用户名: 密码: 验证码:
类Fenton高级氧化技术处理染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着染料工业的迅速发展,染料废水成为环境问题中的一个重要课题。为了有效地降解染料废水中的有机污染物,本文利用Fenton反应对染料废水进行降解。Fenton氧化技术是现在水处理中重要的高级氧化技术,可以降解水中大多数有毒有害物质。本文利用孔雀石绿和罗丹明B两种染料为研究对象进行Fenton反应,得出一些创新性的结论:(1)首先利用Salen配体与铁离子形成铁配体络合物,用它作为Fenton反应的催化剂进行Fenton反应处理染料废水,而且配体加入量为铁离子十分之一时,达到较好的脱色率:(2)首次采用固体废料石墨尾矿作为多相Fenton反应的催化剂对染料废水进行脱色降解;(3)对铁配体Fenton反应对染料废水的脱色动力学进行了研究,得出动力学方程和动力学参数;
     在铁配体Fenton反应研究中,用四种不同的处理方法对孔雀石绿和罗丹明B的脱色效果进行比较,可以得出不同处理方法对孔雀石绿和罗丹明B分子的去除率的大小顺序为:铁配体Fenton反应>Fe3+/H2O2反应体系>双氧水单独氧化>铁配体单独作用。通过实验得出铁配体降解孔雀石绿溶液的反应条件,在孔雀石绿初始浓度为100mg/L的溶液中,铁配体加入量为35μmol/L,双氧水加入量为10mmol/L, Salen配体与铁离子摩尔比值采用1:10,反应温度为20℃,得出的去除率为97.95%;铁配体降解罗丹明B溶液的反应条件,在罗丹明B初始浓度为100mg/L的溶液中,铁配体加入量为40μmol/L,双氧水加入量为15mmol/L, Salen配体与铁离子摩尔比值采用1:10,反应温度为20℃,得出的脱色率率为98.06%。
     对孔雀石绿和罗丹明B不同降解方法和不同影响因素对铁配体Fenton反应的动力学进行了研究,各反应均符合假一级反应动力学。铁配体Fenton反应中活性氧化物种分析得出,反应中存在羟基自由基和中间价态铁物种两种活性氧化物种。孔雀石绿和罗丹明B在铁配体Fenton反应中TOC去除率分别为54.35%和58.39%,孔雀石绿和罗丹明B没有完全降解,通过GC-MS产物分析得出,孔雀石绿的可能的降解产物为N,N-二甲基甲酰胺,戊二醛,3-羟甲基戊二醛,3-二苯甲叉基-戊二醛,3-二苯羟甲基-戊二醛,甲酸和2-烯戊二酸;罗丹明B可能的降解产物为乙二胺,戊二醛,3-羟甲基戊二醛,3-二苯甲叉基-戊二醛,3-二苯羟甲基-戊二醛,甲酸和2-烯戊二酸。对孔雀石绿和罗丹明B的铁配体Fenton反应的反应活化能进行计算表明,铁配体Fenton反应中的活化能低于Fe3+/H2O2反应体系,铁配体能有效的提高Fenton反应速率,是一种有效的催化剂。
     通过对石墨尾矿XRD、EDS和比表面积表征分析得出,石墨尾矿中含有铁的氧化物可以作为Fenton反应催化剂,石墨尾矿具有的孔洞结构对染料分子具有一定的吸附性能。
     相同反应条件下,石墨尾矿多相Fenton反应对孔雀石绿和罗丹明B脱色效果优于石墨尾矿单独吸附作用和双氧水单独氧化作用。由实验得出孔雀石绿石墨尾矿多相Fenton反应的反应条件为:孔雀石绿初始浓度为100mg/L时,石墨尾矿投加量为5g/L,双氧水投加量为4g/L时石墨尾矿多相Fenton反应对孔雀石绿的最大脱色率为99.51%。罗丹明B石墨尾矿多相Fenton反应的反应条件为,罗丹明B初始浓度为100mg/L时,石墨尾矿投加量为50g/L,双氧水投加量为10g/L时脱色率为93.39%。
     对石墨尾矿多相Fenton反应降解孔雀石绿和罗丹明B的机理进行研究表明,石墨尾矿多相Fenton反应中存在Fenton反应和吸附作用两种作用。石墨尾矿多相Fenton反应对孔雀石绿和罗丹明B的TOC去除率分别为60.38%和49.02%。孔雀石绿和罗丹明B溶液石墨尾矿多相Fenton反应后,溶液中的铁离子浸出量为0.2309mg/L和0.4824mg/L,溶液中含有的铁离子量达到国家《污水综合排放标准》(GB8978-1996),石墨尾矿是铁离子较好的载体。通过对溶液中铁离子浸出量的分析,推导出石墨尾矿多相Fenton反应可能的反应路径。
With the development of dye industry, the dye wastewater has become one of the important fields in the enrironmental problems. In order to make the dye wastewater have higher degradation and supply an effective treatment method, the Fenton reaction on the degradation of dye wastewater was studied. The Fenton reaction whicn can decompose most organics was an important advaced oxidation technology in water treatment. However, it still has many shortcomings. In order to improve the efficiency of Fenton reaction, improvement was studied on the degradation of malachite green and rhodamine B. The optimum condition and the mechanism of [Fe(Ⅲ)-salen]Cl complex Fenton reaction and the graphite tailing Fenton reaction were investigated.
