water quality, 3rd edition., volume 1. Recommendations, World Health Organization, Geneva, 2004.
    [98] E. Destandau, J.P. Lefevre, A.C.F. Eddine, S. Desportes, M.C. Jullien, R. Hierle, I. Leray, B. Valeur, and J.A. Delaire. A novel microfiuidic flow-injection analysis device with fluorescence detection for cation sensing.application to potassium. Analytical and Bioanalytical Chemistry, 387(8):2627-2632,2007.
    [99] C.R.T. Tarley, A.F. Barbosa, M.G. Segatelli, E.C. Figueiredo, and P.O. Lucas. Highly improvedsensitivity of ts-ff-aas for cd(ii) determination at ng 1.1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. Journal of Analytical Atomic Spectrometry, 21:1305-1313, 2006.
    [100] N. Pourreza and H. Barisami. Solid phase extraction of zn as xylenol orangecomplex on naphthalene adsorbent and its determination by flame atomic absorption spectrometry. Chemia Analityczna, 52:597-604,2007.
    [101] W. Guo, W. Liu, S. Jin, S. Hu, H. Zhang, and Y. Peng. Determination of trace pb in environmental samples by gf-aas after microsphere phase separation extraction. Bioinformatics and Biomedical Engineering, The 2nd International Conference(16-18):4504-4507, May 2008.
    [102] M.T. Naseri, M.R.M. Hosseini, Y. Assadi, and A. Kiani. Rapid determination of lead in water samples by dispersive liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry. Journal of Hazardous Materials,75(1):56-62, 2008.
    [103] M. Satyanarayanan, V. Balaram, T.G. Rao, B. Dasaram, S.L. Ramesh, R. Mathur, and R.K. Drolia. Determination of trace metals in seawater by icp-ms after preconcentration and matrix separation by dithiocarbamate complexes. Indian Journal of Marine Sciences, 36:71-75,2007.
    [104] S.C. Jacobson, A.W. Moore, and J.M. Ramsey. Fused quartz substrates for microchip electrophoresis. Analytical Chemistry, 67:2059-2063,1995.
    [105] In-H. Chang, J.J. Tulock, J. Liu, W-S Kim, D.M. Cannon, JR., Y. Lu, P.W. Bonn, J.V. Sweedler, and D.M. Cropek. A modular microfluidic architecture for integrated biochemical analysis. Environmental Science and Technology, 39:3756-3761,2005.
    [106] K.A. Shaikh, K.S. Ryu, E.D. Goluch, J.M. Nam, J. Liu, C.S. Thaxton, T.N. Chiesl, A.E. Barron, Y. Lu, C.A. Mirkin, and C. Liu. A modular microfiuidic architecture for integrated biochemical analysis. Proceedings of the National Academy of Sciences,102(28):9745-9750, 2005.
    [107] X.S Zhu, C. Gao, J.W. Choi, P.L. Bishop, and C.H. Ann. On-chip generated mercury microelectrode for heavy metal ion detection. Lab on a Chip, 5:212-217, 2005.
    [108] BKH Consulting Engineers, TNO Nutrition, and Food Research. Towards the establishment of a priority list of substances for further evaluation of their role in endocrine disruption. Final report of European Commission DG Environment, 21 June: 1-35,2000.
    [109] D.P. Grover, Z.L. Zhang, J.W. Readman, and J.L. Zhou. A comparison of three analytical techniques for the measurement of steroidal estrogens in environmental water samples. Talanta, 78(3): 1204-1210, 2009.
    [110] C. Bicchi, T. Schilir, C. Pignata, E. Fea, C. Cordero, F. Canale, and G. Gilli. Analysis of environmental endocrine disrupting chemicals using the e-screen method and stir bar sorptive extraction in wastewater treatment plant effluents. Science of the total environment, 407(6): 1842-1851, 2009.
    [111] A. Hibberd, K. Maskaoui, Z. Zhang, and J.L. Zhou. An improved method for the simultaneous analysis of phenolic and steroidal estrogens in water and sediment. Talanta, 77(4):1315-1321,2009.
    [112] J. Zhao, G. Ying, L. Wang, J. Yang, X. Yang, L. Yang, and X. Li. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the pearl rivers in south china by gas chromatography-negative chemical ionizationlcmass spectrometry. Science of the total environment, 407(2):962-974,2009.
    [113] A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, H. Ludi, and H.M. Widmer. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. Journal of Chromatography, 593:253-258,1991.
    [114] S.S. Bozkurt, S. Ayata, and I. Kaynak. Fluorescence-based sensor for pb(ii) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium. Spectrochimica Acta Part A, 72:880-883, 2009.
    [115] L. Ma, Y. Li, Y. Wu, R. Buchet, and Y. Ding. Clarification of the binding model of lead(ii) with a highly sensitive and selective fluoroionophore sensor by spectroscopic and structural study. Spectrochimica Acta Part A, 72(2):306-311, 2009.
    [116] L. Guo, S. Hong, X. Lin, Z. Xie, and G. Chen. An organically modified sollcgel membrane for detection of lead ion by using 2-hydroxy-1-naphthaldehydene-8-aminoquinoline as fluorescence probe. Sensors and Actuators B, 130(2):789-794,2008.
    [117] S. Saito, N. Danzaka, and S. Hoshi. Direct fluorescence detection of pb~(2+) and cd~(2+) by high-performance liquid chromatography using 1-(4-aminobenzyl)ethylenediamine-n,n,n',n'-tetraacetate as a pre-column derivatizing agent. Journal of Chromatography A, 1104:140-144, 2006.
    [118] R. Metivier, I. Leray, and B. Valeur. A highly sensitive and selective fluorescent molecular sensor for pb(ii) based on a calix[4]arene bearing four dansyl groups. Chemical Communications, pages 996-997, 2003.
    [119] E. Prichard, G.M. MacKay, and J. Points. Trace Analysis: A Structured Approach to Obtaining Reliable Results. Royal Society of Chemistry, Cambridge, 1996.
    [120] S.J. Harswell. Atomic Absorbance Spectrophotometry. Theory, Design and Applications. Elsevier, Amsterdam, 1990.
    [121] E.L. Silva and S. Roldan Pdos. Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry. Journal of Hazardous Materials, 161:142-147,2009.
    [122] U. Divrikli, A.A. Kartal, M. Soylak, and L. Elci. Preconcentration of pb(ii), cr(iii), cu(ii), ni(ii) and cd(ii) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials, 145:459-464,2007.
    [123] Q.F. Hu, G.Y. Yang, Y.Y. Zhao, and J.Y. Yin. Determination of copper, nickel, cobalt, silver, lead, cadmium and mercury ions in water by solid phase extraction and the rp- hplc with uv-vis detection. Analytical and Bioanalytical Chemistry, 375:831-835, 2003.
    
