用户名: 密码: 验证码:
大白菜成套初级三体的创建及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创建大白菜三体和单体是开展基因染色体定位等细胞分子遗传学研究的基础。大白菜二、四倍体杂交不育,不能利用三倍体获得三体和单体。本研究开展利用同源四倍体大白菜游离小孢子培养获得三体和单体的研究,并对该途径获得三体和单体的细胞学依据进行研究;鉴定出系列三体和部分单体;对其传递率进行了测定,并分析了各非整倍体传递率不同的组织细胞学原因;开展了25S rDNA和5S rDNA在大白菜二倍体和三体染色体上的FISH定位比较研究;并以随体染色体的单体、双体、三体为试材,开展了染色体的附加和减少对光合作用影响的研究。研究结果如下:
     1四倍体大白菜小孢子植株获得研究
     以同源四倍体大白菜为试材,进行了游离小孢子培养的胚胎诱导条件及植株再生研究。结果表明:单核靠边期小孢子是诱导胚胎发生的最佳时期;不同基因型的四倍体大白菜小孢子胚胎发生能力不同,其中9405品系产胚率达81胚/蕾;适于小孢子胚胎发生的培养基为NLN附加15%蔗糖、0.05~0.2mg/L BA和0-0.5mg/L NAA;NLN中添加0.05~0.1mg/mL活性炭可有效提高小孢子胚胎产率及发育同步性;33℃、24h热激处理是诱导小孢子胚胎发生的必要条件;子叶型胚适宜植株再生,在B_5或MS附加1.2%琼脂的培养基上,子叶型胚植株再生可达62%~65%。
     2四倍体大白菜小孢子培养获得三体和单体的细胞学研究
     通过对四倍体大白菜雄配子形成过程观察表明:由于同源四倍体大白菜的花粉母细胞内,Ⅰ、Ⅲ、Ⅳ型配对的同源染色体发生不规则分离,后期Ⅰ、Ⅱ部分染色体落后和向两极分配不均衡,致使后期Ⅱ形成染色体数目变化于15~24的各类细胞,以染色体数为20的细胞为主,其次是19、21、18和22条染色体的细胞;具有21条染色体的小孢子(2x+1)再生植株能力较强,部分具有19或22条染色体的小孢子能再生成植株,其余小孢子不能再生植株;减数分裂的各种异常频率和三体株获得率在品系间存在差异。从四倍体大白菜9405自交系游离小孢子培养获得的植株中,筛选出79个2n+1植株、7个2n+2植株、9个2n-1植株。通过根尖中期染色体核型分析,并结合减数分裂和植株外部形态特征观察,从中鉴定筛选出了一整套初级三体、2个双三体、4个单体。各初级三体、双三体和单体在植株的形态特征上表现出不同程度的差异。四倍体大白菜游离小孢子培养是创建初级三体的快捷简便的有效途径。
     3大白菜初级三体、单体的配子形成及传递率研究
     以大白菜初级三体系、单体为亲本,分别与二倍体正反交,测定结籽率和雌雄配子传递率;并对各三体和单体的减数分裂过程中的染色体行为,雌雄配子发育的组织结构及授粉受精和胚胎发育进行了详细研究。研究结果表明:4个单体结籽率为零,无传递力;大白菜初级三体系除10号三体(Tri-10)传递率为零外,其它三体均能通过n+1雌雄配子传递,但传递率在不同三体间以及雌雄配子间有差异。减数分裂过程观察表明:各三体和单体的减数分裂过程中,从三价体的形成到后期Ⅰ、后期Ⅱ染色体分离等方面都存在异常,这些共同影响n-1或n+1雄配子的传递率。雄配子发育的组织结构观察表明:2号、5号、7号、9号三体的雄配子发育过程与二倍体基本相似;3号、5号、10号单体和4号三体、10号三体的雄配子发育过程中,绒毡层细胞的异常普遍存在,而且均延迟解体,小孢子都出现了严重的败育现象,最终形成大量的败育花粉,是影响这些非整倍体雄配子传递率的主要因素,另外,花药维管组织发育异常和药室合并等异常也是造成其花粉败育的原因之一。胚胎学研究表明:胚囊败育是Tri-10结籽率为零,雌配子没有传递率的主要原因;胚珠受精率低是Tri-6的n+1雌配子传递率低的主要原因:幼胚败育率高是Tri-3和Tri-9的n+1雌配子传递率低的主要原因。以上研究结果对这些珍贵材料的繁殖和保存,利用其进行遗传分析,开展基因定位、分子细胞遗传学等研究都有重要参考价值。
     4 25S和5S rDNA在大白菜二倍体和三体染色体上的FISH定位
     为了确定rDNA在中国大白菜基因组中的位点数目和分布位置,并建立识别大白菜不同染色体的特异标记,在建立大白菜FISH技术体系基础上,对25S rDNA和5S rDNA在大白菜二倍体和不同三体中期染色体上进行了FISH定位研究。结果表明,(1)通过对FISH的相关技术参数的研究,建立了大白菜染色体制备和制片预处理、探针杂交、杂交后洗脱以及信号检测的技术体系。(2)25S rDNA在二倍体和不同三体(Tri-3除外)的中期染色体上,均在1号、2号、3号、4号染色体的长臂和10号染色体的随体上检出了杂交信号;但杂交信号在不同三体同一编号染色体上检出的位置并不完全相同,不同染色体的荧光信号强度也有变化,最弱的信号出现在1号染色体,最强的信号出现在10号染色体的随体。(3)5SrDNA在二倍体和3个三体的中期染色体上检出的杂交信号均位于2号染色体的长臂和9号、10号染色体的短臂,检出的信号个数分别为6个(二倍体、Tri-3)和7个(Tri-2、Tri-9)。通过两类rDNA的FISH定位,为大白菜1-4号、9号和
     10号染色体提供了准确的识别标记。
     5大白菜随体染色体的单体、双体、三体的光合生理特性研究
     以大白菜随体单体、三体和二倍体为试材,在自然条件下,对生殖生长期的功能叶的净光合速率、光合速率日变化、叶绿素含量、希尔反应活性、Rubisco活性、可溶性糖含量及气孔密度等生理生化指标进行了测定。结果表明:当光照强度低于750μmol·m~(-2)·s~(-1)时,随体染色体的减少或附加对大白菜的光合速率有正效应,但高于900μmol·m~(-2)·s~(-1)有负效应;随体三体和二倍体净光合速率日变化均呈典型的双峰曲线,有明显的“午休”现象,随体单体“午休”现象不明显:随体染色体的减少或附加对叶绿素含量有正效应,对叶绿素a/b的比值有负效应;随体染色体的减少或附加对希尔反应和Rubisco活性均有负效应;随体染色体的减少或附加对可溶性糖含量有负效应;希尔反应活性和Rubisco活性的降低是引起随体单体、三体光合速率降低的直接原因。本研究对了解大白菜随体染色体的功能和开展染色体工程育种有重要参考价值。
In Chinese cabbage,development of trisomics and monosomics provides a useful cytogenetic tool to associate genes and molecular markers with their respective chromosomes.It is very difficult to obtain trisomics and monosomics using triploid,because the crossed of diploid and tetraploid Chinese cabbage could not obtain triploid.In the present study we applied the isolated microspore culture of autotetraploid Chinese cabbage to identify trisomics and monosomics,explore the cytological basis of this approach.A complete set of trisomics and some monosomics were identified,and their gamete transmission rate was observed.The tissue cytological cause differentiated gamete transmission rates among various aneuploids were further discussed.Fluorescene in Situ Hybridization(FISH) technology was used to detect the positions of 25S rDNA and 5S rDNA on chromosome of Chinese cabbage diploid and trisomics.Furthermore,the monosomic,disomic and trisomic of satellite chromosome were used to examine the effect of addition and reduction of chromosome on photosynthesis.The research results are listed as follows:
     1 Plant Regeneration from Isolated Microspore Culture of Autotetraploid Chinese Cabbage(Brassica campestris ssp.pekinensis)
     Autotetraploid Chinese cabbage was used to study microspores culture response and plant regeneration.The results showed that the late uninucleate stage was the best period to induce embryos.Embryogenesis was related to different genotypes,of which 9405 line was the highest yield with 81 embryos per bud.Medium NLN supplemented with 15%sucrose,BA 0.05-0.2mg/L and NAA 0-0.5mg/L induced high frequency embryogenesis,which is suggested a basic medium for microspore culture.And addition of 0.05-0.1g/L activated charcoal to microspore suspension had significant effect upon the yield and developmental uniform of embryos and percentage of cotyledary embryos.Furthermore,the optimal response was obtained at 33℃for 24h at initial culture period,which the frequency of embryogenesis was the highest. Cotyledary embryos had a higher rate of plant regeneration,reaching 62%-65%when embryos germination was conducted on B_5 or MS medium with 1.2%agar.