     The different treatment on malachite green and rhodamine B was compared. The decolorization order of the methods was [Fe(Ⅲ)-salen]Cl complex Fenton reaction> Fe3+/H2O2system> H2O2alone>[Fe(Ⅲ)-salen]Cl complex alone.
     The optimum condition of malachite green degradation in [Fe(Ⅲ)-salen]Cl complex Fenton reaction was that:the concentration of the [Fe(Ⅲ)-salen]Cl complex was35μmol/L, the concentration of H2O2was10mmol/L, the molar ratio of Fe(Ⅲ) to salen ligand was1:10, the initial concentration of malachite green was100mg/L and the reaction temperature was20℃. The decolorization of malachite green under the optimum condition was97.95%. The optimum condition of rhodamine B degradation in [Fe(Ⅲ)-salen]Cl complex Fenton reaction was that:the concentration of the [Fe(Ⅲ)-salen]Cl complex was40μmol/L,the concentration of H2O2was15mmol/L, the molar ratio of Fe(Ⅲ) to salen ligand was1:10, the initial concentration of rhodamine B was100mg/L and the reaction temperature was20℃. The decolorization of rhodamine B under the optimum condition was97.95%.
     The pseudo-first order reaction kinetics in different treatment was compared and they all obeyed pseudo-first order equation. The hydroxyl radical and the Fe(Ⅳ) species were the active oxidation species. The TOC removal rate of malachite grren and rhodamine B in [Fe(Ⅲ)-salen]Cl complex Fenton reaction was54.35%and58.39%. According to the GC-MS analyse, the possible degradation intermediates of malachite green were dimethylform amide, glutaraldehyde,3-(hydroxymethyl) pentanedial,3-(diphenylmethylene) pentanedial,3-(hydroxydiphenylmethyl) pentanedial, formic acid and (2)-pent-2-enedioic acid. The possible degradation intermediates of rhodamine B were ethanediamine, glutaraldehyde,3-(hydroxymethyl) pentanedial,3-(diphenylmethylene) pentanedial,3-(hydroxydiphenylmethyl) pentanedial, formic acid and (2)-pent-2-enedioic acid. The pseudo-activated energy of malachite green and rhodamine B was calculated by the related kinetic constants.
     The GT used in this study was characterized by X-ray diffraction (XRD), Energy dispersive spectrometry (EDS) and Brunauer-Emmett-Teller (BET) method. The mesoporous structure of the GT made it as an absorbent and the encapsulated Fe2O3in GT was able to initiate the Fenton reaction.
     The decolorization in graphite taling Fenton-like reaction was much higher than in graphite tailing adsorption and the hydroxyl peroxide alone. The optimum condition of malachite green degradation in graphite taling Fenton-like reaction was that:the initial concentration of malachite green was100mg/L, the concentration of H2O2and graphite tailing was4g/L and5g/L. The decolorization of malachite green under the optimum condition was99.51%. The optimum condition of rhodamine B degradation in graphite taling Fenton-like reaction was that:the initial concentration of rhodamine B was100mg/L, the concentration of H2O2and graphite tailing was10g/L and50g/L. The decolorization of malachite green under the optimum condition was93.39%.
     According to the mechanism of degradation of malachite green and rhodamine B in graphite tailing Fenton-like process, the graphite has the adsoption and Fenton reaction. The reaction solution has the active oxidation speciey-hydroxyl radical. The TOC remevol rate of Malachite Green and Rhodamine B was60.38%and49.02%. The malachite green and rhodamine B molecules were not mineralized completely and they were oxidized to low melocule organics.
