用户名: 密码: 验证码:
心脏与肌肉组织特异表达基因Smyd1及其它发育相关基因的转录调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转录因子识别结合目的基因的调控序列是转录过程的第一步,也是基因表达调控的关键环节,受到顺式、反式作用元件严谨而有序的调节与控制。虽然基因转录产物都是由RNA聚合酶复合体直接合成的,但是每个基因的表达时间和空间模式都不尽相同。这种表达的特异性就是由于众多转录因子协调控制的结果。因此对于基因转录调控的研究一直是分子生物学的一个热点,同时也是研究的难点之一。本人在读博期间,研究了心脏肌肉发育相关基因Smyd1和性成熟相关基因KiSS1的转录调控机制,从分子水平揭示了它们的表达是如何被上游基因或细胞外信号所控制的,为体内研究提供了直接的分子证据;同时研究了与细胞周期蛋白结合的螺旋—环—螺旋转录因子GCIP在肌肉细胞分化中的功能,并参与了其它课题的研究工作,具体体现在以下几个方面:
     1.Smyd1基因促进肌肉发育并受SRF和Myogenin的直接调控
     Smyd1是一个包含有SET和MYND结构域并在心脏和肌肉特异性表达的基因,同时它作为一个修饰H3-K4残基甲基化的甲基转移酶激括下游基因转录。人类Smyd1基因在成体的心脏和骨骼肌表达。在C2C12细胞中过表达Smyd1基因促进肌肉分化和肌管形成,这是由于肌肉特异性转录因子的上调所致。在肌母细胞中过表达血清应答因子(SRF)和肌细胞生成素(Myogenin)会促使Smyd1的表达量升高。
     我们克隆了Smyd1基因的启动子并分析了在肌生成中可能控制Smyd1表达的DNA调控元件。Smyd1基因近端的启动子包含有一些参与肌母细胞分化的转录因子结合位点,这些因子包括Myogenin、SRF和myocyte enhancer factor 2(MEF2)等。EMSA和ChIP分析表明SRF和Myogenin分别结合Smyd1启动子区域的CArG和E-box元件,共转染实验表明SRF和Myogenin的结合位点对于激活启动子是必须的。综合以上研究表明Smyd1基因被肌肉分化的核心调节因子直接调控,并且具有促进肌肉分化的功能。
     2.GCIP/CCNDBP1与E47和MyoD形成功能性复合物调节肌肉分化
     骨骼肌的分化是一个高度有序的多步骤的过程,也被称为肌肉发生。这一过程包括肌肉特异性基因的表达、肌细胞脱离分裂周期进入分化程序以及最后融合形成多核的肌管直至形成成熟的肌纤维。肌肉发生由一类肌肉特异性的碱性螺旋—环—螺旋转录因子家族基因(如MyoD)以及广泛表达的E—box基因共同协同调控。我们的研究表明,最近发现的螺旋—环—螺旋亮氨酸富急蛋白GCIP/CCNDBP1调节肌肉特异性基因表达以及E47/MyoD异源二聚物的形成。在C2C12成肌肉细胞分化过程中,GCIP的mRNA和蛋白表达水平都有所提高。在C2C12中过表达GCIP能促进E47/MyoD蛋白复合物的形成,激活肌肉特异性下游基因表达并能促进肌管形成,而过表达GCIP的突变体则减弱E47/MyoD复合物形成。这些结果表明GCIP蛋白能够通过与E47/MyoD形成异源多聚物而促进肌肉分化。
     3.雌激素同受体α和Sp蛋白复合物调节KiSS1基因表达
     Kisspeptins是KiSS1基因编码的分泌型神经肽,后来被证明是G蛋白偶联受体-54(GPR54)的天然配体。刺激KiSS1/GPR54信号途径会激活下丘脑-垂体-性腺(HPG)轴并启动青春期发育。最近的证据表明在雌鼠中,雌激素(E_2)在前腹室旁核(AVPV)(一个重要的生殖内分泌下丘脑核区)激活KiSS1的表达,但是在弓状核(Arc)的作用却相反。虽然目前对KiSS1基因有了一些初步研究,但是对于E_2调控KiSS1表达的分子机制还知之甚少。我们证明在雌激素受体(ERα)阳性下丘脑GT1-7细胞中,加雌激素处理,KiSS1基因的表达水平增强。将KiSS1基因启动子偶联荧光素酶瞬时转染,在ERα存在时E_2增强启动子的活性。KiSS1启动子的缺失分析证明E_2调节启动子活性的作用依赖于启动子近端的Sp1位点。我们用凝胶阻滞(EMSA)实验证明Sp1和Sp3蛋白与启动子中多个保守的Sp1识别位点结合。有趣的是,Sp1转录激活KiSS1启动子活性,而Sp3则起转录抑制作用。Sp蛋白和ERα形成一个复合物,而E_2诱导的对KiSS1启动子的激活作用并不依赖于ERα的DNA结合结构域。染色质免疫沉淀(ChIP)分析证明Sp1和Sp3两者都结合KiSS1启动子上的GC富集序列,而ERα与KiSS1启动子的结合是依赖于E_2的激活,并随时间推移而结合增强。总之,这些结果证明了E_2通过ERα激活KiSS1基因的表达,而ERα则通过结合Sp1/Sp3蛋白并利用Sp1/Sp3识别结合KiSS1基因启动子上的GC富集区来刺激KiSS1基因转录。这有助于我们在分子水平理解类固醇激素对KiSS1的反馈调节作用。
     4.其它基因的研究
     证明在高转移性黑色素瘤细胞中,转移抑制基因KiSS1的表达受Sp1/DRIP130蛋白复合物的调控;证明GCIP基因在结肠癌中具有抑癌基因的特性,抑制结肠癌细胞系的生长;参与人类ZNF394、ZNF480、ZNF411、WDR26以及SNX-L等基因的克隆、表达和功能研究,这些基因多数在心脏中表达,将是心脏发育相关候选基因;通过对基因剔除小鼠的研究,证明GPR48/LGR4对小鼠骨骼以及眼睛发育有非常关键的作用。该基因的缺失将导致胚胎软骨终末发育迟缓、成骨细胞分化和矿化下降,成体骨密度,骨体积,骨形成率和类骨质都下降;导致眼前段发育不全,包括小眼、虹膜发育不全、角膜发育异常和白内障,在老年小鼠中还能检测到神经节细胞丧失、内核层变薄和早发型青光眼。
The recognition and association of transcriptional factors tothe target regulatory element of downstream gene are the firstand pivotal step of gene transcription which is highlyregulated by both cis-and trans-acting factors. Although genetranscripts are synthesized by RNA polymerase, the special andtemporal expression pattern of each gene is distinct, which isdue to the combinatorial regulation of multipletranscriptional factors. During my doctoral thesis research,the projects including the studies of transcriptionalregulations of a cardiac and muscle specific gene Smyd1 and apuberty related gene KiSS1. These studies revealed how theexpressions of these two genes are regulated by upstream genesor extracellular signals on the molecular level, which are thedirect molecular evidences to support in vivo studies. At thesame time, functional studies of a HLH transcriptional factor,named GCIP, during myogenesis has been done as wellas some ofcollaborative researches.