     2 Cytological Research on Trisomics and Monosomies Obtained by Microspore Culture in Autotetraploid Chinese Cabbage
     The observation of male gametophyte formation indicated that the chromosome pairing in PMC forms at diakinesis wereⅠ、Ⅱ、Ⅲ、Ⅳ.The irregular separation ofⅠ、Ⅲ、Ⅳ, straggling chromosomes at metaphaseⅠ,resulted in the chromosome number of PMC at anaphaseⅡwere varied from 15-24,the type with 20 chromosomes was the most,and then they were 19 and 21 chromosomes.The plant regeneration rate of microspore(2x+1) with 21 chromosomes was similar to that of the normal microspore(2x) with 20 chromosomes. The irregular behaviour of chromosome and developmental rate of trisomics were different among the strains.Seventy nine aneuploid plants with one extra chromosome(2x+1),7 with two extra chromosome(2x+2) and 9 with loss one chromosome(2x-1) were obtained from the isolated microspore cultured plantlets of the tetraploid Chinese cabbage line 9405. Through karyotype analysis of the root tip metaphase chromosome,meiosis observation and plant characters investigation,a complete set of primary trisomics(Tri-1,Tri-2,Tri-3, Tri-4,Tri-5,Tri-6,Tri-7,Tri-8,Tri-9 and Tri-10),two double trisomics(Double tri-3,5 and Double tri-3,6) and four monosomics(Mono-3,Mono-5,Mono-6,Mono-10) were identified, each of which had some unique characters on plant morphological traits.Thus,the isolated microspore culture of tetraploid is a convenient and effective way to select trisomics in Chinese cabbage.
     3 Gamete Formation and Transmission Rate of a Set of Primary Trisomics and Several Monosomies in Chinese Cabbage
     A set of primary trisomics and several monosomes in Chinese cabbage was used as parents to make reciprocal crosses with diploid,the seeding set and the male and female gamete transmission rate were investigated,and chromosome behaviours of each trisomic and monosomic during meiotic divisions,gamete development structure,pollination, fertilization and embryo development were systematically studied.These results indicated that the seeding set of four monosomes were zero without transmissibility,n+1 gametes of the Chinese cabbage trisomics transmitted through female and male parents,except for Tri-10,with different transmission rate among various trisomics.The main influencing factors of n+1 or n-1 male gamete transmission rate were the trivalent formation and abnormal chromosome segregation at anaphaseⅠandⅡduring meiotic divisions of each trisomics and monosome.The observation of male gamete development tissue anatomy showed:male gamete development of Tri-2、Tri-5、Tri-7 and Tri-9 was similar to diploid, whereas abnormal tapetum cells were commonly found in Mono-3,Mono-5,Mono-10, Tri-4 and Tri-10 with delayed degeneration of the tapetum cells.It was the main factor influenced the transmission rate of these aneuploid,thereafter microspores were serious abortion generally,and finally produced vast abortive pollen.Additionally abnormal vascular tissue of the anther and the anther chambers unified also caused pollen abortion. Embryological observation results showed that the embryo sac abortion was main factor that led to the Tri-10 seeding set with zero and female gametes without transmission rate. However,the low transmission rate of Tri-6 through n+1 female gametes was due to the low fertilization rate of the ovule,and the main factor of the low transmission rate of Tri-3 and Tri-9 through n+1 female gametes was young embryo abortion.The experimental results described above were a valuable reference for the rarity material propagation and preservation and for carrying out gene orientation and molecular and cytogenetical study using aneuploid of Chinese cabbage.
     4 FISH Mapping of 25S rDNA and 5S rDNA in Chromosome of Chinese Cabbage Diploid and Trisomics
     In order to clarify the number and location of rDNA sites in Chinese cabbage genome, and identify special molecular markers related to different chromosomes,fluorescene in situ hybridization(FISH) technique system was established.25S rDNA and 5S rDNA were further mapped in the mitotic metaphase chromosomes of Chinese cabbage diploid and different trisomics based on this method.The results were showed that:(1) With the study of correlative parameters during FISH,the technique system on Chinese cabbage was established,including chromosome preparation,chromosome pre-treatment,probe hybridization,washing and signal surveying.(2) The hybridization signals of 25S rDNA were observed in metaphase chromosomes of Chinese cabbage diploid and trisomics (except for Tri-3),which were located on the long arms of chromosomes1-4 and the satellite of chromosome 10.But the hybridization signal position was different in the same chromosome of each trisomics,and the hybridization signal intension was various in different chromosomes,the weakest signal appeared on chromosome 1 and the strongest signal appeared on the satellite of chromosome 10.(3) The hybridization signals of 5S rDNA were observed in the metaphase chromosomes of Chinese cabbage diploid and three trisomics,in which they were located on the long arms of chromosome 2 and the short arms of chromosome 9 and 10.The number of hybridization signals was 6 for diploid,7 for Tri-2, 6 for Tri-3,and 7 for Tri-9 respectively.This study provides accurate identified marks for chromosome 1-4,9 and 10 of Chinese cabbage by two rDNA-FISH location.
     5 Photosynthetic characteristics of satellite chromosome monosome,trisome and diploid in Chinese cabbage
     In order to research the effect of addition or reduction of satellite chromosome on the photosynthetic characteristics of Chinese cabbage,the satellite chromosome monosome, diploid and trisome of Chinese cabbage were used to examine the photosynthetic rate(Pn), diurnal variation and chlorophyll content,Hill reaction activity,Rubisco activity so on.The result showed that the addition or reduction of sat-chromosome had a negative effect on the photosynthetic rate(Pn),when PAR was over 900μmol·m~(-2).s~(-1).The curves of diurnal change of Pn of trisome and diploid were quite similar,displaying typical two peaks and conspicuous "noon sleep".The addition or reduction of sat-chromosome had a positive effect on chlorophyll content and a negative effect on chla/b and boosted the degree of thylakoid stacking.The decline of Hill reaction activity and Rubisco activity were direct factors resulting in low photosynthetic rate of sat-monosome and sat-trisome.These results could offer valuable information to realize the function of sat-chromosome of Chinese cabbage and high-photosynthetic efficiency breeding using the chromosome engineering.