     After the degradation of malachite green and rhodamine B in the graphite tailing Fenton-like process, the iron ion leaching was detected. Depending on the results of Atomic Absorption Spectrophotometer, the concentration of the iron ions in malachite geen and rhodamine B solution was about0.2309mg/L and0.4824mg/L and the release of the iron ions from GT to the solution could be ignored. So it can be concluded that the Fenton oxidation process is mainly due to the heterogeneous effect of the catalyst and not to the leaching of iron ions.The leached iron ions in the solution can be discharged accodingto the standard of the watswater discharge in our country. The possible degradation process was that the encapsulated Fe2O3in GT was the Fenton reaction site of the catalyst. And the heterogeneous Fenton reaction process may be that the malachite green and rhodamine B molecules in the solution contacted with encapsulated Fe2O3in GT, were oxidized first by H2O2. With the movement of malachite green and rhodamine B molecules, other molecules touched the catalysis center again and they are degraded at the first.
引文
[1]黄川,刘元元,罗宇,等.印染工业废水处理的研究现状[J].重庆大学学报(自然科学版),2001,24(6):139-142.
    [2]傅平青,程鸿德.印染废水治理研究现状[J].地质地球化学,2001,29(4):86-91.
    [3]闫金霞,成庆利.印染废水治理技术综述[J].染料与染色,2007,44(2):48-51.
    [4]彭会清,许开.印染废水处理现状与进展[J].四川纺织科技,2003,(2):11-14.
    [5]Allegre C, Moulin P, Maisseu M, et al. Savings and re-use of salts and water present in dye house effluents [J]. Desalination,2004,162(1-3):13-22.
    [6]Lee J W, Choi S P, Thiruvenkatachari R, et al. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes [J]. Dyes and Pigments, 2006,69(3):196-203.
    [7]Carneiro P A, Nogueira R F, Zanoni M V. Homogeneous photodegradation of CI Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation [J]. Dyes and Pigments, 2007,74(1):127-132.
    [8]Marcucci M, Ciardelli G, Matteucci A, et al. Experimental campaigns on textile wastewater for reuse by means of different membrane processes [J]. Desalination,2002,149(1-3):137-143.
    [9]Jumasiah A, Chuah T, Gimbon J, et al. Adsorption of basic dye onto palm kernel shell activated carbon:sorption equilibrium and kinetics studies [J]. Desalination,2005,186(13): 57-64.
    [10]Crini G. Non-conventional low-cost adsorbents for dye removal:A review [J]. Bioresource Technology,2006,97(9):1061-1085.
    [11]Orfao J, Silva A I M, Pereira J C V, et al. Adsorption of a reactive dye on chemically modified activated carbons-Influence of pH [J]. Journal of Colloid and Interface Science,2006,296(2): 480-489.
    [12]周红,林海,丁浩,等.印染废水处理技术的研究现状与展望[J].中国菲金属矿工业导刊,2007,(1):60-62.
    [13]Liu Y, Sun D Z. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes [J]. Journal of Hazardous Materials,2007, 143(12):448-454.
    [14]Slokar Y M, Marechal A M. Methods of decoloration of textile wastewaters [J]. Dyes and Pigments,1998,37(4):335-356.
    [15]Zhang X, Li A M, Jiang Z M, et al. Adsorption of dyes and phenol from water on resin adsorbents:Effect of adsorbate size and pore size distribution [J]. Journal of Hazardous Materials,2006,137(2):1115-1122.
    [16]Ozcan A S, Ozcan A. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite [J]. Journal of Colloid and Interface Science,2004,276(1):39-46.
    [17]Wu F C, Liu B L, Wu K T, et al. A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes [J]. Chemical Engineering Journal,2010,162(1):21-27.
    [18]薛锐,赵美玲.印染废水脱色的研究进展[J].环境科学与管理,2005,30(3):30-33.
    [19]刘华丽.印染废水的生物处理技术[J].环境科学与技术,1996,(1):42-45.
    [20]Park H O, Oh S, Bade R, et al. Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment [J]. Korean Journal of Chemical Engineering,2010,27(3): 893-899.
    [21]方旭,付振强,韩宏大.复合式好氧生物法处理印染废水[J].环境保护科学,2004,30(3):20-23.
    [22]赵立军,栗毅.废水厌氧生物处理技术综述与研究进展[J].环境污染治理技术与设备,2001,2(5):58-66.