     1. Smyd1 gene, the direct target of SRF and Myogenin, promotes myogenesis
     Smyd1 is a heart and muscle specific SET-MYND domaincontaining protein functioning as a methyltransferase whichmodifies H3-K4 residues and activates downstream genetranscription. In adult human tissues tested, Smyd1 isrestricted in heart and skeletal muscle. Over-expression ofSmyd1 promotes myoblasts differentiation and myotube formationin C2C12 cells due to up-regulation of muscle specifictranscriptional factors. The expression of Smyd1 is elevatedwhen serum response factor (SRF) and Myogenin is over-expressedin myoblasts respectively. We isolated the Smyd1 gene promoterand identified DNAregulatory elements that might control Smyd1expression during Myogenesis. The proximal promoter of theSmyd1 gene contained binding sites for several factors involvedin myoblasts differentiation including Myogenin, SRF, andmyocyte enhancer factor 2 (MEF2). EMSA. and ChIP assaysdemonstrated that SRF and Myogenin bind to CArG and E-boxelements on Smyd1 promoter region respectively.Co-transfection experiments suggested that binding sites ofboth Myogenin and SRF are necessary for activation of thepromoter. Taken together, these studies indicate that Smyd1 isa key regulator of myogenic differentiation which acts as a downstream target of muscle regulatory factors.
     2. GCIP/CCNDBP1 regulates myogenic differentiation by forminga functional protein complex with E47 and MyoD
     Differentiation of skeletal muscle is a highly orderedmulti-step process called myogenesis, which involves theexpression of muscle-specific genes, withdrawal of cell cycleand formation of multinucleated myotube. It is controlled bya family of muscle-specific basic helix-loop-helix (bHLH)transcription factors, such as MyoD, by heterodimerizationwith ubiquitous bHLH proteins, called E proteins, to activatemuscle genes by binding E-boxes (CANNTG). In this study, weshow that GCIP/CCNDBP1, a recently identified HLH leucine-richprotein without a predicted basic DNAbinding region, regulatesmuscle specific gene expression and E47/MyoDheterodimerization. Both the mRNA and protein expressionlevels of GCIP were up-regulated during myogenicdifferentiation of C2C12 cells. Over-expression of GCIP inC2C12 cells promotes E47/MyoD complex association, activationof muscle specific transcription,and myotube formation duringskeletal muscle cell differentiation while the mutant form ofGCIP reduced the E47/MyoD heterodimerization and inefficient muscle differentiation. These findings identify a novelpro-myogenic role for the recently identified GCIP/CCNDBP1protein in forming a functional protein complex with MyoD/E47heterodimers that are essential for myogenesis.
     3. Estrogen regulates KiSS1 gene expression through estrogenreceptorαand SP protein complexes
     Kisspeptins, secreting neuropeptides encoded by the KiSS1(KiSS-1) gene, are natural ligands of a newly identified Gprotein-coupled receptor-54, GPR54. Activation ofKiSS1/GPR54 signaling results in potent activation ofhypothalamus-pituitary-gonadal axis and initiates puberty.Recent data has shown that in female mice KiSS1 is positivelyregulated by estradiol (E_2) in the anteroventralperiventricular nucleus (AVPV), an important reproductiveneuroendocrine brain region, but negatively regulated in thearcuate nucleus (Arc). However, little is known about themolecular mechanisms governing E_2 modulated KiSS1 expression.Here, we demonstrate that the expression level of KiSS1 genewas upregulated with the administration of E_2 in estrogenreceptor alpha (ERα) positive hypothalamus GT1-7 cells. Usingtransient transfection of the human KiSS1 gene promoter coupled to luciferase, E_2 increases promoter activity in the presenceof ERα. Deletion analysis of the KiSS1 promoter indicatesthat the E_2-regulated increase in promoter activity dependedon Spl sites located on the proximal promoter region. Usingelectrophoretic mobility shift assays (EMSA), we determinedthat both Spl and Sp3 proteins associate with the four putativeSp1 sites in vitro. Interestingly, Spl transactivates KISS1promoter activity whereas Sp3 functions as a transcriptionalrepressor. Sp1 and ERαform a complex in vivo and the DNAbinding domain of ERαis not necessary to mediate the E_2 inducedactivation of KiSS1 promoter. Chromatin immunoprecipitation(ChIP) analyses demonstrated that both Sp1 and Sp3constitutively bound to GC-rich motif on the KiSS/ promoterwhile the association of ERαwith the KiSS1 promoter isdependent on E_2 exposure. Together, these results demonstratethat E_2 dependent transcriptional activation of the KiSS1 geneis mediated by ERαthrough the interaction of Sp1/Sp3 proteinswith GC-rich motifs of KiSS1 promoter, providinga molecularnechanism in our understanding how steroid hormones feedbackregulate KISS1 expression in the HPG axis.