引文
[1]Reyes B G D,Khush G S,Brar D S.Chromosomal location of eight isozyme loci in rice using primary trisomics and monosomic alien addition lines[J].Journal of Heredity,1998,89(2):164-168
    [2]Amy F,Gernot G P,Steven D T.Molecular mapping of the centromeres of tomato chromosomes 7and 9[J].Mol Gen Genet,1996,250:295-304
    [3]Zou J J,Singh R J,Lee J,et al.Asiignment of molecular linkage groups to soybean chromosomes by primary trisomics[J].Theoretical and Applied Genetics,2003,107(4):745-750
    [4]Satovic Z,Torres A M,Cubero J I.Estimation of linkage in trisomic inheritance[J].Theoretical and Applied Genetics,1998,96:513-518
    [5]Miura H,Sugawara A.Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm[J].Theoretical and Applied Genetics,1996,93(7):1066-1077
    [6]Xu S J,Singh R J,Kollipapa K P,Hymowitz T.Primary trisomics in soybean:Origin,identifi cation,breeding behavior,and use in linkage mapping[J].Crop Science,2000,40(6):1543-1551
    [7]Auger D L,Birchler J A.Maize tertiary trisomic stocks derived from B-A translocation[J].Journal of Heredity,2002,93(1)-42-47
    [8]Cabreral A,Ramirez M C,Martin A.Application of C-banding and fluorescence in situ hybridization for the identification of the trisomics of Hordeum chilense[J].Euphytica,1999,109:123-129
    [9]Benavente E,Sybenga J.The relation between pairing preference and chiasma frequency in tetrasomics of rye[J].Genome,2004,47(1):122-131
    [10]Dong Y J,Tsuzuki E J,Terao H.Trisomic genetic analysis of aroma in three Japanese native rice varieties(Oryza sativa L.)[J].Euphytica,2001,117:191-196
    [11]郭金英,申书兴,陈雪平,等.十字花科蔬菜游离小孢子培养研究进展[J].河北农业大学学报,2002,25[5]:122-124
    [12]姜凤英,冯辉,李娜,等.甘蓝类植物游离小孢子培炎研究进展[J].辽宁农业科学,2006(5):28-30
    [13]曹丽娟,栾非时,李锡香.植物游离小孢子培养的研究进展[J].东北农业大学学报,2005,36(5):660-662
    [14]杨立勇,刘平武,杨光圣.小孢子培养技术纯化与选育Pol TCMS不育两用系[J].农业生物技 术学报,2007,15(2):301-305
    [15]严准,田志宏,孟金陵.甘蓝游离小孢子培养初步研究[J].华中农业大学学报,1999,18(1):5-7
    [16]张德双,曹鸣庆,秦智伟.绿菜花游离小孢子培养、胚胎发生利植株再生[J].华北农学报,1998,13(3):102-106
    [17]顾宏辉,朱丹华,杨加付,等.小孢子培养获得松花型DH再生植株[J].中国油料作物学报,2006,28(2):115-118
    [18]刘凡,莫东发,姚磊,等.遗传背景及活性炭对白菜小孢子胚胎发生能力的影响[J].农业生物技术学报,2001,9(3):297-300
    [19]Ajjsaka H,Kuginuki Y,H da KShiratori,et al.Mapping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L.Syn campestris L.using DNA polymorphism[J].Breeding Science,1999,49:187-197
    [20]Truco M J,Quiros CF.Struture and organization of the B genomebased on a linkage map in Brassica nigra[J].Theoretical and Applied Genetics,1994,89:590-598
    [21]Cloutler S.,Cappadocia M.,Landry BS.Study of microsporeculture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore derived populations[J].Theoretical and Applied Genetics.1995,91:841-848
    [22]张凤兰,高田义人.甘蓝型油菜小孢子培养胚发生能力的遗传分析[J].华北农学报,2001,16(1):27-32
    [23]刘泽,周永明,石淑稳,等.甘蓝型油菜离体小孢子胚胎发生能力的遗传分析[J].作物学报,2000,26(1):104-109
    [24]Zhang FL,Takahata Y.Inheritance of microspore embryogenic ability in Brassica crops[J].Theoretical and Applied Genetics,2001,103:254 -258
    [25]李恂,官春云,陈社元,等.油菜小孢子培养和双单倍体育种研究Ⅱ.影响甘蓝型油菜和芥菜型油菜种间杂种胚产量的因素[J].作物学报,2003,29(5):744-749
    [26]周永明,Scarth R.甘蓝型油菜和白菜型油菜种间杂种的小袍子培养[J].植物学报,1995,37(11):848-855
    [27]余凤群,刘后利.供体材料和培养基成份对甘蓝型油菜小孢子胚状体产量的影响[J].华中农业大学学报,1995,14(4):327-332
    [28]宋来强,贺兴文,邹晓芬,等.甘蓝型油菜小孢子胚状体诱导的主要影响因素研究[J].江西农业学报,1998,10(2):66-69
    [29]张凤兰,钉贯靖久,吉川宏昭.环境条件对大白菜小孢子培养的影响[J].华北农学报,1994,9(1):95-100
    [30]申书兴,梁会芬,张成合,等.提高大白菜小孢子胚胎发生及植株获得率的几个因素研究[J].河 北农业大学学报,1999,22(4):65-68
    [31]Turling N,Chay P M.The influence of donor plant geno-type and environment on priduction of multicellular microspore in cultured anthers of Brassica naus ssp oleifera[J].Annals of Botany,London,1984,54:689-693
    [32]Ockendon D J.Anther culture in brussels sprouts(Brassica oleracea var,gemmifera ) I.Embryo yields and plant regeneration[J].Annals of Applied Biology,1984,105:285-291
    [33]Leluma,Bollon H.Happloid prodction from anther cultures of Brassica oleracea L.var.capuata and var.gemmifera[J].Acaid Science,Paris,1986,300:71-76
    [34]Gland A.Genetic and exogenous factors affecting embrygrnesis in isolated microspore cultures of Brassica napus[J].Plant Physiology,1988,132:613-617
    [35]Polsoni L,Kott L S,Berersdorf W D.Large-scale microspore culture technique for mutation -selection studies in Brassica napus[J].Canadian Journal of Botany,1988,66[8]:1681 - 1685
    [36]杨清,曹鸣庆.通过花药漂浮培养提高花椰菜小孢子胚胎发生率[J].华北农学报,1991,6(3):65-69
    [37]Duijs J G,Voorrops R E,Visser D L,et al.Microspore culture is successful in most types of Brassica oleracea L.[J].Euphytica,1992,60:45-55
    [38]栗根义,高睦枪,赵秀山.大白菜游离小孢子培养[J].园艺学报,1993,20(2):167-170
    [39]陆瑞菊,王亦菲,孙月芳,等.提高青花菜游离小孢子培养反应的研究[J].上海农业学报,2006,22(2):1-4
    [40]周伟军,唐桂香,张国庆.甘蓝型油菜小孢子秋水仙碱处理提高双倍体频率研究[J].中国农业科学,2002,35(4):410-414
    [41]Cao M Q,Li Y,Liu F,et al.Appllication of anther culture and isolated microspore culture to vegetable crop improvement[J].Acta Horticulturae,1995,392:27-38
    [42]Gu H H,Zhou W J,Hagberg R High frequency spontaneous production of double haploid plants in microspore cultures of Brassica rapa ssp.Chinese[J].Euphytica,2003,134:239-245
    [43]Sato S,Katoh N,Iwai S,et al.Frequency of spontaneous ployploidization of embryos regenerated from anthers or microspores of Brassica rapa var.pekinensis L.and Brassica oleracea var.capitata L.[J]Breeding Science,2005,55:99-102
    [44]李菲,张淑江,张时蕃,等.大白菜游离小孢子培养胚胎发生中的加倍机制[J].园艺学报,2006.33(5):974-978
    [45]张凤兰,钉贯靖久.大白菜小孢子植株自然加倍率的探讨[J].北京农业科学,1993,11(2):23-25
    [46]Zhou W J,Hagberg P,Tang G X.Increasing embryogenesis and doubling efficiency by immeddiate colchicine of isolanted microspores in spring Brassica napus[J].Euphytica,2002,128:27-34
    [47]石淑稳,周永明,吴江生.秋水仙素处理油菜离体小孢子的染色体加倍效应[J].华中农业大学学报,2002,21(4):329-333
    [48]Ahamd I,Pay J P,Mac Donald M V,et al.Haploid culture and UV mutagenesis in rapid-cucling Brassica napus for the generation of resistance to cholsulfuron and Alternaria brassicala[J].Annals of Botany,1991,67:521-525
    [49]许玲,张国庆,顾宏辉,等.利用小孢子胚离体培养筛选抗除草剂的油菜[J].农业生物技术学报,2005,13(4):411-415
    [50]曹鸣庆,刘凡.芸薹属(Brassica)蔬菜游离小孢子培养研究进展[J].园艺学年评,1996,2:63-90
    [51]Huang B.Genetic manipulation of microspores and microspore-derived embryos[J].In Vitro Cellular & Developmental Biology-Plant,1992,28:53-58