    [23]Mondal P K, Ahmad R, Usmani S Q. Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation [J]. Biodegradation,2010,21(6): 1041-1047.
    [24]李庆召,刘军坛,彭伟功.啤酒废水处理技术研究进展[J].工业水处理,2005,25(4):5-8.
    [25]Jonstrup M, Kumar N, Murto M, et al. Sequential anaerobic-aerobic treatment of azo dyes: Decolourisation and amine degradability [J]. Desalination,2011,280(1-3):339-346.
    [26]韩小清,刘强.厌氧—好氧—生物活性炭—纤维球过滤处理印染废水试验研究[J].中国给水排水,1994,10(4):29-31.
    [27]Palma C, Carvajal A, Vasquez C, et al. Wastewater treatment for removal of recalcitrant compounds:a hybrid process for decolorization and biodegradation of dyes [J]. Chinese Journal of Chemical Engineering,2011,19(4):621-625.
    [28]Mahmoodi N M, Arami M, Bahrami H, et al. The effect of pH on the removal of anionic dyes from colored textile wastewater using a biosorbent [J]. Journal of Applied Polymer Science, 2011,120(5):2996-3003.
    [29]Nakagawa K, Namba A, Mukai S R, et al. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes [J]. Water Research,2004, 38(7):1791-1798.
    [30]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-30.
    [31]Fu J E, Wen T, Wang Q, et al. Degradation of active brilliant red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon [J]. Environmental Technology,2010,31 (7):771-779.
    [32]张小璇,叶李艺,沙勇,等.活性炭吸附法处理染料废水[J].厦门大学学报:自然科学版,2005,44(4):542-545.
    [33]施荫锐,唐启凤,赵玉明.椰子壳制活性炭的研究-椰子壳的炭化[J].林产化学与工业,1986,6(2):23-28.
    [34]Namasivayam C, Radhika R, Suba S. Uptake of dyes by a promising locally available agricultural solid waste:coir pith [J]. Waste Management,2001,21(4):381-387.
    [35]Kavitha D, Namasivayam C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon [J]. Bioresource Technology,2007,98(1):14-21.
    [36]Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw [J]. Water Research,2002,36(11):2824-2830.
    [37]魏娟,王晴,姜冰,等.以稻秸(壳)为原料的多孔载体在污水处理中的应用[J].东北农业大学学报,2006,37(1):33-36.
    [38]Gonga R M, Zhong K D, Hu Y, et al. Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw [J]. Journal of Environmental Management,2008,88(4):875-880.
    [39]Batzias F, Sidiras D, Schroeder E, et al. Simulation of dye adsorption on hydrolyzed wheat straw in batch and fixed-bed systems [J]. Chemical Engineering Journal,2009,148(2-3): 459-472.
    [40]Juang R S, Wu F C, Tseng RL. Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2002,201(1-3):191-199.
    [41]Amin NK. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith [J]. Desalination,2008,223(1-3):152-161.
    [42]贺德留,孙晓薇.玉米芯为原料制造颗粒活性炭的研究[J].河南林业科技,2004,24(2):19-19.
    [43]曹青,吕永康,鲍卫仁,等.玉米芯制备高比表面积活性炭的研究[J].林产化学与工业,2005,25(1):66-68.
    [44]Cao Q, Xie K. C, Lv Y K, et al. Process effects on activated carbon with large specific surface area from corn cob [J]. Bioresource Technology,2006,97(1):110-115.
    [45]Vadivelan V, Kumar K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk [J]. Journal of Colloid and Interface Science,2005, 286(1):90-100.
    [46]Chowdhury S, Mishra R, Saha P, et al. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk [J]. Desalination, 2011,265(1-3):159-168.
    [47]Tseng R L, Wu F C, Juang R S. Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons [J]. Carbon,2003,41(3):487-495.
    [48]张立塔,常建民,任学勇,等.落叶松木屑快速热解炭制备活性炭工艺及结构表征[J].东北林业大学学报,2011,39(4):96-98.
    [49]Hameed B H, Din A T M, Ahmad A L. Adsorption of methylene blue onto bamboo-based activated carbon:Kinetics and equilibrium studies [J]. Journal of Hazardous Materials,2007, 141(3):819-825.
    [50]Ahmad A A, Hameed B H. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater [J]. Journal of Hazardous Materials,2010,173(13):487-493.
    [51]Koyuncu I, Topacik D. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures [J]. Separation and Purification Technology,2003, 33(3):283-294.
