用户名: 密码: 验证码:
秋水仙素和二甲基亚砜诱变选育短蔓型甘薯新品种短蔓3号
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诱变育种是甘薯育种的一条重要途径。化学诱变具有使用方便,特异性较强和诱变后代较易稳定等特点。然而,甘薯化学诱变育种理论与技术远远落后于辐射育种的研究,用秋水仙素诱变甘薯染色体非倍性变异尚未见报道,具有重要的理论研究意义和实践意义。本研究以秋水仙素和二甲基亚砜为诱变剂,探讨了对甘薯种子的最佳处理时间和培养温度;突变体的鉴定和选择方法;取得了如下结果:
     (1)用0.05%秋水仙素(C22H25O6)和2%二甲基亚砜(DMSO)混合水溶液处理秦薯1号甘薯种子,时间分别为12、24、48和72h,培养温度分别为5℃~6℃、10℃~12℃、15℃~16℃、18℃~20℃和30℃。结果表明,用0.05%秋水仙素和2%DMSO混合水溶液间歇处理甘薯种子24h,培养温度为15~16℃时,可获得良好的诱变效果。对处理后代进行了细胞学观察比较,未发现染色体数目变异,但出现可遗传的短蔓变异,进而选育出高产、高淀粉、高蛋白、高铁、高锌短蔓甘薯新品种短蔓3号。
     (2)为突变体的产量因素选择提供理论依据,用秦薯1号自交后代实生苗为试验材料,对甘薯的分枝数(x1)、最长蔓长(x2)、分枝总长(x3)、节间长(x4)、蔓粗(x5)、叶面积(x6)、单株绿叶重(x7)、藤叶重(x8)、单株薯数(x9)、单薯重(x10)、根冠比(x11)、和单株产量(y)12个数量性状进行测定。通过相关分析、逐步回归和通径分析表明,单株绿叶重对产量影响最大,单株薯数和单薯重对单株产量的直接作用较大。高产育种以单株产量为选择目标时,应以单株绿叶重、单株薯数和单薯重的选择为主,结合根冠比、分枝数、叶面积和蔓粗,对这7个性状进行综合考虑和选择。
     (3)短蔓3号新品种特征特性:叶片较小,呈三角形,叶片深绿带紫晕,叶柄、叶脉紫红色;短蔓型,蔓长85.9~104cm,节间3cm左右;薯块圆椭圆形,大薯率高,薯皮紫红色,薯肉白色;薯块萌芽性强,出苗早,苗量大,抗旱性好,结薯早而集中;抗茎线虫病,较抗黑斑病;高产优质,比对照卢选1号增产35%以上,淀粉含量26.2%,蛋白质9.46%,综合适应性好。
Induced mutation breeding is one of the important approaches in sweet potato breeding. Chemical mutation has such merits as operating expediently, better specificity and stabilization for the mutants. But, the theory and technology of sweet potato chemical mutation breeding far drop behind those of radiation breeding. It is not reported on inducing sweet potato mutants with colchicine. In this paper, the author had investigated the suitable treatment time and culture temperature of sweet potato seeds; the methods of identification and selection to the mutants induced with colchicine and dimethyl sulphoxide (DMSO). The results were as follows:
     (1) In order to obtain the usefull sweet potato mutants, the seeds of cultivar Qinshu No. 1 were intermittently soaked in the mixture solution of 0.05% colchicine and 2% dimethyl sulphoxide for 12, 24, 48 and 72h, respectively. Then, the treated seeds under suitable soaking time were cultured in temperatures of 5℃~6℃, 10℃~12℃, 15℃~16℃, 18℃~20℃and 30℃, respectively. The results showed that the soaking time of 24h and culture temperature of 15~16℃gave the best mutation efficiency. Cytological observation was carried out in the progenies and chromosome number variation was not found. Among short vine mutants, Duanwan No. 3 was selected, which appeared in high yield, high starch content, high protein content and high nutritional elements such as Fe and Zn.