    [124] G.Y. Yang, W.B. Fen, C. Lei, W.L. Xiao, and H.D Sun. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with mci gel chp 20y as sorbent. Journal of Hazardous Materials, 162(l):44-49, 2009.
    
    [125] H. Parham, N. Pourreza, and N. Rahbar. Solid phase extraction of lead and cadmium using solid sulfur as a new metal extractor prior to determination by flame atomic absorption spectrometry. Journal of Hazardous Materials, 163:588-592, 2009.
    
    [126] F. Raoufia, Y. Yaminib, H. Sharghic, and M. Shamsipurd. Solid-phase extraction and determination of trace amounts of lead(ii) using octadecyl silica membrane disks modified with a recently synthesized anthraquinone derivative and atomic absorption spectrometry. Microchemical Journal, 63(2):311-316,1999.
    
    [127] G.Z. Tsogas, D.L. Giokas, and A.G. Vlessidis. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: Study of preconcentration technique performance. Journal of Hazardous Materials, 163:988-994, 2009.
    
    [128] C.F. Poole, A.D. Gunatilleka, and R. Sethuraman. Contributions of theory to method development in solid-phase extraction. Journal of Chromatography A, 885:17-39,2000.
    
    [129] R. Metivier. Ingenierie moleculaire et fluorescence: detection de cations lourds et etude de surfaces d'alumines. ENS CACHAN dissertation, 2003.
    
    [130] O.R. Hashemi, M.R. Kargar, F. Raoufi, A. Moghimi, H. Aghabozorg, and M.R. Gan- jali. Separation and preconcentration of trace amounts of lead on octadecyl silica membrane disks modified with a new s-containing schiff's base and its determination by flame atomic absorption spectrometry. Microchemical Journal, 69(1):1-6,2001.
    