    [52]Xu X T, Spencer H G. Dye-salt separations by nanofiltration using weak acid polyelectrolyte membranes [J]. Desalination,1997,114(2):129-137.
    [53]卢建杭,刘维屏.印染废水混凝脱色与染料结构及混凝剂种类间的关系[J].工业水处理,1999,19(4):28-30.
    [54]Golob V, Vinder A, Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents [J]. Dyes and Pigments,2005,67(2):93-97.
    [55]Gregory, J.,L. Rossi. Dynamic testing of water treatment coagulants[J]. Water Science & Technology:Water Supply,2001,1(4):65-72.
    [56]方明晖,詹树林,林俊雄,等.活性染料废水的混凝处理研究[J].工业水处理,2007,27(2):26-29.
    [57]Abedi S, Nekouei F. Removal of direct yellow 12 from water samples by cloud point extraction using triton X-100 as nonionic surfactant [J]. E-Journal of Chemistry,2011,8(4): 1588-1595.
    [58]Muthuraman G. Extractive removal of astacryl blue BG and astacryl golden yellow dyes from aqueous solutions by liquid-liquid extraction [J]. Desalination,2011,277(13):308-312.
    [59]Turhan K, Durukan I, Ozturkcan S A, et al. Decolorization of textile basic dye in aqueous solution by ozone [J]. Dyes and Pigments,2012,92(3):897-901.
    [60]龚宜,罗汉金,韦朝海.酸性染料的臭氧降解与中间产物[J].环境化学,2009,28(3):383-386.
    [61]危想平,肖鹏.活性炭-臭氧处理印染废水试验[J].印染,2004,30(20):5-7.
    [62]汪晓军,林德贤,顾晓扬,等.臭氧-曝气生物滤池处理酸性玫瑰红染料废水[J].环境污染治理技术与设备,2006,7(7):43-46.
    [63]Ovejero G, Rodriguez A, Vallet A, et al. Studies in catalytic wet air oxidation as a process to destroy CI Basic Yellow 11 in aqueous stream over platinum catalyst [J]. Coloration Technology,2011,127(1):10-17.
    [64]雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水[J].中国环境科学,1999,19(1):42-46.
    [65]杨少斌,费学宁,张建博.电化学氧化技术在印染废水处理中的应用[J].广东化工,2008,35(2):65-68.
    [66]于秀娟,王辉,闫鹤,等.电化学氧化对罗丹明B脱色的研究[J].重庆环境科学,2003,25(9): 42-44.
    [67]Rodriguez E, Peche R, Merino J M, et al. Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation [J]. Environmental Engineering Science,2007,24(3):363-371.
    [68]Araujo F V D, Yokoyama L, Teixeira L A C. Color removal in reactive dye solutions by UV/H2O2 oxidation [J]. Quimica Nova,2006,29(1):11-14.
    [69]Abbasi M, Asl N R. Sonochemical degradation of Basic Blue 41 dye assisted by nano TiO2 and H2O2 [J]. Journal of Hazardous Materials,2008,153(3):942-947.
    [70]古芳英,邱雁,徐璇,等.亚甲基蓝的CuO/TiO2-H2O2光催化脱色效果及影响因素[J].环境化学,2008,27(3):288-291.
    [71]苏荣军,陆占国,陈平,等Fenton试剂深度处理胃必治制药废水[J].工业用水与废水,2008,39(3):68-71.
    [72]欧丹,吕建伟Fenton法预处理合成制药废水研究[J].湖南有色金属,2009,25(2):49-51.
    [73]Su R J, Wang P, Jiang L M, et al. Study on treatment of acetylspiramycin pharmaceutical wastewater by the photo-Fenton oxidation process [J]. Environment Materials and Environment Management Pts 1-3,2010,113(116):512-515.
    [74]郝火凡,田维平Fenton试剂氧化处理拆弹炸药废水[J].净水技术,2005,24(3):27-29.
    [75]尹娟娟,袁凤英,宋伟,等.光助Fenton试剂处理HMX炸药废水研究[J].火工品,2008(2):20-23.
    [76]Ma X J. Treatment of papermaking tobacco sheet wastewater by Fenton process [J].20093rd International Conference on Bioinformatics and Biomedical Engineering,2009,1-11: 5112-5115.
    [77]Hsieh L L, Kang H J, Shyu H L, et al. Optimal degradation of dye wastewater by ultrasound/Fenton method in the presence of nanoscale iron [J]. Water Science and Technology, 2009,60(5):1295-1301.