     (2) In order to establish selecting strategy for sweet potato induced mutation breeding, the experiments were carried out with the self-mating progenies derived from“Qinshu No. 1”sweet potato and twelve quantitative characters were determined, i.e. the number of vine branches (x1), the longest length of branch (x2), the length of all branches (x3), the internode length (x4), the thickness of branch (x5), the area of leaf (x6), the weight of green leaves per plant (x7), the weight of branches and leaves (x8), the root tuber number per plant (x9), the single tuber weight (x10), T/R valve (x11) and root tuber weight per plant (y). After analyed through correlation analysis, stepwise regression analysis and path coefficient analysis, the results showed that the weight of green leaves per plant greatly influenced root tuber weight per plant, the root tuber number per plant and single root tuber weight were secondly. So, in high yield breeding for sweet potato, it should be considered all the seven traits, not only the weight of green leaves per plant, the root tuber number per plant and single root tuber weight, but also T/R value, the number of vine branches, the area of leaf and the thickness of branch.
     (3) The characteristics of the new sweet potato cultivar“Duanwan No. 3”selected and bred are as follows: the small triangle leaf is green with purple. Leafstalk and venation are amaranth. Vine length and internode length are 85.9~104cm and 3cm, respectively. The root tuber is oval, and the big root tuber rate is high. Tuber color is red, and tuber flesh color is white. The tuber possesses early germinating, strong sprouting and high seedling picking amount. The cultivar has good resistance to drought, and tubers come forth early and concentrate. It has good resistance to stem nematode disease and better resistance to black rot disease. Its fresh tuber yield increased 35% than“Luxuan No. 1”, and the contents of starch and protein are 26.2% and 9.46%, respectively.
引文
[1]陆漱韵,刘庆昌,李惟基等.甘薯育种学[M].北京:农业出版社, 1998.
    [2] Miller J C. Further studies of mutations of the Port Rico sweetpotato[J]. Proc Amer Soc Hort Sci, 1935, 33: 460-465.
    [3]陆漱韵.甘薯育种的新途径—辐射育种[J].第一次甘薯生产和学术会议, 1965.
    [4] Kukimura H, Kouyama Y. Study on mutation breeding in sweetpotato[J]. Induced Mutations in Vegtatively PlantsⅡ, 1982, 199-233.
    [5] Kukimura H. Mutation breeding in sweet potato and tuber crops a review[J]. Gamma Field Symposia, 1986, 25: 109-130.
    [6]陆漱韵,武崇光等.用60Coγ-射线辐照甘薯获得抗黑斑病的突变体[J].作物学报, 1988, 14(1): 22-27.
    [7]王彩莲等.离子注入甜菊的诱变效应研究[J].核农学报, 1998, 12(6): 347-352.
    [8]余增亮等.离子注入生物学效应及育种研究进展[J].安徽农学院学报, 1991, 18(4): 251-257.
    [9]王钰等.离子束辐照甘薯种子诱变效应研究初报[J].安徽农业大学学报(增刊), 1993, 92-93.
    [10]刘庆昌等.甘薯细胞悬浮培养及有效植株再生[J].农业生物技术学报,1996,4(3):238-242.
    [11]张雄坚等.甘薯空间诱变选育研究[J].广东农业科学,2008(3): 7.
    [12] Carlson P S. Induction and isolation of autotrophic mutants in somatic Cell culture of Nicotiana tobacum[J]. Science, 1970, 168: 487-489.
    [13] Thinh N T. Preliminary results on the use of in vitro techniques for Mutation breeding of sweetpotato[J]. Second FAO/IAEA Research Coordination Meeting on Improvement of Root and Tuber Crops in Tropical Countries of Asia by Induced Mutation, 1990.
    [14]陆漱韵,濮绍京等.甘薯辐射和组培相结合筛选突变体[J].作物学报, 1993, 19(14): 309-314.
    [15]刘庆昌等.甘薯胚性悬浮细胞辐射诱变和同质突变体的获得[J].农业生物技术学报, 1998, 6(2): 117-122.
    [16]张晓东等.苜蓿细胞悬浮培养与耐受高浓度PEG变异体的筛选[J].核农学报, 1994, 8(1): 25-32.