    [131] R. Saxena, A.K. Singh, and D.P.S Rathore. Salicylic acid functionalized polystyrene sorbent amberlite xad-2. synthesis and applications as a preconcentrator in the determination of zinc(ii) and lead(ii) by using atomic absorption spectrometry. Analyst,120:403-405,1995.
    [132] P.K. Tewari and A.K. Singh. Preconcentration of lead with amberlite xad-2 and amberlite xad-7 based chelating resins for its determination by flame atomic absorption spectrometry. Talanta, 56(4):735-744, 2002.
    [133] G. Klein, D. Kaufmann, S. Sch(?)rch, and J.-L. Reymond. A fluorescent metal sensor based on macrocyclic chelation. Chemical Communications, 24:561-562,2001.
    [134] P. Domachuk, H.C. Nguyen, B.J. Eggleton, M. Straub, and M. Gu. Microfluidic tunable photonic band-gap device. Applied Physics Letters, 84:1838-1840, 2004.
    [135] J.C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen. Microfluidic tunable dye laser with integrated mixer and ring resonator. Applied Physics Letters, 86:264101, 2005.
    [136] K.B. Mogensen, Y.C. Kwok, J.C.T. Eijkel, N.J. Petersen, A. Manz, and J.P. Kutter. A microfluidic device with an integrated waveguide beam splitter for velocity measurements of flowing particles by fourier transformation. Analytical Chemistry,75(18):4931-4936, 2003.
    [137] K.W. Ro, K. Lim, B.C. Shim, and J.H. Hahn. Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Analytical Chemistry, 77:5160-5166,2005.
    [138] D. Yin, D.W. Deamer, H. Schmidt, J.P. Barber, and A. Hawkins. Single-molecule detection sensitivity using planar integrated optics on a chip. Optics Letters, 31:2136-2138, 2006.
    [139] A. Ksendzov and Y. Lin. Integrated optics ring resonator sensors for protein detection. Optics Letters, 30:3344-3346,2005.
    [140] R.A. Potyrailo, S.E. Hobbs, and G.M. Hieftje. Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development. Fresenius' Journal of Analytical Chemistry, 362:349-373,1998.
    [141] E. Krioukov, D.J.W. Klunder, A. Driessen, J. Greve, and C. Otto. Integrated optical microcavities for enhanced evanescent-wave spectroscopy. Optics Letters, 27(17):1504-1506, 2002.
    [142] E. Krioukov, J. Greve, and C. Otto. Performance of integrated optical microcavities for refractive index and fluorescence sensing. Sensors and Actuators B, 90:58-67, 2003.
    [143] C. Monat, P. Domachuk, and B.J. Eggleton. Integrated optofluidics: A new river of light. Nature Photonics, 1:106-114,2007.
    [144] A.M. Armani and K.J. Vahala. Heavy water detection using ultra high q microcavities. Optics Letters, 31:1896-1898, 2006.
    [145] E. Krioukov, D.J.W. Klunder, A. Driessen, J. Greve, and C. Otto. Sensor based on an integrated optical microcavity. Optics Letters, 27:512-514, 2002.
    [146] C.Y. Chao, W. Fung, and L.J. Guo. Polymer microring resonators for biochemical sensing applications. IEEE Journal of Selected Topics in Quantum Electronics, 12:134-142,2006.
    [147] C.Y. Chao and L.J. Guo. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Applied Physics Letters, 83(8): 1527-1529, 2003.
    [148] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Micrometre-scale silicon electrooptic modulator. Nature, 435:325-327,2005.
    [149] M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss. Highly directional stadium-shaped polymer microlasers. Applied Physics Letters, 88:031108.1-031108.3,2006.