     4. Research on other genes
     The expression of metastasis suppressor gene KiSS1 is regulated by Sp1/DRIP130 complex in highly metastatic melanoma cells.GCIP/CCNDBP1, a helix-loop-helix protein, suppressestumorigenesis. Identification and characterization of humannovel genes including ZNF394, ZNF480, ZNF411, WDR26 and SNX-L,some of which are expressed in the heart tissue. Through geneknockout method, GPR48/LGR4 has been identified as an orphanGPCR involved in bone and eye development.
引文
[1] Benjamin L. Gene Ⅷ.北京:科学出版社,2005.707-730
    [2] Shilatifard, A., Conaway, R. C., and Conaway, J. W. The RNA polymerase Ⅱ elongation complex. Annu. Rev. Biochem, 2003, 72: 693-715
    [3] Helmann, J. D. and Chamberlin, M. Structure and function of bacterial sigma factors. Annu. Rev. Biochem, 1988, 57: 839-872
    [4] Lemon, B. and Tjian, R. Orchestrated response: a symphony of transcription factors forgene control. Genes Dev, 2000, 14: 2551-2569.
    [5] Ptashne, M.How eukaryotic transcriptional activators work. Nature, 1988, 335: 683-689.
    [6] Harrison, S. C. A structural taxonomy of DNA-binding proteins. Nature 1991, 353: 715-719.
    [7] Pabo, C. T. and Sauer, R. T. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem, 1992, 61: 1053-1095.
    [8] Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science, 1988, 240: 889-895.
    [9] Tsai, M J, and O'Malley, B W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem, 1994, 63: 451-486.
    [10] Pavletich, N. P. and Pabo, C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 21(?). Science, 1991, 252: 809-817.
    [11] Gehring, W. J. et al. Homeodomain-DNA recognition. Cell, 1994, 78: 211-223.
    [12] Weintraub, H. The MyoD gene family: nodal point during specification of the muscle cell lineage. Science, 1991, 251: 761-766.
    [13] Murre, C., McCaw, P. S., and Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989, 56: 777-783.
    [14] Vinson, C. R., Sigler, P. B., and McKnight, S. L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 1989, 246: 911-916.
    [15] Workman, J. L. and Roeder, R. G. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase Ⅱ. Cell, 1987, 51: 613-622.
    [16] Jenuwein, T. and Allis, C. D. Translating the histone code. Science, 2001, 293: 1074-1080.
    [17] Brown, D. D. The role of stable complexes that repress and attivate eukaryotic genes. Cell, 1984, 37: 359-365.
    [18] Verreault, A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev, 200014: 1430-1438.
    [19] Turner, B. M., Birley, A. J., and Lavender, J.Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytenenuclei. Cell, 1992, 69: 375-384.
    [20] Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homologue to yeast Gcn5p linking histone acetylation to gene activation. Cell, 1996, 84: 843-851.
    [21] Richards, E. J., Elgin, S. C., and Richards, S. C. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell, 2002, 108: 489-500.
    [22] Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histoneacetyltransferase and forms a multimeric activation complex with P/CAF and CP/p300. Cell, 1997, 90: 569-580.
    [23] Lee, T. I., Causton, H. C., Holstege, F. C., Shen, W. C., Hannett, N., Jennings, E. G., Winston, F., Green, M. R., and Young, R. A.Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 2000, 405: 701-704.
    [24] Zhang, Y. and Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 2001, 15: 2343-2360.
    [25] S.F. Konieczny, A.S. Baldwin and C.P. Emerson, Myogenic determination and differentiation in 10T1/2 cell lineages: evidence for a simple genetic regulatory system, Mol Cell Biol, 1988, 29: 21-31.
    [26] J. Choi, M.L. Costa, C. Mermelstein, S. Chagas, S. Holtzer and H. Holtzer, MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigment epithelial cells into striated, mononucleated myoblasts and multinucleated myotubes, Proc Natl Acad Sci USA, 1990, 87: 7988-7992.
    [27] R.L. Davis, H. Weintraub and A.B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, 1987, 51: 987-1000.
    [28] H. Weintraub, S.J. Tapscott, R.L. Davis, M.J. Thayer, M.A. Adam and A.B. Lassar et al., Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD, Proc Natl Acad Sci USA, 1989, 86: 5434-5438.
    [29] H. Weintraub, R.J. Davis, S.J. Tapscott, M.J. Thayer and M. Krause et al., The MyoD gene family: nodal point during specification of the muscle cell lineage, Science, 1991, 251: 761-766.
    [30] T.K.Blackwell and H.Weintraub, Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection, Science, 1990, 250: 1104-1110.
    [31] A.B. Lassar, J.N. Buskin, D. Lockshon, R.L. Davis, S. Apone and S.D. Hauschka et al., MyoD is a sequence-specific DNA-binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer, Cell, 1989, 58 (5): 823-831.