    [52]Neuhaus G,Spangenberg G,Scheid OM,et al.Trangenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embyoids[J].Theoretical Applied Genetics,1987,75(1):30-36
    [53]Huang B,Bird S,Kemble R.Effect of culture density,conditioned medium and feeder culture on microspore embryogenesis in Brassica napus L.cv.Topas[J].Plant Cell Reports,1990,8:594-597
    [1]Reyes B G D,Khush G S,Brar D S.Chromosomal location of eight isozyme loci in rice using primary trisomics and monosomic alien addition lines[J].Journal of Heredity,1998,89(2):164-168
    [2]Fobes J F.Trisomic analysis of isozymic loci in tomato species:segregation and dosage effects[J].Biochemical Genetics,1980,18(3/4):401-421
    [3]Kun-sheng WU,Jean Christoph Glaszamann,Gurdev S.Khush.Chromosomal locations of ten isozym loci in rice(Oryza sativa L.) through trisomics analysis[J].Biochemical Genetics,1988,26(3/4):303-320
    [4]Papp I,Lglesias V A,Moscome E.A,et al.Structural in stability of a tansgene locus in tobacco is associated with aneuplody[J].The Plant Journal,1996,10(3):469-478
    [5]Khush C S,Singh R J,Sur S.C,et al.Primary trisomics of rice:Origin,morpholoy,cytology and use in linkage mapping[J].Genetics,1984,107:141-163
    [6]Nobuo Iwata,Takeshi Omura.Studies on the trisimics in Rice plant(Oryza sativa L.) Ⅲ.Relation between Trisomics and Genetic Linkage Groups[J].The Japanese Journal of Breeding,1975,25(6):363-368
    [7]Zou J J,Singh R J,Lee J,et al.Asiignment of molecular linkage groups to soybean chromosomes by primary trisomics[J].Theoretical and Applied Genetics,2003,107(4):745-750
    [8]Yong N D,Miller J C,Tanksley S D.Rapid chromo- somal assignment of multiple genomic clones in tomato using primary trisomics[J].Nueleic Acids Research,1987,15(22):9339-9348
    [9]Suyama,Y,Mukai Y,Kondon T.Assignment of RFLP linkage groups to their respective chromosome in aneuploids of sugi(Crytomeria japoica)[J].Theoretical and Applied Genetics,1996,92:292-296
    [10]Schondelmaier J,Jung C.Chromosomal assignment of the nine linkage groups of sugar beet(Beta vulgaris L.) using primary trisomics[J].Theoretical and Applied Genetics,1997,95:590-596
    [11]Wagenvoort,M.Spontaneous structural rearrangements in Solarium phurwjajuz.et al Buk.2.Meiotic behaviour and identification of interchange chromosomes using primary trisomics[J].Genome,1995,38:140-147
    [12]Miura H,Sugawara A.Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm[J].Theoretical and Applied Genetics,1996,93(7):1066-1077
    [13]张为群,邬信康,宋宗利,等.大麦平衡三级三体的细胞遗传研究[J].吉林农业大学学报,1990,12(4):1-5
    [14]Ramanugam.Cytogenetical studies in the OryzaeⅡ.cytogenetical behaviour of an autotriploid in rice(Oryza sativa L.)[J].Journal of Genetics,1937,35:183-221
    [15]Blackslee A F,Avery B T.Mutations in jimson weed[J].Journal of Heredity,1987,74:346-360
    [16]Goodspeed T H,Pavery.Trisomic and other types in Nicotiana sylvestris[J],Journal of Genetics,1939,38:381-458
    [17]黎中明,林文君编著.细胞遗传学[M].四川大学出版社,1988.
    [18]胡保民,张天真,潘家驹.陆地棉三体的诱发、鉴定、研究和利用Ⅰ.5个三体的起源、鉴定及其形态[J].作物学报,1996,22(2):147-151
    [19]胡保民,张天真,潘家驹.陆地棉三体的诱发、鉴定、研究和利用Ⅱ.额外染色体的传递及四体的分离[J].作物学报,1996,22(5):283-287
    [20]Wagenvoort M,W Lange.The production of aneuploids in Solanum tuberosum 1.Group Tuberosum (the common potato)[J].Euphytica,1975,24:731-741
    [21]Chen B Y,V Simonsen,C Lanner Herrera,et al.A Brassica campes-tris alboglabra addition line and its use for gene mapping,inter- genomic gene transfer and generation of trisomics[J].Theoretical and Applied Genetics,1992,84:592-594
    [22]Khush G S.Cytogenetics of aneuploids[M].Academic Press,USA,1973
    [23]Ashraf M,M J Dasett.Five primary trisomics from translocation heterozygote prognies in common bean,Phaseolus vulgaris L.[J].Theoretical and Applied Genetics,1987,74:346-360
    [24]Rick C M,D W Barton.Cytological and genetical identification of the primary trisomics of the tomato[J].Genetics,1954,39:640-666
    [25]Mcclintock B.Chromosome morphology of zea mays[J].Science,1929,69:629-630
    [26]张廷壁,朱桓,舒理慧等.中国籼稻品种非整倍体的研究-植物形态学部分[J].遗传学报,1987,14(4):255-261
    [27]Hu G H.Studies on the development of twelve types of trisomics in rice with reference to genetic study and breeding program[J].Journal of Agricultural Association China(N.S.),1968,63:53-71
    [28]Karibasappa B K.An auto-triploid of rice and its progeny[J].Current Science.,1961,30:432-433
    [29]Katayama T.Study on the progenies of autotriploid and asynaptic rice plants[J].Japanese Journal of Breeding,1963,13:83-87
    [30]Sen S K.Cytogenetics of trisomics in rice[J].Cytologia(Tokyo),1965,30:229-238
    [31]Watanabe Y,Koga Y.Cytogenetics studies on rice and its wild relatives.Ⅱ.Genetic and cytogenetic studies on the trisomic plants of rice,Oryza sativa L.Bull.Natl.Inst.Agric.Sci.Ser.D.,1975,26:92-138
    [32]Yunoki T,Masuyana Y.Investigations on the later generations of autotriploid rice plants[J].Sci.Bull. Fac.Agr.Kyushu Univ.,1945,11:182-216
    [33]郭德栋,李山源,白庆武等.糖甜菜三体系列的建立与鉴定初报[J].遗传学报,1996,13(1):27-34
    [34]Tsuchiga T.Cytogenetic studies of trisomics in barley[J].Japanese Journal Botany,1960,17:177-213
    [35]Hill C B,Tang K,Williams P H.Development of primary trisomics of rapid-cycling Brassica campestris[J].Eucarpia Cruciferae News.,1986,11:30
    [36]Tang K,Hill C B,Williams P H.Development of trisomics of rapid-cycling Brassica rapa[J].Eucarpla Cruciferae Newsletter,1998,13:60-61
    [37]王润奇,高俊华,王志兴,等.谷子三体系列的建立[J].植物学报,1994,36(9):690-695
    [38]程祝宽,李欣,于恒秀,等.一套新的籼稻初级三体的选育和细胞学鉴定[J].遗传学报,1996,23(5):365-371
    [39]褚启人,张承妹,郑祖玲.水稻四倍体花粉植株的花药培养及其再生植株的染色体变异[J].植物学通报,1985,3(6):40-43
    [40]刘宗贤,秦瑞珍.四倍体水稻花药培养筛选初级三体的研究[J].植物学报,1995,37(2):125-133
    [41]#12
    [42]秦瑞珍,宋文昌,郭秀平.同源四倍体水稻花药培养在育种中的应用[J].中国农业科学,1993,25(1):6-13
    [43]刘宗贤,秦瑞珍.四倍体水稻花药培养筛选初级三体的细胞学依据[J].中国农业科学,1995,28(6):1-8
    [44]Nobuo Iwata,Takeshi Omura,Masahiro Nakagahra.Studies on the trisomics in rice plants(Oryza sativa L.)I.Morphologcal classification of trisomics[J].Japanese Journal of Breeding,1970,20(4):230-236