    [17]李爱贤,刘庆昌,翟红等.甘薯耐旱、耐盐突变体的离体筛选[J].农业生物技术学报, 2002, 10(1): 24-28.
    [18]王培英等.γ射线慢照射大豆苗期植株的效果[J].核农学报, 1995, 9(1): 25-29.
    [19] Nagatomi S. Enlargement of induced variations by combined method of chronic irradiations With callus culture in sugar cane [J]. Gamma Field Symposia, 1991, 30: 87-110.
    [20] Nagatomi S, et al. Combined effects of gamma irradiation methods And in vitro explants sources on mutation induction of flowercolor In Chrysanthemum morifolium Ran[J]. Gamma Field Symposia, 1996, 35: 51-70.
    [21]王玉萍,刘庆昌,李爱贤等.慢照射与茎尖培养相结合筛选甘薯同质突变体[J].作物学报, 2002, 28(1): 18-23.
    [22]官春云.植物育种理论与方法[M].上海:上海科学技术出版社, 2004.
    [23]董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展[J].种子, 2005, 24(7): 54-58.
    [24]马惠平,赵永亮,杨光宇.诱变技术在农作物育种中的应用[J].遗传, 1998, 20(6): 41-43.
    [25]安学丽,蔡一林,王久光,等.化学诱变及其在农作物育种上应用[J].核农学报, 2003, 17(3): 239-242.
    [26]游晴如,黄庭旭,张水金,等.植物诱变新技术及其在水稻育种上的应用[J].江西农业学报, 2003, 15(2): 43-47.
    [27]宋炜,刘志增,陈景堂,等.诱变技术在植物育种中的应用[J].河北农业大学学报, 2003, 26: 116-118.
    [28]金光,朱毛华.关于秋水仙素的一点思考[J].生物学教学2006, 31(8): 65.
    [29]蔡旭.植物遗传育种学[M].北京:科学出版社, 1988.
    [30] Bird R Mck, Neuffer M G. Induced mutations in maize [A]. In: Janick J. Plant Breeding Reviews (5) [C]. New York: Van Nostrand Reinhold, 1987: 139-180.
    [31]薛守旺,周红生.利用花粉化学诱变创造玉米自交系的研究[J].作物杂志, 1998, (6):6-8.
    [32]陆柳英,朱文丽,莫饶,等.化学诱变筛选木薯抗寒突变体的初步研究[J].广西农业科学, 2007, 38(5): 499-503.
    [33]和江明,王敬乔,陈薇,等. EMS对甘蓝型油菜离体小孢子胚胎发生能力的影响[J].西南农业学报, 2004, 17(6): 690-693.
    [34]和江明,王敬乔,陈薇,等.用EMS诱变和小孢子培养快速获得甘蓝型油菜高油酸种质材料的研究[J].西南农业学报, 2003, 16(2): 34-36.
    [35]林朴夫,黄恩宏,李国全,等.苯甲酰胺与EMS复合处理对大麦损伤效应的研究[J].核农学通报, 1994, 15(1): 25-28.
    [36]林朴夫.叠氮化钠与苯甲酰胺复合处理对大麦损伤效应的研究[J].核农学通报, 1995, 16(1): 13-15.
    [37]薛守旺,周洪生,邓迎海,等.化学诱变及其在玉米育种上的应用[J].玉米科学, 1998, 6(2): 10-14.
    [38]陈忠明,王秀娥.水稻强优势恢复系9311粒重的诱变改良[J].分子植物育种, 2005, 3(3): 353-356.
    [39] Greaves JA. Development of resistance to Pursuit herbicide in corn-the IT gene [A]. In: Proceeding of the 48th Annual Corn and Sorghum Industry Research Conference [C]. 1993: 104-118.
    [40]陈绍江,宋同明. EMS花粉诱变获得高油玉米突变体[J].中国农业大学学报, 2002, 7(3): 12.
    [41] James D W, Dooner H G. Isolation of EMS-induced mutants in altered in B rassica napus seed fatty acid Composition [J]. Theor Appl Genet, 1990, 80: 241-245.