    [150] M. Lebental, N. Djellali, C. Arnaud, J.S. Lauret, and J. Zyss. Inferring periodic orbits from spectra of simply shaped microlasers. Physical Review A, 76(2):023830, 2007.
    [151] F. Vollmer and S. Arnold. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods, 5(7):591-596, 2008.
    [152] F.P. Schafer. Dye lasers: topics in applied physics 1. Springer, 3rd edn.:Heidelberg, 1990.
    [153] Jr TF Johnston. Tunable dye lasers, encyclopedia of physical science and technology. Academic, New York, 14:96-141,1987.
    [154] F.S. Bates and G.H. Gredrickson. Block copolymers - designer soft materials. Physics Today, 52:32-38,1999.
    [155] S. Forster and T. Plantenberg. From self-organizing polymers to nanohybrid and biomaterials. Angewandte Chemie International Edition, 41(5):688-714,2002.
    [156] R. Segalman, A. Hexemer, R. Hayward, and E. Kramer. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules, 36(9):3272-3288,2003.
    [157] M.F. Schulz, A.K. Khandpur, and F.S. Bates. Phase behavior of polystyrene-poly(2-vinylpyridine) diblock copolymers. Macromolecules, 29(8):2857-2867,1996.
    [158] A. Sidorenko, I. Tokarev, S. Minko, and M. Stamm. Ordered reactive nanomembranes/ nanotemplates from thin films of block copolymer supramolecular assembly.Journal of the American Chemical Society, 125:12211-12216,2003.
    [159] C.D. Liang, K.L. Hong, G.A. Guiochon, J.W. Mays, and S. Dai. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie International Edition, 43(43):5785-5789, 2004.
    [160] R. Saito, S. Okamura, and K. Ishizu. Introduction of colloidal silver into a poly(2-vinyl pyridine) microdomain of microphase separated poly(styrene-b-2-vinyl pyridine) film. Polymer, 33(5): 1099-1101,1992.
    [161] K.W. Cheng and W.K. Chan. Morphology of rhenium complex-containing polystyrene-block-poly(4-vinylpyridine) and its use as self-assembly templates for nanoparticles. Langmuir, 21(12):5247-5250, 2005.
    [162] D. Yin, S. Horiuchi, and T. Masuoka. Lateral assembly of metal nanoparticles directed by nanodomain control in block copolymer thin films. Chemistry of materials, 17(3):463-469,2005.
    [163] E. Verpoorte. Microfluidic chips for clinical and forensic analysis. Electrophoesis, 23:677-712, 2002.
    [164] D.R. Reyes, D. Iossifidis, P.A. Auroux, and A. Manz. Micro total analysis systems. 1. introduction, theory, and technology. Analytical Chemistry, 74(12):2623-2636, 2002.
    [165] D. Jed Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser, and A. Manz. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science, 261:895-897,1993.
    [166] A.T. Woolley, K. Lao, A.N. Glazer, and R.A. Mathies. Capillary electrophoresis chips with integrated electrochemical detection. Analytical Chemistry, 70(4): 684-688, 1998.
    [167] W.R. Vandaveer Ⅳ, S.A. Pasas-Farmer, D.J. Fischer, C.N. Frankenfeld, and S.M. Lunte. Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis, 25:3528-3549,2004.
    [168] P.A. Auroux, D.R. Reyes, D. Iossifidis, and A. Manz. Micro total analysis systems. 2. analytical standard operations and applications. Analytical Chemistry, 74(12):2637-2652,2002.
    [169] A. Kitahara and A. Watanabe(Eds). Electrical Phenomena at Interfaces. Marcel Dekker, 1984.
    