    [78]Shao-Lan D, Jing L, Rui W, et al. Dye wastewater treatment:Photocatalysis and the synergies of photocatalytic oxidation with Fenton reagent [J]. Journal of the Society of Leather Technologists and Chemists,2009,93(3):103-107.
    [79]Xu H Y, Prasad M, He X L, et al. Discoloration of Rhodamine B dyeing wastewater by schorl-catalyzed Fenton-like reaction [J]. Science in China Series E-Technological Sciences, 2009,52(10):3054-3060.
    [80]Wang C T, Chou W L, Chung M H, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode [J]. Desalination,2010, 253(13):129-134.
    [81]顾泽平,孙水裕,肖华花Fenton试剂处理选矿废水的试验研究[J].水资源保护,2006,22(4):82-84.
    [82]徐劲,孙水裕,蔡河山,等Fenton试剂处理选矿废水的实验研究[J].环境科学与技术,2006,28(6):9-11.
    [83]赵永红,姜科Fenton试剂去除选矿废水中黄药的试验研究[J].江西理工大学学报,2009,30(5):33-36.
    [84]张晖Fenton法处理垃圾渗滤液的影响因素分析[J].中国给水排水,2002,18(3):14-17.
    [85]赵冰清,陈胜,孙德智Fenton工艺深度处理垃圾渗滤液中难降解有机物[J].哈尔滨工业大学学报,2007,39(8):1285-1288.
    [86]Kochany J, Lipczynska-Kochany E. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation-A comparative study [J]. Journal of Hazardous Materials,2009,166(1):248-254.
    [87]陈于思,黄翔峰.酱油废水处理方法及其研究进展[J].环境科学导刊,2008,27(5):70-74.
    [88]许金花,汪晓军,陈志伟Fenton试剂氧化深度处理食品添加剂废水[J].食品工业科技,2008(9):126-128.
    [89]杨新萍,王世和Fenton试剂处理有机氯农药废水的研究[J].环境污染治理技术与设备,2006,7(6):60-64.
    [90]Romero A, Santos A, Cordero T, et al. Soil remediation by Fenton-like process:Phenol removal and soil organic matter modification [J]. Chemical Engineering Journal,2011,170(1): 36-43.
    [91]Zhou T, Lu X H, Lim T T, et al. Degradation of chlorophenols (CPs) in an ultrasound-irradiated Fenton-like system at ambient circumstance:The QSPR (quantitative structure-property relationship) study [J]. Chemical Engineering Journal,2010,156(2): 347-352.
    [92]Oturan M A, Pimentel M, Oturan N, et al. Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment [J]. Electrochimica Acta,2008,54(2):173-182.
    [93]王永广,何成达.电解-Fenton法处理除草剂废水的研究[J].河海大学学报:自然科学版,2002,30(6):87-90.
    [94]余宗学.利用Fenton试剂预处理间二硝基苯生产废水[J].环境污染与防治,2002,24(5):282-284.
    [95]朱振兴,颜涌捷,亓伟,等.铁炭微电解-Fenton试剂预处理纤维素发酵废水[J].工业用水与废水,2009,40(2):27-30.
    [96]Kitis M, Adams C D, Daigger G T. The effects of Fenton's reagent pretreatment on the biodegradability of nonionic surfactants [J]. Water Research,1999,33(11):2561-2568.
    [97]Lu M C, Lin CJ, Liao C H, et al. Influence of pH on the dewatering of activated sludge by Fenton's reagent [J]. Water Science and Technology,2001,44(10):327-332.
    [98]Yoon J, Lee Y, Kim S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment [J]. Water Science and Technology, 2001,44(5):15-21.
    [99]Rigg T, Taylor W, Weiss J. The rate constant of the reaction between hydrogen peroxide and ferrous ions [J]. Journal of Chemical Physics,1954,22(4):575-577.
    [100]Buxton G V, Greenstock C L, Helman W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals in aqueous-solution [J]. Journal of Physical and Chemical Reference Data,1988,17(2):513-886.
    [101]Laat D, Gallard J H. Catalytic decomposition of hydrogen peroxide by Fe(Ⅲ) in homogeneous aqueous solution:Mechanism and kinetic modeling [J]. Environmental Science & Technology,1999,33(16):2726-2732.
    [102]Bielski B H J, Cabelli D E, Arudi R L, et al. Reactivity of H2O2 radicals in aqueous-solution [J]. Journal of Physical and Chemical Reference Data,1985,14(4):1041-1100.