    [32] T. Braun, G. Buschhausen-Denker, E. Bober, E. Tannich and H.H. Arnold, A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts, EMBO J, 1989, 8: 701-709.
    [33] D.G. Edmondson and E.N. Olson, A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program, Genes Dev, 1989, 3: 628-640.
    [34] J.H. Miner and B. Wold, Herculin, a fourth member of the MyoD family of myogenic regulatory genes, Proc Natl Acad Sci USA, 1990, 87: 1089-1093.
    [35] M. Buckingham, Skeletal muscle formation in vertebrates, Curr Opin Genet Dev, 2001, 11: 440-448.
    [36] M.A. Rudnicki, P.N. Schnegelsberg, R.H. Stead, T. Braun, H.H. Arnold and R. Jaenisch, MyoD or Myf5 is required for the formation of skeletal muscle, Cell, 1993, 75: 1351-1359.
    [37] B. Kablar, A. Asakura, K. Krastel, C. Ying, L.L. May and D.J. Goldhamer et al., MyoD and Myf5 define the specification of musculature of distinct embryonic origin, Biochem Cell Biol,1998, 76: 1079-1091.
    [38] P. Hasty, A. Bradley, J.H. Morris, D.G. Edmondson, J.M. Venuti and E.N. Olson et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene, Nature, 1993, 364: 501-506.
    [39] Y.K. Nabeshima, M. Hanaoka, M. Hayasaka, E. Esumi, S. Li and I. Nonaka, Myogenin gene disruption results in perinatal lethality because of severe muscle defect, Nature, 1993, 364: 532-535.
    [40] Y. Wang and R. Jaenisch, Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently, Development, 1997, 124(13): 2507-2513.
    [41] D.A. Bergstrom and S.J. Tapscott, Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family, Mol Cell Biol, 2001, 21 (7): 2404-2412.
    [42] Z. Zhu and J.B. Miller, MRF4 can substitute for myogenin during early stages of myogenesis, Dev Dyn, 1997, 209: 233-241.
    [43] V.M. Sumariwalla and W.H. Klein, Similar myogenic functions for myogenin and MRF4 but not MyoD in differentiated murine embryonic stem cells, Genesis, 2001, 30: 239-249.
    [44] A. Myer, E.N. Olson and W.H. Klein, MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells, Dev Biol, 2001, 229: 340-350.
    [45] L. Kassar-Duchossoy, B. Gayraud-Morel, D. Gomes, D. Rocancourt, M. Buckingham and V. Shinin et al., Mrf4 determines skeletal muscle identitiy in Myf5:MyoD double-mutant mice, Nature, 2004, 431: 466-471.
    [46] C. Chanoine, B.D. Gaspera and F. Charbonnier, Myogenic regulatory factors: redundant or specific functions? Lessons from Xenopus, Dev Dyn, 2004, 231: 662-670.
    [47] A. Fujisawa-Sehara, Y. Nabeshima, T. Komiya, T. Uetsuki, A. Asakura and Y. Nabeshima, Differential trans-activation of muscle-specific regulatory elements including the myosin light chain box by chicken MyoD, myogenin, and MRF4, J Biol Chem, 1992, 267(14): 10031-10038.
    [48] K.E. Yutzey, S.J. Rhodes and S.F. Konieczny, Differential trans-activation associated with the muscle regulatory factors MyoD1, myogenin, and MRF4, Mol Cell Biol, 1990, 10: 3934-3944.
    [49] R. Benezra, R.L. Davis, D. Lockshon, D.L. Turner and H. Weintraub, The protein Id: a negative regulator of helix-loop-helix DNA-binding proteins, Cell, 1990, 61: 49-59.
    [50] L.A. Neuhold and B. Wold, HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id, Cell, 1993, 74: 1033-1042.
    [51] D.B. Spicer, J. Rhee, W.L. Cheung and A.B. Lassar, Inhibition of myogenic bHLH and Mef2 transcription factors by the bHLH protein Twist, Science, 1996, 272: 1476-1480.
    [52] Y. Hamamori, H.Y. Wu, V. Sartorelli and L. Kedes, The basic domain of myogenic basic helix-loop-helix (bHLH) Proteins is the novel target for direct inhibition by another bHLH protein, Twist Mol Cell Biol, 1997, 17: 6563-6573.
    [53] C. Lemercier, R.Q. To, R.A. Carrasco and S.F. Konieczny, The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of MyoD, EMBO J, 1998, 17(5): 412-1422.
    [54] J. Lu, R. Webb, J.A. Richardson and E.N. Olson, MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD, Proc Natl Acad Sci USA, 1999, 96(2): 552-557.
    [55] A.C. Chen, N. Kraut, M. Groudine and H. Weintraub, I-mr, a novel myogenic repressor, interacts with members of the MyoD family, Cell, 1996, 86:. 731-741.
    [56] L. Snider, H. Thirlwell, J.R. Miller, R.T. Moon, M. Groudine and S.J. Tapscott, Inhibition of Tcf3 binding by I-mfa domain proteins, Mol Cell Biol, 2001, 21 (5): 1866-1873.
    [57] M. Ramalho-Santos, S. Yoon, Y. Matsuzaki, R.C. Mulligan and D.A. Melton, "Stemness": transcriptional profiling of embryonic and adult stem cells, Science, 2002, 298(5593): 597-600.
    [58] B.L. Black and E.N. Olson, Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins, Annu Rev Cell Dev Biol, 1998, 81: 167-196.