    [170] J. Gaudioso and H.G. Craighead. Characterizing electroosmotic flow in microfluidic devices. Journal of Chromatography A, 971:249-253, 2002.
    
    [171] D.R. Baker. Capillary Electrophoresis. Wiley, 1995.
    
    [172] R.J. Linhardt and T. Toida. Ultra-high resolution separation comes of age. SCIENCE, 298:1441-1442,2002.
    
    [173] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and T. Ando. Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry, 56:111-113,1984.
    
    [174] U. Pyell. Fresenius' Journal of Analytical Chemistry, 371:691-703,2001.
    
    [175] Y. Allen, A.P. Scott, P. Matthiessen, S. Haworth, J.E. Thain, and S. Feist. Survey of estrogenic activity in united kingdom estuarine and coastal waters and its effects on gonadal development of the flounder platichthys flesus. Environmental Toxicology and Chemistry, 18:1791-1800,1999.
    
    [176] G.W. Aherne and R.J. Briggs. The relevance of the presence of certain synthetic steroids in the aquatic environment. Journal of Pharmacy and Pharmacology, 41:735-736,1989.
    
    [177] T. Colborn, F.S.V. Saal, and A.M. Soto. Developmental effects of endocrine- disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101(5):378-384,1993.
    
    [178] G.A. Fox. Effects of endocrine disrupting chemicals on wildlife in Canada: Past, present and future. Water Quality Research Journal of Canada, 36:233-251,2001.
    
    [179] S. Jobling, D. Sheahan, J.A. Osborne, P. Matthiessen, and J.P. Sumpter. Inhibition of testicular growth in rainbow trout (oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry, 15:194-202, 1996.
    
    [180] C.E. Purdom, P.A. Hardima, V.J. Bye, N.C. Eno, C.R. Tyler, and J.P. Sumpter. Estrogenic effects of effluents from sewage-treatment works. Chemistry and Ecology, 8:275-285,1994.
    [181] T.B. Hayes, A. Collins, M. Lee, M. Mendoza, N. Noriega, A.A. Stuart, and A. Vonk. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences,99:5476-5480,2002.
    [182] L.J. Guillette, T.S. Gross, G.R. Masson, J.M. Matter, H.F. Percival, and A.R. Woodward. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in florida.Environmental Health Perspectives, 102:680-688,1994.
    [183] S.N. Wiemeyer, T.G. Lamont, CM. Bunk, C.R. Sindelar, F.J. Gramlich, and J.D. Frasherand M.A. Byrd. Organochlorine pesticide, polychlorobiphenyl, and mercury residues in bald eagle eggs-1969-79-and their relationships to shell thinning and reproduction. Archives of Environmental Contamination and Toxicology, 13(5):529-549, 1984.
    [184] D.M. Fry and C.K. Toone. Ddt-induced feminization of gull embryos. Science, 213:922-924,1981.
    [185] E.K.Sheiner, E. Sheiner, R.D. Hammel, G. Potashnik, and R. Carel. Effect of occupational exposures on male fertility. Industrial Health, 41:55-62, 2003.
    [186] P.S. Guzelian. Comparative toxicology of chlordecone (kepone) in humans and experimental animals. Annual Review of Pharmacology and Toxicology, 22:89-113, 1982.
    [187] R.M. Sharpe and N.E. Skakkebaek. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? The Lancet, 341(8857): 1392-1395, 1993.
    [188] S.H. Safe. Is there an association between exposure to environmental estrogens and breast cancer? Environmental Health Perspectives Supplements, 105:675-677, 1997.
    [189] A. Giwercman, E. Carlsen, N. Keiding, and N.E. Skakkebaek. Evidence for increasing incidence of abnormalities of the human testis: a review. Environmental Health Perspectives Supplements, 101:65-71,1993.
    [190] E. Carlsen, A. Giwercman, N. Keiding, and N.E. Skakkebaek. Evidence for decreasing quality of semen during past 50 years. British Medical Journal, 305(6854):609-613, 1992.
    [191] C.H. Groshart and P.C. Okkerman. Toward the establishment of a priority list of substances for further evaluation of their role in endocrine disruption: Preparation of a candidate list of substances as a basis for priority setting. final report. European Commission DG Environment, June 2000.
    [192] B. Thiele, K. Gunther, and M.J. Schwuger. Alkylphenol ethoxylates: Trace analysis and environmental behavior. Chemical Reviews, 97(8):3247-3272,1997.