    [45]Sharstry S N S,Ranga Rao D K,Misra R N,et al.Pachytene analysis in Oryza.I.Chromosome morphology in Oryza sativa L.India[J].Journal of Genetics and Plant Breeding,1960,20:15-21
    [46]Kurata N,Iwata N,Omura,T.Karyotype analysis in rice Ⅱ.Identification of extra chromosome in trisomic plants and banding structure on some chromosomes[J].Japanese Journal of Genetics,1981,56:41-50
    [47]Jun-zhi Wei,Campbell W F,Scoles G J,et al.Cytological identification of some trisomics of Russian wildrye(Psathyrostachys juncea)[J].Genome,1995,38:1271 -1278
    [48]Justus Imanywoha,Kevin B Jensen,David hole.Production and identification of primary trisomics in diploid Agropyron cristatum(crested wheatgrass)[J].Genome,1994,37:469-476
    [49]姚青,宋运淳,刘立华.粳稻三体的染色体G-带的研究[J].遗传学报,1993,20(3):229-234
    [50]姚青,宋运淳,刘立华.水稻染色体G-带的研究[J].遗传学报,1990,17(4):301-307
    [51]宋运淳,刘立华.玉米染色体G-带带型的研究[J].遗传学报,1990,17(4):282-288
    [52]梁国鲁,李晓林,康厚生.茶树染色体高分辨率G带带型研究[J].遗传学报,1990,17(2):94-97
    [53]李洵,官春云,李少骞等.新疆野生油菜细胞遗传学研究,Ⅱ.染色体的形态特征,过氧化物同功酶和mTDNA分析[J].遗传学报,1995,22(6):470-477
    [54]郭旺珍,易成新,唐灿明等.陆地棉三体的诱发、鉴定、研究和利用Ⅳ.第19条染色体的发现及鉴定[J].作物学报,1999,25(2):145-149
    [55]张旭,黄志仁,仲裕泉.栽培大麦初级三体的形态和细胞学鉴定[J].江苏农业学报,1999,15(1):59-61
    [56]Gwyn J,Palmer R G,Sandnage K.Morphological discrimination among some aneuploids in soybean(Glycine max(L) Merr.) I.Trisomics[J].Can.J.Genet.Cytol.1985,27:608-612
    [57]Alice K Vari,Bhowol J G.Studies on the trisomics of Penniseturn americaum(L.) leeke:morphological and cytological behavior of primary trisomics[J].Cytologia,1986,51:679-692
    [58]Carlson P S.Locating genetic loci with aneuploids[J].Gen Genet,1972,114:273
    [59]Smithh H H,Conklin M E.Effects of gene dosage on perioxidase isozyme in Datura stramonium trisomics[A].MC L(ed).Ispzymes[C].New York Academic Press,1975
    [60]Mielsen G,Frydenberg O.Chromosome localization of the esterase loci Est-1 and Est-2 in barley by means of trisomics[J].Hereditas,1971,67:152
    [61]Jonfobes F.Trisomic analysis of isozymic loci in tomato species:segregation and dosage effect[J].Biochemical Genetics,1980,18(314):401-421
    [62]Schondelmaier J,Jung C.Chromosomal assignment of the nine linkage groups of sugar beet(Beta vnlgaris L.) using primary trisomics[J].Theoretical and Applied Genetics,1997,95:590-596
    [63]Young M D,Miller J C.Rapid chromosomal assignment of multiple genetic clones in tomato using primary trisomicl[J].Nucleic Acids Research,1987,15(22):9339-9348
    [64]Mccouch S R,Kochert G.Molecular mapping of rice chromosomes[J].Theoretical and Applied Genetics,1988(76):815-829
    [65]Ideta O.Assignment of rice RFLP clones to their respective chromosomes by using gene dosage effect in hybrid primary trisomics[J].Japanese Journal of Breeding.1990,40(1):466-467
    [66]Yu I H,Hhush G S.Assignment of RFLP linkage groups to rice chromosomes using primary trisomics[J].Rice Genet.News Letter,1994,11:149-155
    [67]Singh K,Ishh T,Parce A,et al.Centromere mapping and orientation of the molecular linkage map of rice[J].Proceedings National Academy Sciences.USA,1996,93:6163-6168
    [68]Harushima Y.A high-density rice genetic linkage map with 2275 markers using a single F2 popular Iine[J]. Genetics, 1998, 148:479-494
    [69]Cheng Z K, Yu H X. Cytological identification of an isotetrasomic in rice and its application to centromere mapping[J]. Cell Research, 1997, 7:31-38
    [70]Robert H Devlin David, Holm G and Thomas A Grigliatti. The influence of whole-arm trisomy on gene expression in prosophila[J] .Genetics, 1988, 118:87-101
    [71]Margit Kneidl, Yoshiro Shibasaki and Dymitr Komitowski. Trisomy 8 and urogenital malformation in the ACI-rat[J].Hereditas, 1995, 123:97-101
    [72]Nam-soo kim, Kuspira J. Genetic and cytogenetic analyses of the A genome of Triticum monococum: VII. Telotrisomics and a ditelotetrasomic[J]. Genome, 1992, 35:849-854
    [73]Mclz G, Schlegel R. Identification of seven Telotrisomics of Rye (Secale cereale L.) [J]. Euphytica, 1985,34:361-366
    [1]Doyle G G.Aneuploidy and inbreeding depression in random mating and self-fertilizing autotetraploid population[J].Theoretical and Applied Genetics,1986,72:799-806
    [2]张玉玲,李德森,潘卫华.小麦花培后代产生非整倍体的研究[J].遗传学报,1988,15(4):260-264
    [3]Sears E R.The aneuploids of common wheat[M],1954,572:1-58
    [4]薛秀庄,吉万全,王秋英.遗传背景对小麦染色体缺失效应的研究[J].西北大学学报,1995,23(6):]7-22
    [5]穆素梅,钟冠昌.利用蓝粒单体小麦选育稳定缺体小麦的研究[J].生态农业研究,1994,2(3):69-72
    [6]孙荣锦,杨之刚.小麦双单体的发现和研究[J].遗传,1994,16(6):24-26
    [7]杨淑琴,刘媒杰,李冬.普通小麦单体n-1遗传配子传递率的研究[J].宁夏农林科技,1997,5:13-14
    [8]贾继增,丁寿康,李同华,等.小麦F_1单体标记性状的研究[J].作物学报,1991,17(2):157-160
    [9]张天真,潘家驹.陆地棉单体的鉴定及其V16v17芽黄基因的定位[J].遗传,1989,11(6):1-3
    [10]朱征明.素麦3号单体系统的培育与鉴定[J].华中农业大学学报,1991,6(4):317-320
    [11]Eizenga G C.Differentiation of tall fescue monosomic lines using RFLP markers and dougle monosomic analysis[J].Crop Science,1998,38(1):221-225
    [12]Yuan F J,Dwaine A,Raska.Use of meiotic FISH for identification of a new monosome in Gossypium hirsutum L.[J].Genome,1997,40:34-40
    [13]沈克全,杨作民.小麦单体系用于抗锈病基因定位的研究[J].北京农业大学学报,1991,11(2):31-35
    [14]孙荣锦,杨之刚.小麦矮秆突变系原冬96株高单体分析[J].核农学报,1993,7(1):60
    [15]Sears E R.Wheat and wheat improvement[J].American Society of Agronomy,1967,19-80
    [16]Oliver R E,Cai X,Xu S S,Chen X,et al.Wheat-alien species derivatives:A novel source of resistance to fusarium head blight in wheat.Crop Science,2005,45:1353-1360
    [17]Dhaliwal H S,Singh H,Willian M.Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and moclecular characterization of resistant derivatives[J].Euphytica,2002,126:153-159
    [18]唐明,金华君,谭光轩,等.一个嵌合型药用野生稻7号染色体单体附加系及其回交后代的分析[J].武汉植物学研究,2005,23(3):221-226
    [19]李瑞芬,赵茂林,张敬原,等.单体异附加系花药培养创制小麦-中间偃麦草纯合易位系.西北植物学报,2006,26(1):28-32
    [20]樊路,韩敬花,潘淑婷,等.带有Ae.triuncialis抗白粉病基因的普通小麦-Ae.triuncialis单体附加系的培育[J].遗传,1993,15(3):23-24
    [21]沈季孟,樊路,邓景扬.带有中间偃麦草抗白粉病基因的普通小麦-中间偃麦草单体附加系的培育[J].北京农业科学,1996,14(1):19-20
    [22]杨武云,胡晓蓉,毛沛.采用桥梁单体培育小麦品种间染色体代换系的新方法[J].华北农学报,1997.12(4):23-27
    [1]Lapitan L V.Organization and evolution of higher plant nuclear genomes[J].Genome,1992,35:171-181
    [2]Long EO,Daw ZDZB.Repeated genes in eukaryotoes[J].Annual Review of Biochemistry,1980,43:727-764