    [59] L.A. Gossett, D.J. Kelvin, E.A. Sternberg and E.N. Olson, A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes, Mol Cell Biol, 1989, 9: 5022-5033.
    [60] J.D. Molkentin, B.L. Black, J.F. Martin and E.N. Olson, Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins, Cell 83 (1995), pp. 1125-1136.
    [61] W.W. Wasserman and J.W. Fickett, Identification of muscle regulatory regions which confer muscle-specific gene expression, J Mol Biol, 1998, 278: 167-181.
    [62] B. Lily, B. Zhao, G. Ranganayakulu, B.M. Paterson, R.A. Schultz and E.N. Olson, Requirement of MADS domain transcription factor D-Mef2 for muscle formation in Drosophila, Science, 1995, 267: 688-693.
    [63] Q. Lin, J. Schwarz, C. Bucana and E.N. Olson, Control of mouse cardiac morphogenesis and myogenesis by transcription factor Mef2C, Science, 1997, 276: 1404-1407.
    [64] B.H. Penn, D.A. Bergstrom, F.J. Dilworth, E. Bengal and S.J. Tapscott, A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation, Genes Dev, 2004, 18: 2348-2353.
    [65] S. Arber, G. Halder and P. Caroni, Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation, Cell, 199479: 221-231.
    [66] Y. Kong, M.J. Flick, A.J. Kudla and S.F. Konieczny, Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD, Mol Cell Biol, 1997, 17(8): 4750-4760.
    [67] E. Biesiada, Y. Hamamori, L. Kedes and V. Sartorelli, Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac a-actin promoter, Mol Cell Biol, 1999, 19: 2577-2584.
    [68] T.A. Gustafson and L. Kedes, Identification of multiple proteins that interact with functional regions of the human cardiac a-actin promoter, Mol Cell Biol, 1989, 9: 3269-3283.
    [69] Shore P. and Sharrocks A.D. The MADS-box family of transcription factors. Eur. J. Biochem, 1995, 229: 1-13.
    [70] Black B.L. and Olson E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol, 1998, 14: 167-196.
    [71] Pellegrini L., Tan S., Richmond T.J.Structure of serum response factor core bound to DNA. Nature, 1995, 376: 490-498.
    [72] Santelli E. and Richmond T.J. Crystal structure of MEF2A core bound to DNA at 1.5 (?)resolution. J. Mol. Biol, 2000, 297: 437-449.
    [73] Sun Q., Chen G., Streb J.W., Long X., Yang Y., Stoeckert C.J. Jr., Miano J.M. Defining the mammalian CArGome. Genome Res, 2006a, 16: 197-207
    [74] Norman C., Runswick M., Pollock R., Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 1988, 55: 989-1003.
    [75] Miwa T. and Kedes L.Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol. Cell. Biol, 1987, 7: 2803-2813.
    [76] Chow K.L. and Schwartz R.J.A combination of closely associated positive and negative cis-acting promoter elements regulates transcription of the skeletal α-actin gene. Mol. Cell. Biol, 1990, 10: 528-538.
    [77] Chang P.S., Li L., McAnally J., Olson E.N.Muscle specificity encoded by specific serum response factor-binding sites. J. Biol. Chem, 2001, 276: 17206-17212.
    [78] Hautmann M.B., Madsen C.S., Mack C.P., Owens G.K.Substitution of the degenerate smooth muscle (SM) α-actin CC(A/T-rich)_6GG elements with c-los serum response elements results in increased basal expression but relaxed SM cell specificity and reduced angiotensin Ⅱ inducibility. J. Biol. Chem, 1998, 273: 8398-8406.
    [79] Soulez M., Rouviere C.G., Chafey P., Hentzen D., Vandromme M., Lautredou N., Lamb N., Kahn A., Tuil D.Growth and differentiation of C2 myogenic cells are dependent on serum response factor. Mol. Cell. Biol, 1996, 16: 6065-6074.
    [80] Wei L., Zhou W., Croissant J.D., Johansen F.E., Prywes R., Balasubramanyam A., Schwartz R.J.RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J. Biol. Chem, 1998, 273: 30287-30294.
    [81] Kaplan-Albuquerque N., Van Putten V., Weiser-Evans M.C., Nemenoff R.A. Depletion of serum response factor by RNA interference mimics the mitogenic effects of platelet derived growth factor-BB in vascular smooth muscle cells. Circ. Res, 2005, 97: 427-433.
    [82] Landerholm T.E., Dong X.R., Lu J., Belaguli N.S., Schwartz R.J., Majesky M.W.A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development, 1999, 126: 2053-2062.
    [83] Zhang X., Chai J., Azhar G., Sheridan P., Borras A.M., Furr M.C., Khrapko K., Lawitts J., Misra R.P., Wei J.Y.Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J. Biol. Chem, 2001, 276: 40033-40040.
    [84] Arsenian S., Weinhold B., Oelgeschlager M., Ruther U., Nordheim A.Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J, 1998, 17: 6289-6299.
    [85] Schratt G., Philippar U., Berger J., Schwarz H., Heidenreich O., Nordheim A. Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J. Cell Biol, 2002, 156: 737-750.
    [86] Schratt G., Philippar U., Hockemeyer D., Schwarz H., Alberti S., Nordheim A. SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development. EMBO J, 2004, 23: 1834-1844.
    [87] O. Halevy, B.G. Novitch, D.B. Spicer, S.X. Skapek, J. Rhee and G.J. Hannon et al., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD, Science, 1995, 267: 1018-1021.
    [88] A.D. Otten, E.J. Firpo, A.N. Gerber, L.L. Brody, J.M. Roberts and S.J. Tapscott, Inactivation of MyoD-mediated expression of p21 in tumor cell lines, Cell Growth Differ, 1997, 8: 1151-1160.