    [193] T. Zacharewski. In vitro bioassays for assessing estrogenic substances. Environmental Science and Technology, 31:613-623,1997.
    [194] S.F. Arnold, M.K. Robinson, P.M. Collins, P.M. Vonier, L.J. Guilette, and J.A. McLachlan. A yeast estrogen screen for examining the relative exposure of cells to natural and xenoestrogens. Environmental Health Perspectives, 104:544-548,1996.
    [195] S. Jobling, T. Reynolds, R. White, M.G. Parker, and J.P. Sumpter. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environmental Health Perspectives, 103:582-587,1995.
    [196] S. Jobling and J.P. Sumpter. Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 27:361-372,1993.
    [197] M. Nasu, M. Goto, H. Kato, Y. Oshima, and H. Tanaka. Study on endocrine disrupting chemicals in wastewater treatment plants. Water Science and Technology, 43(2):101-108,2001.
    [198] K. Fujii, S. Kikuchi, M. Satomi, N. Ushio-Sata, and N. Morita. Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in tokyo, japan. Applied and Environmental Microbiology, 68:2057-2060, 2002.
    [199] H.B. Lee and D Liu. Degradation of 17β-estradiol and its metabolites by sewage bacteria. Water, Air, and Soil PoUution, 134:353-368, 2002.
    [200] H. Tanaka, Y. Yakou, A. Takahashi, T. Higashitani, and K. Komori. Comparison between estrogenicities estimated from dna recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Science and Technology, 43(2):125-132, 2001.
    [201] C. Planas, J.M. Guadayol, M. Droguet, A. Escalas, J. Rivera, and J. Caixach. Degradation of polyethoxylated nonylphenols in a sewage treatment plant. quantitative analysis by isotopic dilution-hrgc/ms. Water Research, 36:982-988, 2002.
    [202] N. Garcia-Reyero, E. Grau, M. Castillo, M.J.L. Dealda, D. Barcelo, and B. Pina. Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environmental Toxicology and Chemistry, 20:1152-1158,2001.
    [203] M. Ahel and W. Giger. Determination of alkylphenols and alkylphenol mono- and diethoxylates in environmental samples by high-performance liquid chromatography. Analytical Chemistry, 57:1577-1583,1985.
    [204] W. Giger, E. Stephanou, and C. Schaffner. Persistent organic chemicals in sewage effluents: Ⅰ. identifications of nonylphenols and nonylphenolethoxylates by glass capillary gas chromatography / mass spectrometry. Chemosphere, 10:1253-1263,1981.
    [205] A.D. Corcia, R. Samperi, and A. Marcomini. Monitoring aromatic surfactants and their biodegradation intermediates in raw and treated sewages by solid-phase extraction and liquid chromatography. Environmental Science and Technology, 28:850-858, 1994.
    [206] S. Chiron, E. Sauvard, and R. Jeannot. Determination of nonionic polyethoxylate surfactants in wastewater and sludge samples of sewage treatment plants by liquid chromatography-mass spectrometry. Analusis, 28:535-542,2000.
    [207] A.A. Boyd-Boland and J.B. Pawliszyn. Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of alkylphenol ethoxylate surfactants in water. Analytical Chemistry, 68:1521-1529,1996.
    [208] P.L. Ferguson, C.R. Iden, A.E. McElroy, and B.J. Brownawell. Determination of steroid estrogens in wastewater by immunoaffimty extraction coupled with hplcelectrospray-ms. Analytical Chemistry, 73:3890-3895, 2001.
    [209] A. Marcomini, F. Filipuzzi, and W. Giger. Aromatic surfactants in laundry detergents and hard-surface cleaners: Linear alkylbenzenesulphonates and alkylphenol polyethoxylates. Chemosphere, 17(5):853-863,1988.
    [210] M.A. Blackburn, S.J. Kirby, and M.J. Waldock. Concentrations of alkyphenol polyethoxylates entering uk estuaries. Marine Pollutution Bulletin, 38(2): 109-118, 1999.
    [211] H. Sabik S. Cathum. Determination of steroids and coprostanol in surface water, effluent and mussel using gas chromatography-mass spectrometry. Chromatographia, 53:S394-S399,2001.
    [212] H. Sabik S. Cathum. Simultaneous determination of alkylphenol polyethoxylate surfactants and their degradation products in water, effluent and mussel using gas chromatography-mass spectrometry. Chromatographia, 53:S400-S405, 2001.
    