    [3] Inge U, Peter G. Nucleotide sequences of the 5.8S and 25S rRNA genes and of the internal ranscribed spacers from Arabidopsis thaliana[J]. Nacl Acids Research, 1990, 18: 4011
    [4] Ragburn AL, Gill BS. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes[J]. Journal of Heredity, 1985, 76: 78-81
    [5] Fukui K, Ohmido N, Khash GS. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization[J]. Theoretical Applied Genetics, 1994, 87: 893-899
    [6] Laptian NLV, Ganal MW, Tanksley SD. Somatic chromosome Kargo type of tomato based on in situ hybridization of TAGI sutellite repeat[J]. Genome, 1989, 32: 992-998
    [7]Malaszynska J, Heslop-Harrison JS. Localization of tandemly repeated DNA sequences in Arabidopsis thaIiana[J]. The Plant Journal, 1991, 159-166
    [8] Anamthawat-Jonsson K, Heslop-Harrison JP. Isolation and characterization of gehome- specific DNA sequences in Triticeae species[J]. Molecular General Genetics, 1993, 240:151-158
    [9] Anamthawat-Jonsson K, Heslop-Harrison JS. Species-specific DNA sequences in the Triticeae[J]. Hereditas, 1992,116:49-54
    [10]Heslop-Harrison J S. The molecular cytogenetics of plants[J]. Journal of Cell Science, 1991,100:15-21
    [11] Olin-Faith M, Heneen W K. C-banded karyotypes of Brassica campestris, B.oleracea, and B.napus [J]. Genome,1992,35:583-589
    [12] Delseny M, McGarth J M, This P, et al. Ribosomal RNA genes in diploid and amphiploid Brassica and related species: organization, polymorphismand evolution[J]. Genome, 1990,33: 733-744
    [13] Maluszynska J, Heslop-Harrison J S. Physical mapping of rDNA loci in Brassica species[J]. Genome, 1993, 36:774-781
    [14] Castilho A , Heslop-Harrison J S. Physical mapping of 5S and 18s-25S rDNA and repetitive DNA sequences in Aegilops umbellulata[J]. Genome,1995,38:91-96
    [15]FranszP, Armstrongs, Alonso-Blanco C, et al. Cytogenetics for the model system Arabidopsis thaliana[J]. Plant Journal, 1998,13:867-876
    [16]TaketaS, Harrison GE, Heslop-Harrison JS. Comparative physical mapping of 5S and 18s-25S rDNA in nine wild Hordeum species and cytotypes[J]. Theoretical Applied Genetics,1999,98:1-9
    [17] Ansari H A, Ellison N W, Reader S M, et al. Molecular cytogenetic organization of 5S and 18S-26S rDNA loci in white clover (Trifolium repens L.) and related species[J]. Annal of Botany, 1999,83:199-206
    [18] Schrader O, Budahn H , Ahne R. Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus sativus and Brassica napus by double fluorescence in situ hybridization[J]. Theoretical Applied Genetics,2000,100:665-669
    [19] Hasterok R, Jenkins G, Langdon T, et al. Ribosomal DNA is an effective marker of Brassica chromosomes[J]. Theoretical Applied Genetics, 2001,103:486-490
    
    [20] Robbelen G . Beitrage zur Analyse des Brassica-Genomes[J]. Chromosoma, 1960,11:205-228
    [21] Iwabuchi M, Itoh K, Shimamoto K. Molecular and cytological characterization of repetitive DNA sequences in Brassica[J]. Theoretical Applied Genetics, 1991,81:349-355
    [22] Kianian S F,Quiros C F. Genetic analysis of major multigene families in Brassica oleracea and related species[J]. Genome,1992,35:516-527
    [23] Snowdon R J, Kohler A, Kohler W. Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes[J]. Genome, 1997,40:582-587
    [24] Bennet R I, Smith A G. The complete nucleotide sequence of the intergenic spacer region of an rDNA operon from Brassica oleracea and its comparison with other crucifers[J]. Plant Molecular Biology, 1991,16:1095-1098
    [25] Fukui K, Nakayama S, Ohmido M, et al. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes[J]. Theoretical Applied Genetics, 1998,96:325-330
    [26] Hasterok R, Maluszynska J.Nucleolar dominance does not occur in root tip cells of alloteraploid Brassica species[J]. Genome,2000,43:574-579
    [27] Hanson R E, Islam-Faridi M N, Percival E A, et al. Distribution of 5S and 18S-25S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors[J]. Chromosoma, 1996,105: 55-61
    [28] Shishido R, Sano Y , Fukui K. Ribosomal DNAs: an exception to the conservation of gene order in rice genomes[J]. Molecular ang General Genetics, 2000,263:586-591
    [29] Kulak S , Hasterok R, Maluszynska J. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers[J]. Hereditas ,2002,136:144-150
    [30] Snowdon RJ, Friedt W, Kohler A , et al. Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape {Brassica napus L.)[J]. Annals of Botany,2000,86:201-204
    [31] Snowdon R J. Fluorescence in situ hybridization techniques for Brssica: Methodological development and practical applications. [M] Justus-Liebig Universitat, Giesen,1997
    [32] Cuadrado A, Jouve M. Distribution of highly repeated DNA sequence in species of the genus Secale[J]. Genome, 1997,40:309-317
    [33]Heslop-Harrison J S,Schwarzacher T.Molecular cytogenetics-biology and applications in plant breeding[J].Chromosomes Today,1993,11:191-198
    [34]Lichter P,Cremer T,Borden J,et al.Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries[J].Humam Genetics,1988,80:224-234
    [1]曹鸣庆,刘凡.芸苔属(Brassica)蔬菜游离小孢子培养研究进展[J].园艺学年评,1996,2:63-90
    [2]姜凤英,冯辉,李娜,等.甘蓝类植物游离小孢子培炎研究进展[J].辽宁农业科学,2006(5):28-30
    [3]曹丽娟,栾非时,李锡香.植物游离小孢子培养的研究进展[J].东北农业大学学报,2005,36(5):660-663
    [4]杨淑琴,娄虹,韩阳.芸薹属植物游离小孢子培养研究进展[J].辽宁大学学报,2005,32(1):91-96
    [5]秦瑞珍,宋文昌,郭秀平.同源四倍体水稻花药培养在育种中的应用[J].中国农业科学,1992,25(1):6-13
    [6]刘学岷,申书兴,孙日飞,等.大白菜二倍体与四倍体杂交后代倍性及胚胎学观察[J].园 艺学报,1996, 23(3):309-311
    [7]Sato T. Plant regeneration from isolated micarospore cultures of Chinese cabbage[J]. Plant Cell Reports, 1989, 8:486-488
    [8]Ockendon DJ, Sutherland RA. Genetic and non-genetic factors affecting anther culture of brussils Sprouts[J]. Theoretical and Applied Genetics, 1987, 74:566-570
    [9]Takahata. High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L[J]. Plant Seience, 1991, 74:235-241
    [10]Gland, A. Genetic and exogenous factors affecting embrogenesis in isolated microspore culture in Brassica napus L[J].Plant Physiology, 1988, 132:613-617
    [11]Hansen, M. Microspore culture Swedt(Brassica napus ssp. rapifera)and the effect of fresh and conditional media[J]. Plant Cell Reports, 1993, 12:496-500