    [103]Venkatadri R, Peters R W. Chemical oxidation technologies-ultraviolet-light hydrogen-peroxide, Fenton reagent and titanium dioxide-assisted photocatalysis [J]. Hazardous Waste & Hazardous Materials,1993,10(2):107-149.
    [104]Lin S H, Lo C C. Fenton process for treatment of desizing wastewater [J]. Water Research, 1997,31(8):2050-2056.
    [105]Walling C. Fentons Reagent Revisited [J]. Accounts of Chemical Research,1975,8(4): 125-131.
    [106]Arnold S M, Hickey W J, Harris R F. Degradation of atrazine by Fentons reagent-condition optimization and product quantification [J]. Environmental Science & Technology,1995,29(8): 2083-2089.
    [107]Lipczynskakochany E, Sprah G, Harms S. Influence of some groundwater and surface waters constituents on the degradation of 4-Chlorophenol by the Fenton reaction [J]. Chemosphere,1995,30(1):9-20.
    [108]Tang W Z, Tassos S. Oxidation kinetics and mechanisms of trihalomethanes by Fenton's reagent [J]. Water Research,1997,31(5):1117-1125.
    [109]Wang L Y, Han Y Y, Li L F. Degradation of Acid Red 18 by Fenton reagent combined with UV [J]. Asian Journal of Chemistry,2010,22(9):6693-6700.
    [110]李亚峰,陈萍,吕春华,等UV/Fenton光氧化降解活性艳红染料废水的试验研究[J].沈阳建筑大学学报:自然科学版,2007,23(1):97-100.
    [111]Katsumata H, Koike S, Kaneco S, et al. Degradation of Reactive Yellow 86 with photo-Fenton process driven by solar light [J]. Journal of Environmental Sciences-China,2010, 22(9):1455-1461.
    [112]郑怀礼,张古梅,唐鸣放,等.光助Fenton氧化反应降解染料亮绿SF[J].光谱学与光谱分析,2006,26(4):768-771.
    [113]相欣弈,郑怀礼Fenton反应处理染料废水研究进展[J].重庆建筑大学学报,2004,26(4): 126-130.
    [114]陈华军,万琳,席晓晶.太阳光下Fenton试剂降解有机染料的研究[J].洛阳理工学院学报:自然科学版,2010,20(1):8-10.
    [115]Ghoneim M M, Desoky H S, Zidan N M. Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions [J]. Desalination,2011,274(1-3):22-30.
    [116]Garcia-Segura S, Centellas F, Arias C, et al. Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process [J]. Electrochimica Acta,2011,58:303-311.
    [117]Panizza M, Oturan M A. Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode [J]. Electrochimica Acta,2011,56(20):7084-7087.
    [118]刘栓,杨吕英,陈登霞,等.(光)助电-Fenton降解有机染料罗丹明B[J].三峡大学学报:自然科学版,2009,31(6):84-88.
    [119]Liang J, Komarov S, Hayashi N, et al. Recent trends in the decomposition of chlorinated aromatic hydrocarbons by ultrasound irradiation and Fenton's reagent [J]. Journal of Material Cycles and Waste Management,2007,9(1):47-55.
    [120]Lin J G, Ma Y S. Oxidation of 2-chlorophenol in water by ultrasound/Fenton method [J]. Journal of Environmental Engineering-Asce,2000,126(2):130-137.
    [121]Neppolian B, Park J S, Choi H. Effect of Fenton-like oxidation on enhanced oxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation [J]. Ultrasonics Sonochemistry,2004,11(5):273-279.
    [122]Abdelsalam M E, Birkin P R. A study investigating the sonoelectrochemical degradation of an organic compound employing Fenton's reagent [J]. Physical Chemistry Chemical Physics, 2002,4(21):5340-5345.
    [123]Zhao D M, Xu X H, Lei L C, et al. Degradation of 4-chlorophenol solution by synergetic effect of dual-frequency ultrasound with Fenton reagent [J]. Chinese Journal of Chemical Engineering,2005,13(2):204-210.
    [124]徐向荣,王文华Fenton试剂处理酸性染料废水的研究[J].环境导报,1997,(6):23-24.
    [125]Zhang H, Zhang J H, Zhang C Y, et al. Degradation of CI Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation [J]. Ultrasonics Sonochemistry,2009, 16(3):325-330.