    [213] W. Ding and J. Fann. Application of pressurized liquid extraction followed by gas chromatographylcmass spectrometry to determine 4-nonylphenols in sediments. Journal of Chromatography A, 866:79-85,2000.
    
    [214] H.B. Lee and T.E. Peart. Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants. Analytical Chemistry, 34:1976-1980,1995.
    
    [215] A.P. Scott, R.M. Inbaraj, and E.L.M. Vermeirssen. A. p. scott, r. m. inbaraj and e. 1. m. vermeirssen, use of a radioimmunoassay which detects c21pleuronectes platessa. General and Comparative Endocrinology, 105:62-70,1997.
    
    [216] J.H. Willman, T.B. Martins, T.D. Jaskowski, H.R. Hill, and C.M. Litwin. Heterophile antibodies to bovine and caprine proteins causing false-positive human immunodeficiency virus type 1 and other enzyme-linked immunosorbent assay results. Clinical and Diagnostic Laboratory Immunology, 6(4):615-616,1999.
    
    [217] E.J. Routledge, D. Sheahan, C. Desbrow, G.C. Brighty, M. Waldock, and J.P. Sumpter. Identification of estrogenic chemicals in stw effluent. 2. in vivo responses in trout and roach. Environmental Science and Technology, 32:1559-1565,1998.
    
    [218] C. Desbrow, E.J. Routiedge, G.C Brighty, J.P. Sumpter, and M. Waldock. Identification of estrogenic chemicals in stw effluent. 1. chemical fractionation and in vitro biological screening. Environmental Science and Technology, 32:1549-1558,1998.
    
    [219] M.J. Lopez de Alda and D Barcelo. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detectionlcmass spectrometry. Journal of Chromatography A, 892:391-406, 2000.
    
    [220] L.B. Clark, R.T. Rosen, T.G. Hartman, J.B. Louis, I.H. Suffet, R.L. Lippincott, and J.D. Rosen. Determination of alkylphenol ethoxylates and their acetic acid derivatives in drinking water by particle beam liquid chromatography/mass spectrometry. International Journal of Environmental Analytical Chemistry, 47:167-180,1992.
    
    [221] S.N. Pedersen and C. Lindhost. Quantification of the xenoestrogens 4-tert.-octylphenol and bisphenol a in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A, 864:17-24,1999.
    [222] K. Otsuka, M. Higashimori, R. Koike, K. Karuhaka, Y. Okada, and S. Terabe. Separation of lipophilic compounds by micellar electrokinetic chromatography with organic modifiers. Electrophoresis, 15:1280-1283, 1994.
    [223] P.L. Desbene and C.M. Rony. Determination by high-performance capillary electrophoresis of alkylaromatics used as based of sulfonation in the preparation of industrial surfactants. Journal of Chromatography A, 689:107-121,1995.
    [224] C. Mardones, A. Rios, and M. Valcarcel. Determination of chlorophenols in human urine based on the integration of on-line automated clean-up and preconcentration unit with micellar electrokinetic chromatography. Electrophoresis, 20:2922-2929,1999.
    [225] G. Janim, G. Muschik, and H. Issaq. Electrokinetic chromatography in suppressed electroosmotic flow environment: Use of a charged cyclodextrin for the separation of enantiomers and geometric isomers. Electrophoresis, 17:1575-1583, 1996.
    [226] F. Regan, A. Moran, B. Fogarty, and E. Dempsey. Development of comparative methods using gas chromatography-mass spectrometry and capillary electrophoresis for determination of endocrine disrupting chemicals in bio-solids. Journal of Chromatography B, 770:243-253, 2002.
    [227] Q.C. Chu, M Lin, C.H. Geng, and J.N. Ye. Determination of uric acid in human saliva and urine using miniaturized capillary electrophoresis with amperometric detection. Chromatographia, 65:179-184,2007.
    [228] A. Lagana, A. Bacaloni, I.D. Leva, A. Faberi, G. Fago, and A. Marino. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. Analytica Chimica Acta, 501:79-88,2004.
    [229] M Katayama, Y Matsuda, and T Sasaki. Determination of bisphenol a and 10 alkylphenols in serum using sds micelle capillary electrophoresis with γ-cyclodextrin. Biomedical Chromatography, 15:437-442, 2001.
    [230] S.L. Tao, K. Popat, and T.A. Desai. Off-wafer fabrication and surface modification of asymmetric 3d su-8 microparticles. Nature Protocols, 1(6):3153-3158, 2006.
    [231] C.H. Lin, G.B. Lee, L.M. Fu, and S.H. Chen. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification. Biosencors and Bioelectronics, 20:83-90,2004.
    [232] H. Gampp, M. Maeder, C.J. Meyer, and A.D. Zuberbuhler. Calculation of equilibrium constants from multiwavelength spectroscopic data - i.mathematical considerations. Talanta, 32:95-1014,1985.
    [233] H. Gampp, M. Maeder, C.J. Meyer, and A.D. Zuberbuhler. Calculation of equilibrium constants from multiwavelength spectroscopic data - ii. specfit: Two userfriendly programs in basic and standard fortran 77. Talanta, 32:257-264,1985.
    [234] J. Buffle and M.L. Tercier-Waeber. Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. Trends in Analytical Chemistry, 24(3): 172-191, 2005.
    [235] C.T. NGUYEN. Polymer-based Photonic Devices for Optical Telecoms. Course of Master Erasmus Mundus MONABIPHOT, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700