    [12]Kott, L S. Autotoxicity in isolated microspore culture of Brassica napus[J]. Canadian Journal Botany, 66:1665-1670
    [13]Licher R. Efficiaent yield of embryoids by culture of isolated microspore of different Brassicaceae species[J].Plant Breeding, 1989, 103:119-123
    [1]刘学岷,申书兴,孙日飞,等.大白菜二倍体与四倍体杂交后代倍性及胚胎学观察[J].园艺学报,1996.23(3):309-311
    [2]李懋学,张赞平.作物染色体及其研究技术[M].北京,中国农业出版社,1996,220-221
    [3]张凤兰.小孢子再生植株自然加倍体的探讨[J].北京农业科学,1993,11(2):23-25
    [4]张凤兰.环境条件对白菜小孢子培养的影响[J].华北农学报,1994,9(1):95-100
    [5]Khush C S,Singh R J.Primary trisomics of rice:origin,morphology,cytology and use in linkage mapping[J].Genetics,1984,107:141-163
    [6]程祝宽,李欣,于恒秀.一套新的籼稻初级三体的选育利细胞学鉴定[J].遗传学报,1996,23(5):363-371
    [7]王润奇,高俊华,王志兴,等.谷子三体系列的建立[J].植物学报,1994,36(9):690-695
    [8]Tsuchiga,T.Cytogenetic studies of trisomics in barley[J].Journal of Japanese Botany,1960,17:177-213
    [9]Rick,C K,Barton D W.Cytological and genetical identification of the primary trisomics of the tomato[J].Genetics,1954,39:640-666
    [10]郭德栋,李山源,白庆武,等.糖甜菜三体系列的建立与鉴定初报[J].遗传学报,1986,13(1):27-34
    [1]]刘宗贤,秦瑞珍.四倍体水稻花药培养筛选初级三体研究[J].植物学报,1995,37(2):125-133
    [12]申书兴,李振秋,张成合,等.大白菜3号、6号染色体双三体及其初级三体的鉴定[J].园艺学报,2002,29(5):438-442
    [13]Qi L,Echalier B.Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs[J].Funct Integr Genomics,2003,3(1-2):39-55
    [14]Zharkov N A.Resolving capacity of monosomic line analysis in cytogenetic studies of common wheat[J].Tsitol Genet,2004,38(3):22-28
    [1]Dong Y J,Tsuzuki E,Terao H.Trisomic genetic analysis of aroma in three Japanese native rice varieties(Oryza sativa L.)[J].Euphytica,2001,117(3):191-196
    [2]谢国生,张端品,谢岳峰.利用初级三体定位水稻光敏核不育基因[J].武汉植物学研究,2001,19(3):255-258
    [3]毛节琦,徐绍英,丁守仁.大麦初级三体减数分裂过程中额外染色体的行为[J].遗传,1983,5(5):9-10
    [4]李传友,孙兰珍.不同小麦T型、V型和K型细胞质雄性不育系花粉败育机理的细胞学研究[J].华北农学报,1996,11(2):1-8
    [5]吴鹤鸣,周刊杨,谢小凰.同核异质粳稻雄性不育系花粉和花药发育的细胞学观察[J].江苏农业科学,1987,3(1):19-21
    [6]宋仁敬,张庆勤.黔型小麦雄性不育系及其保持系花药和花粉发育的细胞形态学观察[J].贵州 农业科学,1988,(4):7-13
    [7]北京大生物系植物遗传育种专业.雄性不育和雄性能育小麦花药和花粉发育的细胞形态学观察[J].植物学报,1976,18(2):141-149
    [8]席湘媛.小麦雄性不育系花药和花粉发育的细胞形态学观察[J].山东农学院学报,1980,(1):15-21
    [9]毛节琦,徐绍英,丁守仁.大麦初级三体减数分裂过程中额外染色体的行为[J].遗传,1983,5(5):9-10
    [10]Alice K Vari,J G Bhowal.Studeis on the trisomics of Pennisetum amercanum(L.)leeke morphologyical and cytologyical beviour of primary trisomics[J].Cytologia,1986,51:679-692
    [11]N S Kim,J Kuspira.Genetic and cytogenetic analyses of the a genome of Triticum monococcum.Ⅸ.cytological behaviour,phenotypic characteristics,bredding behaviour,and fertileity of primary,double,and triple trisomics[J].Genome,1993,36:565-579
    [12]胡保民,张天真,潘家驹.陆地棉三体的诱发、鉴定、研究和利用Ⅱ.额外染色体的传递及四体的分离[J].作物学报,1996,22(3):283-287
    [13]李雅轩.植物减数分裂研究进展[J].植物学通报.1999,1 6(5):526-529
    [14]杨淑琴,刘美杰,李冬.普通小麦单体遗传n-1配子传递率的研究[J].宁夏农林科技,1997,5:13-14
    [15]杨景成,于元杰,齐延芳,等.外源DNA导入普通小麦雄性不育变异体的花粉母细胞减数分裂观察[J].核农学报,2001,15(1):1-5
    [16]孙日飞,吴飞燕,司家钢,等.大白菜核雄性不育两用系小孢子发生的细胞形态学研究[J].园艺学报,1995,22(2):153-156
    [17]杨广东,李燕娥,石跃进,等.蔬菜的雄性不育与基因工程[J].长江蔬菜,2001,4:28-30
    [18]董庆华,利容千,王建波.萝卜雄性不育系花药发育的细胞形态学研究[J].武汉大学学报,1996.42(2):207-212
    [19]Worall D,Hird D L,Hodge R,et al.Prematrue dissoluteion of the microsporocyte callose wall causes male sterility in transgenic tobacco[J].The Plant Cell,1992,4:759-771
    [20]Preuss D,Lemieux B,Yen G,et al.A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization[J].Genes &Development,1993,974-985
    [21]Tanaka I,Ito M.Studies on microspore development in liliaceous plants Ⅱ.Pollen tube development lily pollens cultured from the uninucleale microspore stage[J].Plant and Cell Phusiology,1981,22:149-153
    [22]Hernandez P I,Ross J H E,Barnes K A.Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassic napus[J].Planta,1999,208(4):588-598
    [23]董庆华,利容千,王建波.菜薹细胞质不育系小孢子发生的细胞形态学研究[J].园艺学报,1997,24(2):150-154
    [24]余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究[J].武汉植物学研究,1990,8(3):209-216
    [25]Singh RB,Kaul MLH.Male sterility in barley Ⅳ.Anther form and development[J].Plant Breeding,1991,107:326-332
    [26]郭晶心,孙日飞,宋家祥,等.大白菜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,2001,28(5):409-414
    [27]王福青,程显峰,孟祥霞,等.大白菜核雄性败育过程的细胞学研究[J].华中农业大学学报,2000,19(4):391-394
    [28]王福青,王翠兰,宋再华.大白菜雄性不育系88-3花药和花粉发育的细胞形态学观察[J].西北植物学报,2001,21(3):570-574
    [29]尹增芳,樊汝汶.鹅掌楸花粉败育过程的超微结构观察[J].植物资源与环境,1997,6(2):1-7
    [30]关和新,田惠桥,朱英国,等.马协不育花药药隔ATPase超微结构定位[J].作物学报,2000,26(5):613-617
    [31]关和新,朱英国.马协不育系花药超微结构观察[J].作物学报,2000,26(6):913-918
    [32]贺浩华,贺国良,朱昌兰,等.萍乡显性雄性核不育水稻超微结构研究[J].西北植物学报,2002,22(6):1401-1405
    [33]吴钿,高秀梅,张建中.光温敏核不育水稻的育性及花药的发育解剖学研究[J].西南农业大学学报,2002,24(2):138-140
    [34]姚雅琴,张改生.小麦花药发育过程超微结构和酶细胞化学研究[J].电子显微学报,2001,20(3):167-175
    [35]王祖秀,彭正松,何奕昆.三叶半夏(Pinellia ternate)雄配子败育的遗传分析[J].作物学报,2000,26(1):83-86
    [36]程玉瑾,吴定华,陈国菊,等.番茄单倍体植株减数分裂的研究[J].华南农业大学学报,2000,21(4):12-14
    [37]胡保民,张天真,潘家驹,等.陆地棉三体的诱发、鉴定及其利用研究--雌配子发育的胚胎学观察[J].华北农学报,1995,10(4):34-38
    [38]张香娣,王坤波,李懋学,等.陆地棉单体和端体细胞学行为与鉴定技术[J].棉花学报,2000,12(6):302-305
    [39]郑湘如,王丽.植物学[M].北京:中国农业大学出版社,2001
    [1]Chen C C,Chen C M,Hsu F C,et al.The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences[J].Theoretical and Applied Genetics,2000,101:30-36
    [2]Siroky J,Zluvova J,Riha K,et al.Rearrangement of ribosomal DNA clusters in late generation telomerase-deficient Arabidopsis[J].Chromosoma,2003,112:116-123
    [3]Liu Z L,Zhang D M,Wang X Q,et al.Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines[J].America Journal of Botany.2003,90(1):17-24
    [4]Shishido R,Sano Y,Fukui K.Ribosomal DNAs:an exception to the conservation of gene order in rice genomes[J].Molecular and General Genetics,2000,263:586-591
    [5]Zhang D M,Tao S.Physical mapping of ribosomal RNA genes in peonies(Paeonia Paeoniaceae) by fluorescent in situ hybridization:implications for phylogeny and concerted evolution[J].American Journal of Botany,1999,86:735-740
    [6]Hanson R E,Islam-Faridi M N,Percival E A,et al.Distribution of 5S and 18S-25S rDNA loci in a tetraploid cotton(Gossypium hirsutum L.) and its putative diploid ancestors[J].Chromosoma,1996,105:55-61
    [7]Kulak S,Hasterok R,Maluszynska J.Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers[J].Hereditas,2002,136:144-150