    [126]Sun H H, Sun S P, Sun J Y, et al. Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation [J]. Ultrasonics Sonochemistry,2007,14(6):761-766.
    [127]彭晓云,冯流,刘路.超声/Fenton剂氧化耦合处理染料废水[J].北京化工大学学报(自然科学版),2007,34(2):129-134.
    [128]Zheng H L, Yang Y, Tang X, et al. Decoloration and degradation of rhodamine B by microwave-promoted Fenton-like reaction [J]. Spectroscopy and Spectral Analysis,2009, 29(8):2180-2184.
    [129]Zheng H L, Xie L G, Hu P, et al. Decoloration and degradation of Direct Pink 12B by microwave-promoted heterogeneous Fenton-like reaction [J]. Spectroscopy and Spectral Analysis,2010,30(6):1647-1651.
    [130]Zheng H L, Zhang H Q, Sun X N, et al. The catalytic oxidation of malachite green by the microwave-Fenton processes [J]. Water Science and Technology,2010,62(6):1304-1311.
    [131]张会琴,郑怀礼,廖宏头,等.微波促进类Fenton反应催化氧化降解染料吖啶橙[J].工业水处理,2010(8):54-57.
    [132]李婉晴,费学宁,郝亚超,等.微波加强非均相类Fenton法降解高浓度活性艳红的研究[J].中国环境科学学会2009年学术年会论文集,2009,(2):312-319.
    [133]姜远光,刘玉茹,王少坡.Fe3+和Mn2+双金属负载型非均相类Fenton催化剂的制备及性能[J].天津城市建设学院学报,2011,17(2):114-118.
    [134]陈娴,高永,徐旭,等.非均相UV/Fenton反应催化剂的制备及其催化性能研究[J].江苏技术师范学院学报,2011,17(4):42-46.
    [135]Chen Q Q, Wu P X, Dang Z, et al. Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN [J]. Separation and Purification Technology,2010,71(3):315-323.
    [136]Idel-aouad R, Valiente M, Yaacoubi A, et al. Rapid decolourization and mineralization of the azo dye CI Acid Red 14 by heterogeneous Fenton reaction [J]. Journal of Hazardous Materials, 2011,186(1):745-750.
    [137]Feng J Y, Hu X J, Yue P L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst [J]. Water Research,2006,40(4):641-646.
    [138]Daud N K, Hameed B H. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst [J]. Journal of Hazardous Materials,2010,176(1-3):938-944.
    [139]Ramirez J H, Maldonado-Hodar F J, Perez-Cadenas A F, et al. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts [J]. Applied Catalysis B-Environmental,2007,75(3-4):312-323.
    [140]Wang H L, Liang W Z, Zhang Q A, et al. Solar-light-assisted Fenton oxidation of 2,4-dinitrophenol (DNP) using Al2O3-supported Fe(Ⅲ)-5-sulfosalicylic acid (ssal) complex as catalyst [J]. Chemical Engineering Journal,2010,164(1):115-120.
    [141]Zhou T, Li Y Z, Wong F S, et al. Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance [J]. Ultrasonics Sonochemistry,2008,15(5):782-790.
    [142]Silva M R A, Trovo A G, Nogueira R F P. Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH [J]. Journal of Photochemistry and Photobiology a-Chemistry,2007,191(2-3):187-192.
    [143]Jayaseeli A M I, Rajagopal S. [Iron(III)-salen] ion catalyzed H2O2 oxidation of organic sulfides and sulfoxides [J]. Journal of Molecular Catalysis a-Chemical,2009,309(12): 103-110.
    [144]Yang Y, Zhang Y, Hao S J, et al. Tethering of Cu(Ⅱ), Co(Ⅱ) and Fe(Ⅲ) tetrahydro-salen and salen complexes onto amino-functionalized SBA-15:Effects of salen ligand hydrogenation on catalytic performances for aerobic epoxidation of styrene [J]. Chemical Engineering Journal, 2011,171(3):1356-1366.
    [145]程桂林,蒋成君,曾庆斌Salen金属配合物催化氧化环己烷制备环己酮[J].化学工业与工程技术,2008,29(5):20-22.
    [146]Brillas E, Sires I, Oturan M A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry [J]. Chemical Reviews,2009,109(12): 6570-6631.
    [147]Zhou T, Lim T T, Lu X H, et al. Simultaneous degradation of 4CP and EDTA in a heterogeneous Ultrasound/Fenton like system at ambient circumstance [J]. Separation and Purification Technology,2009,68(3):367-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700