    [42]于秀普,杜连恩,魏玉昌,等.大豆新品种冀豆8号的选育[J].中国油料, 1994, 16(4): 58-59.
    [43]张茂银,戚家华,海热古力·阿布力,等. (60)Coγ射线辐照和秋水仙素处理春麦杂种种子对其植株农艺性状的影响[J].新疆农业科学, 1993, (2): 32-35.
    [44]王月芳,奚元龄,魏振承,等.γ-射线和秋水仙素对兰州百合(Lilium davidii var.Willmottiae)体细胞诱变的效应[J].江苏农业学报, 1989(2):56-7.
    [45]М.Ф.Санамьян,卢振泽.用秋水仙素和Υ射线对棉籽复合处理后品系间杂种M1代植株细胞遗传学特点[J].核农学通报, 1986, (1):5-7.
    [46]陆漱韵,刘庆昌,李惟基.甘薯育种学(M).北京:中国农业出版社, 1998, 200-207.
    [47]陈凤翔,陈彦卿,袁照年,林文新.甘薯集团杂交后代主要数量性状的遗传参数、相关及通径分析.福建农学大学学报, 1995, 24(3): 257-256.
    [48]陈凤翔,郑朝文.福建甘薯地方品种主要数量性状遗传相关通径分析.中国甘薯, 1990, (4): 51-54.
    [49]徐茜,王良平,张兴瑞,黄文章.秋甘薯无性一代主要数量性状遗传相关及通径分析.国外农学-杂粮作物, 1996, 6: 22-24.
    [50] Lowe S B, Wilson L A, Comparative analysis of tuber development in six sweet potato (I pomoea batatas (L.) Lam) cultivars. 1. Tuber initiation, tuber growth and partition of assimilate. Ann. Bot. 1974, 38(155): 307-317.
    [51]余金龙,彭明碧,毕成新.甘薯几个主要性状的通径分析与育种选择.绵阳农专学报, 1994, 11(4):19-22.
    [52]余金龙.甘薯块根产量及相关性状的典型相关分析.西南农业学报, 2001, 14(2):107-110.
    [53]党学斌.宁夏半干旱地区地膜甘薯产量相关性状的通径分析.干旱地区农业研究, 1998, 16(4):57-60.
    [54]荣廷昭,孙耀中.田间试验与统计分析(M).中国农业科技出版社, 1998, 106-124.
    [55]盛聚,谢式千,潘承毅.概率论与数理统计,第二版(M).北京:高等教育出版社, 1989, 264-279
    [56]赵彦华,吴国良,药文生.果树多倍体育种研究进展[J].山西果树, 2004, (4): 35-36.
    [57]张秋英,叶定生,张绍南,等.秋水仙素对二棱大麦农艺性状诱变效果的探讨[J].福建稻麦科技, 2000, 18(增刊): 40-43.
    [58]宗桦,王永清,周晔.红地球葡萄的秋水仙素诱变及鉴定研究.江苏农业科学[J]. 2008(3): 177-180.
    [59]蔡国海,严文潮,曹欣.秋水仙素诱发水稻早熟效应的遗传分析[J].浙江农业学报, 1992(3).
    [60]周力,高和平,杨成万,等.秋水仙素在辣椒诱变育种中的应用初探[J].中国蔬菜. 1995(5):7.
    [61]白守信,刘翠云,等.单倍体小麦染色体加倍的研究[J].遗传学报, 1979, 6(2): 230-232.
    [62]丛斌,赵建华,等.秋水仙素对小麦根尖细胞亚显微结构影响[J].武汉植物学研究, 1997, 15(4): 299-303.
    [63]陈锦华,周力,等.秋水仙素诱导辣椒染色体结构变异初探[J].湖北农业科学, 1995(6): 53-55.
    [64]王卓伟,余茂德,鲁成.桑树二倍体及人工诱导的同源四倍体遗传差异的AFLP分析[J].植物学通报, 2002, 19(2): 194-200.
    [65]唐锡华,张银屏.用显微分光光度术测定水稻根尖细胞核中DNA含量的分析[J].植物生理学通讯, 1998(8):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700