    [8]Hasterok R,Jenkins G,Langdon T,et al.Ribosomal DNA is an effective marker of Brassica chromosomes[J].Theoretical and Applied Genetics,2001,103:486-490
    [9]Snowdon R J,Friedt W,Kohler A,et al.Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape(Brassica napus L.)[J].Annals of Botany,2000,86:201-204
    [10]Lim K B,Hans de J,Yang T J,et al.Characterization of rDNAs and Tandem Repeats in the Heterochromatin of Brasscia rapa[J].Molecular Cells,2005,19(3):436-444
    [11]Dillé JE,Bittel DC,Ross K,et al.Preparing plant chromosomes for scanning electron microscopy[J].Genome,1990,33:333-339
    [12]李宗芸.水稻几个BAC克隆和重复序列的细胞遗传作图[D].湖北:武汉大学博士论文,2002
    [13]钟少斌,姚景侠,张德玉,等.麦类作物DNA原位杂交及其在远缘杂种染色体分析中的应用[J].中国农业科学,1997,30(1):33-37
    [14]别墅,王坤波,王春英,等.二倍体栽培棉45S rDNA-FISH作图及核型比较[J].棉花学报,2004,16(4):223-228
    [15]龚志云,吴信淦,程祝宽,等.水稻45S rDNA和5S rDNA的染色体定位研究[J].遗传学报,2002,29(3):241-244
    [16]Snowdon R J,Friedt W,Kohler A,et al.Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape(Brassica napus L.)[J].Annals of Botany,2000,86:201-204
    [17]Kulak S,Hasterok R,Maluszynska J.Karyotyping of Brassica amphiditriids using 5S and 25S rDNA as chromosome markers[J].Hereditas,2002,136:144-150
    [18]宋林生,樊延玉,王秀玲,等.用原位杂交技术对玉米中期染色体中rRNA的研究[J].南开大学学报(自然科学),1995,28(3):1-5
    [19]李懋学,张赞平.作物染色体及其研究技术[M].中国农业出版社,1996,14
    [20]Fukui K,Nakayama S,Ohmido N,et al.Quantitative karyotyping of three ditriid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes[J].Theoretical and Applied Genetics,1998,96:325-330
    [21]Maluszynska J,Heslop-Harrison J S.Physical mapping of rDNA loci in Brassica species[J].Genome,1993,36:774-781
    [22]Schrader O,Budahn H,Ahne R.Detection of 5S and 25S rRNA genes in Sinapis alba,Raphanus sativus and Brassica napus by double fluorescence in situ hybridization[J].Theoretical and Applied Genetics,2000,100:665-669
    [23]Kianian S F,Quiros C F.Trait inheritance,fertility,and genomic relationships of some n=9 Brassica species[J].Genetic Resources and Crop Evolution,1992,39:165-175
    [24]Hasterok R,Maluszynska J.Cytogenetic markers of Brassica napus chromosomes[J].Journal of Applied Genetics,2000,41:1-9
    [25]Hasterok R,Maluszynska J.Cytogenetic analysis of ditriid Brassica species[J].Acta Biologica Cracoviensia Series Botanica,2000b,42:145-163
    [26]Hasterok R,Maluszynska J.Nucleolar dominance does not occur in root tip cells of allotetratriid Brassica species[J].Genome,2000c,43:574-579
    [27]Kamisugi Y,Nakayama S,O'Neil CM,et al.Visualization of the Brassica self-incompatibility S-locus on identified oilseed rape chromosomes[J].Plant Molecular Biology,1998,38:1081-1087
    [28]Moscone E A,Klein F,Lambru M,et al.Quantitative karyotyping and dual-colour FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species(Leguminosae)[J].Genome,1999,42:1224-1233
    [29]Leitch I J,Heslop-Harrison J S.Physical mapping for four sites of 5S rDNA sequences and one side of the alpha-amylase gene in barly(Hordeum vulgate)[J].Genome,1995,36:517-523
    [30]Hall M J,Parker J S.Stable chromosome fission associated with rDNA mobility[J].Chromosome Research,1995,3:417-422
    [31]Schubert I,Wobus U.In situ hybridization confirms jumping nucleolus orgaizating regions in Allium[J].Chromosomal,1985,92:143-148
    [32]Dubcovsky J,Dvorak J.Ribosomal RNA multigene loci:nomads of the ticeae genomes[J].Genetics,1995,140:1367-1377
    [33]Bureau T.Plant Transposon discovery and extriitation(Abstract)[R],3 × 3 Cannada- China coperation leading biotechnology toward the twenty-first century.2001
    [34]陈秀玲,赵同金,徐春晖,等.长期继代小麦培养细胞的染色体结构变异特征[J].山东大学学报(理学版),2002,37(6):548-551
    [35]Yang T J,Kim J S,Lim K B,et al.The Korea Brassica genome project:a glimpse of the Brassica genome based on comparative genome analysis with arabidopsis[J].Comparative of Functional Genomics,2005,6:138-146
    [36]Cheng BF,Heneen WK,Chen BY.Mitotic karyotypes of Brassica campess and Brassica alboglabra and identification of the B.alboglabra chromosome in an addition line[J].Genome,1995,38:313-319
    [37]Koo D H,Plaha P,Lim Y P,et al.A high-resolution karyotype of Brassica rapa ssp.pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization[J].Theoretical and Applied Genetics,2004,109:1346-1352
    [38]Olin-Fatih M,Heneen WK.C-banded karyotypes of Brassica campess,Brassica oleracea and Brassica napus[J].Genome,1992,35:583-589
    [39]Snowdon RJ,Friedrich T,Friedt W,et al.Identifying the chromosomes of the A- and C-genome ditriid Brassica species B.rapa(syn.campess) and B.oleracea in their amphiditriid B.napus[J].Theoretical and Applied Genetics,2002,104:533-538
    [1]胡延吉,赵檀方.小麦光合作用的遗传和改良潜力的初步研究[J].中国农业科学,1995,28(增):14-21
    [2]彭远英,彭正松,宋会兴.小麦中国春背景下长穗偃麦草光合作用相关基因的染色体定位[J].中国农业科学,2005,38(11):2182-2188
    [3]李小娟,蓝岚,李雁鸣,等.小麦B染色体组双端体旗叶光合能量转换参数的研究[J].华北农 学报,2006,21(5):9-12
    [4]张振贤,郑国生,赵德婉.大白菜光合作用特性的研究[J].园艺学报,1993,20(1):38-44
    [5]魏岷,吴淑芸,张启沛.大白菜小株采种种株的光合特性[J].园艺学报,1998,25(2):159-164
    [6]张振贤,梁书华,陈利平.田间大白菜光合速率曰变化与“午睡”现象的研究[J].植物学报,1994,36(增刊):97-101
    [7]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988(3):62-64
    [8]薛应龙,植物生理实验手册[M].上海:上海科学技术出版社,1985:108-109
    [9]李合生,孙 群,赵世杰.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:138-141
    [10]刘文革,阎志红,王鸣.不同染色体倍性西瓜光合速率日变化的研究[J].中国西瓜甜瓜,2003(2):4-6
    [11]Anderson J M,Aro E M.Grana stacking and protein of photosystem Ⅱ in thylakoid membranes of higher plant leaves under sustained light irradiance:an hypothesis[J].Phorosynth Research,1994,41:315-326
    [12]Dean C,Leech R M.Genome expression during normal leaf development:I Direct correlation between ribulose diphosphate carboxylase content and nucear ploidy in a polyploid series of wheat[J].Plant Physiology,1982.70:1606-1608
    [13]Kawashima N,Wildman S.G.Fraction I protein[J].Annual Review Plant Physiology,1970,21:325-328
    [14]李小娟,赵玉新,肖凯,等.小麦B染色体组双端体光合性能的初步研究[J].河南科学,1999,17:35-38
    [15]张荣铣,陆京杰,马国英,等.Rht3基因及带有Rht3基因的4B染色体对普通小麦光合碳同化特性的影响[J].遗传学报,1995,(4):264-271
    [16]蒋观敏,罗耀武,李咭浩.同源四倍体高粱不育系和保持系的生物学及生理特性研究[J].作物学报,2000,26(4):444-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700