    [89] D.A. Bergstrom, B.H. Penn, A. Strand, R.L.S. Perry, M.A. Rudnicki and S.J. Tapscott, Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression, Mol Cell, 2000, 9: 587-600.
    [90] L.P. Lim, N.C. Lau, P. Garrett-Engele, A. Grimson, J.M. Schelter and J. Castle et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs, Nature, 2005, 433(7027): 769-773.
    [91] T. Ito, T. Ikehara, T. Nakagawa, W.L. Kraus and M. Muramatsu, p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone, Genes Dev, 2000, 14(15): 1899-1907.
    [92] A. Polesskaya, I. Naguibneva, L. Fritsch, A. Duquet, S. Ait-Si-Ali and P. Robin et al., CBP/p300 and muscle differentiation: no HAT, no muscle, EMBO J, 2001, 20(23): 6816-6825.
    [93] P.L. Puri, M.L. Avantaggiati, C. Balsano, N. Sang, A. Graessmann and A. Giordano et al., p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription, EMBO J, 1997, 16: 369-383.
    [94] P.L. Puri, V. Sartorelli, X.J. Yang, Y. Hamamori, V.V. Ogryzko and B.H. Howard et al., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation, Mol Cell, 1997, 1 (1): 35-45.
    [95] V. Sartorelli, P.L. Puff, Y. Hamamori, V.V. Ogryzko, G. Chung and Y. Nakatani et al., Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program, Mol Cell, 1999, 4(5): 725-734.
    [96] A. Polesskaya, A. Duquet, I. Naguibneva, C. Weise, A. Vervisch and E. Bengal et al., CREB-binding protein/p300 activates MyoD by acetylation, J Biol Chem, 2000, 275: 34359-34364.
    [97] F.J. Dilworth, K.S. Seaver, A. Fishburn, S. Htet and S.J. Tapscott, In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation, Proc Natl Acad Sci USA, 2004, 101(32): 11593-11598.
    [98] A. Polesskaya, I.Naguibneva, A. Duquet, E. Bengal, P. Robin and A.Harel-Bellan, Interaction between acetylated MyoD and the bromodomain of CBP and/or p300, Mol Cell Biol, 2001, 21 (16): 5312-5320
    [99] U. Dressel, P.J. Bailey, S.C. Wang, M. Downes, R.M. Evans and G.E. Muscat, A dynamic role for HDAC7 in MEF2-mediated muscle differentiation, J Biol Chem, 2001, 276(20): 17007-17013.
    [100] T.A. McKinsey, C.L. Zhang and E.N. Olson, Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5, Proc Natl Acad Sci USA, 2000, 97 (26): 14400-14405.
    [101] T.A. McKinsey, C.L. Zhang and E.N. Olson, Control of muscle development by dueling HATs and HDACs, Curr Opin Genet Dev, 2001, 286(1): 80-86.
    [102] P.L. Puri, S. Iezzi, P. Stiegler, T.T. Chen, R.L. Schiltz and G.E. Muscat et al., Class Ⅰ histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis, Mol Cell, 2001, 8 (4): 885-897.
    [103] J. Lu, T.A. McKinsey, C.L. Zhang and E.N. Olson, Regulation of skeletal myogenesis by association of the MEF2 transcriptionfactor with class Ⅱ histone deacetylases, Mol Cell, 2000, 6: 233-244.
    [104] A. Mal, M. Stumiolo, R.L. Schiltz, M. Ghosh and M.L. Harter, A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program, EMBO J, 2001, 20: 1739-1753.
    [105] Z. Wu, P.J. Woodring, K.S. Bhakta, K. Tamura, F. Wen and J.R. Feramisco et al., p38 and extracellular signal-regulated kinase regulate the myogenic program at multiple steps, Mol Cell Biol, 2001, 20: 3951-3964.
    [106] D.M. Cox, M. Du, M. Marback, E.C. Yang, J. Chan and K.W. Siu et al., Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A, J Biol Chem, 2003, 278: 15297-15303.
    [107] J. Han, Y. Jiang, Z. Li, V.V. Kravchenko and R.J. Ulevitch, Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation, Nature, 1997, 386: 296-299.
    [108] O.I. Omatzky, D.M. Cox, P. Tangirala, J.J. Andreucci, Z.A. Quinn and J.L. Wrana et al., Post-translational control of the MEF2A transcriptional regulatory protein, Nucleic Acids Res, 1999, 27: 2646-2654.
    [109] M. Zhao, L. New, V.V. Kravchenko, Y. Kato, H. Gram and F. di Padova et al., Regulation of the MEF2 family of transcription factors by p38, Mol Cell Biol, 1999, 19: 21-30.
    [110] J. Han, J.D. Lee, Y. Jiang, Z. Li, L. Feng and R.J. Ulevitch, Characterization of the structure and function of a novel MAP kinase (MKK6), J Biol Chem, 1996, 271: 2886-2891.
    [111] P.L. Puri, Z. Wu, P. Zhang, L.D. Wood, K.S. Bhakta and J. Han et al., Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells, Genes Dev, 2000, 14: 574-584.
    [112] C. Simone, S.V. Forcales, D.A. Hill, A.N. Imbalzano, L. Latella and P.L. Puri, p38 pathway targets SWI-SNF chromatin remodeling complex to muscle-specific loci, Nat Genet, 2004, 36(7)738-743.
    [113] A.L. Clayton, S. Rose, M.J. Barratt and L.C. Mahadevan, Phosphoacetylation of histone H3 on c-fos and c-jun-associated nucleosomes upon gene activation, EMBO J, 2000, 19(14): 3714-3726.
    [114] S. Thomson, A.L. Clayton, C.A. Hazzalin, S. Rose, M.J. Barratt and L.C. Mahadevan, The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase, EMBO J, 1999, 18(17): 4779-4793.
    [115] Spratt DI et al. Neuroendocrine-gonadal axis in men: frequent sampling of LH, FSH, and testosterone. Am J Physiol, 1988, 254: E658-E666
    [116] Santoro N et al. Alterations of the hypothalamic GnRH interpulse interval sequence over the normal menstrual cycle. Am J Physiol, 1988, 255: E696-E701
    [117] Spratt DI et al. The spectrum of abnormal patterns of gonadotropin-releasing hormone secretion in men with idiopathic hypogonadotropic hypogonadism: clinical and laboratory correlations. J Clin Endocrinol Metab, 1987, 64: 283-291
    [118] Santoro N et al. Hypogonadotropic disorders in men and women: diagnosis and therapy with pulsatile gonadotropin-releasing hormone. Endocr Rev, 1986, 7: 11-23
    [119] Berga SL et al. Neuroendocrine aberrations in women with functional hypothalamic amenorrhea. J Clin Endocrinol Metab, 1989, 68: 301-308
    [120] Perkins RB et al. Neuroendocrine abnormalities in hypothalamic amenorrhea: spectrum, stability, and response to neurotransmitter modulation. J Clin Endocrinol Metab, 1999, 84: 1905-1911
    [121] Waldstreicher J et al. Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metab, 1988, 66: 165-172
    [122] Lee JH, Miele ME, Hicks DJ, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst, 1996, 88 (23): 1731-1737.
    [123] Lee, J.H., Welch, D.R.Identification of highly expressed gene in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int. J. Cancer, 1997, 71: 1035-1041.
    [124] Muir, A.I., Chamberlain, L., Elshourbagy, N.A., Michalovich, D., Moore, D.J., Calamari, A., Szekeres, P.G., Sarau, H.M., Chambers, J.K., Murdock, P., Steplewski, K., Shabon, U., Miller, J.E., Middleton, S.E., Darker, J.G., Larminie, C.G., Wilson, S., Bergsma, D.J., Emson, P., Faull, R., Philpott, K.L., Harrison, D.C. AXOR12, a novel human G proteincoupled receptor, activated by the peptide KiSS-1. J. Biol. Chem, 2001, 276: 28969-28975
    [125] Clements, M.K., McDonald, T.P., Wang, R., Xie, G., O'Dowd, B.F., George, S.R., Austin, C.P., Liu, Q. FMRFamide-related neuropeptides are agonists of the orphan G-protein-coupled receptor GPR54. Biochem. Biophys. Res. Commun, 2001, 284: 1189-1193.
    [126] Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J.M., Le Poul, E., Brezillon, S., Tyldesley, R., Suarez-Huerta, N., Vandeput, F., Blanpain, C., Schiffmann, S.N., Vassart, G., Parmentier, M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J. Biol. Chem, 2001, 276: 34631-34636.
    [127] Hori, A., Honda, S., Asada, M., Ohtaki, T., Oda, K., Watanabe, T., Shintani, Y., Yamada, T., Suenaga, M., Kitada, C., Onda, H., Kurokawa, T., Nishimura, O., Fujino, M. Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem. Biophys. Res. Commun, 2001, 286: 958-963.
    [128] Stafford, L.J., Xia, C., Ma, W., Liu, M. Identification and Characterization of Mouse Metastasis-suppressor KiSS1 and Its G-Protein-coupled receptor. Cancer Res, 2002, 62: 5399-5404.
    [129] Ohtaki T, Shintani Y, Honda S, et al. Metastasis suppressor gene KISS21 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411 (68370): 613-617.
    [130] Dun SL, Brailoiu GC, ParsonsA, et al. Metastin2like immunoreactivity in the ratmedulla oblongata and spinal cord[J]. Neurosci Lett, 2003, 335 (3): 197-201.
    [131] Muir AI, Chamberlain L, Elshourbagy NA, et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide Kiss-1. J Biol Chem, 2001, 276(31): 28969-28975
    [132] Shahab M et al. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Nat Acad Sci USA, 2005, 102: 2129-2134
    [133] Gottsch ML et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology, 2004, 145: 4073-4077
    [134] Irwig MS et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KISS1 mRNA in the male rat. Neuroendocrinology, 2004, 80: 264-272
    [135] Messager SM et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Nat Acad Sci USA, 2005, 102: 1761-1766
    [136] Navarro VM et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology, 2004, 145: 4565-4574
    [137] Waldstreicher J et al. The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human. J Clin Endocrinol Metab, 1996, 81: 4388-4395
    [138] de Roux N et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Nat Acad Sci USA, 2003, 100: 10972-10976
    [139] Seminara SB et al. The GPR54 gene as a regulator of puberty. N Engl J Med, 2003, 349: 1614-1627
    [140] Seminara, S.B., Messager, S., Chatzidaki, E.E., Thresher, R.R., Acierno Jr., J.S., Shagoury, J.K., Bo-Abbas, Y., Kuohung, W., Schwinof, K.M., Hendrick, A.G., Zahn, D., Dixon, J., Kaiser, U.B., Slaugenhaupt, S.A., Gusella, J.F., O'RahiUy, S., Carlton, M.B., Crowley Jr., W.F., Aparicio, S.A., Colledge, W.H.The GPR54 gene as a regulator of puberty. N. Engl. J. Med, 2003, 349, 1614-1627.
    [141] Colledge, W.H., 2004. GPR54 and puberty. Trends Endocrinol. Metab. 15, 448-453.
    [142] Funes, S., Hedrick, J.A., Vassileva, G., Markowitz, L., Abbondanzo, S., Golovko, A., Yang, S., Monsma, F.J., Gustafson, E.L. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem. Biophys. Res. Commun, 2003, 312, 1357-1363.
    [143] Gottsch ML et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology, 2004, 145: 4073-4077
    [144] Irwig MS et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS1 mRNA in the male rat. Neuroendocrinology, 2004, 80: 264-272
    [145] Navarro VM et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology, 2004, 145: 4565-4574
    [146] Matsui H et al. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun, 2004, 320: 383-388
    [147] Thompson EL et al. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol, 2004, 16: 850-858
    [148] Navarro VM et al. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol, 2004, 561: 379-386
    [149] Shahab M et al. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Nat Acad Sci USA, 2005, 102: 2129-2134
    [150] Messager SM et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Nat Acad Sci USA, 2005, 102: 1761-1766
    [151] Dhillo WS et al. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. J Clin Endocrinol Metab, 2005, 90: 6609-6615
    [152] Navarro VM et al. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology, 2005, 146: 156-163
    [153] Semple, R.K., Achermann, J.C., Ellery, J., Farooqi, I.S., Karet, F.E., Stanhope, R.G., O'Rahilly, S., Aparicio, S.A.Two novel missense mutations in g protein-coupled receptor 54 in apatient with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab, 2005, 90: 1849-1855.
    [154] Kinoshita, M., Tsukamura, H., Adachi, S., Matsui, H., Uenoyama, Y., Iwata, K., Yamada, S., Inoue, K., Ohtaki, T., Matsumoto, H., Maeda, K.I., 2005. Involvement of Central Metastin in the Regulation of Preovulatory LH Surge and Estrous Cyclicity in Female Rats. Endocrinology. 2005
    [155] Sahu, A., Crowley, W.R., Tatemoto, K., Balasubramaniam, A., Kalra, S.P.Effects of neuropeptide Y, NPY analog (norleucine4-NPY), galanin and neuropeptide K on LH release in ovariectomized (ovx) and ovx estrogen, progesterone-treated rats. Peptides, 1987, 8: 921-926.
    [156] Horvath, T.L., Pu, S., Dube, M.G., Diano, S., Kalra, S.P. A GABAneuropeptide Y (NPY) interplay in LH release. Peptides, 2001, 22: 473-481.
    [157] Hohmann, J.G., Teal, T.H., Clifton, D.K., Davis, J., Hruby, V.J., Han, G., Steiner, R.A., 2000. Differential role of melanocortins in mediating leptin's central effects on feeding and reproduction. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2000, 278: R50-R59.
    [158] Ebling, F.J., Hui, Y., Mirakhur, A., Maywood, E.S., Hastings, M.H. Photoperiod regulates the LH response to central glutamatergic stimulation in the male Syrian hamster. J. Neuroendocrinol, 1993, 5: 609-618.
    [159] Krasnow, S.M., Fraley, G.S., Schuh, S.M., Baumgartner, J.W., Clifton, D.K., Steiner, R.A., 2003. A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology, 2003, 144: 813-822.
    [160] Parhar, I.S., Ogawa, S., Sakuma, Y. Laser-captured single digoxigeninlabeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology, 2004, 145: 3613-3618.
    [161] Todman, M.G., Han, S.K., Herbison, A.E. Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience, 2005, 132: 703-712.
    [162] Becker, J.A., Mirjolet, J.F., Bernard, J., Burgeon, E, Simons, M.J., Vassart, G., Parmentier, M., Libert, F.Activation of GPR54 promotes cell cycle arrest and apoptosis of human tumor cells through a specific transcriptional program not shared by other Gq-coupled receptors. Biochem. Biophys. Res. Commun, 2005, 326: 677-686.
    [163] Masui, T., Doi, R., Mori, T., Toyoda, E., Koizumi, M., Kami, K., Ito, D., Peiper, S.C., Broach, J.R., Oishi, S., Niida, A., Fujii, N., Imamura, M. Metastin and its variant forms suppress migration of pancreatic cancer cells. Biochem. Biophys. Res. Commun, 2004, 315: 85-92.
    [164] Ringel, M.D., Hardy, E., Bernet, V.J., Burch, H.B., Schuppert, F., Burman, K.D., Saji, M. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. J. Clin. Endocrinol. Metab, 2002, 87: 2399.
    [165] Smith JT et al. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology, 2005, 146: 2976-2984
    [166] Smith JT et al. Regulation of KiSS1 gene expression in the brain of the female mouse. Endocrinology, 2005, 146: 3686-3692
    [167] Lee, K.J., Maizlin, I.I., Popa, S.M., Clifton, D.K., Steiner, R.A. Coexpression of Tyrosine Hydroxylase and KiSS-1 mRNA in the Anteroventral Periventricular Nucleus (AVPV) of the Female Mouse. In: Society for Neuroscience 35th Annual Meeting, Washington, D.C, 2005
    [168] Simerly, R.B., Chang, C., Muramatsu, M., Swanson, L.W.Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol, 1990, 294: 76-95.
    [169] Shughrue, P.J., Lane, M.V., Merchenthaler, I.Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J. Comp. Neurol, 1997, 388: 507-525.
    [170] Mitra, S.W., Hoskin, E., Yudkovitz, J., Pear, L., Wilkinson, H.A., Hayashi, S., Pfaff, D.W., Ogawa, S., Rohrer, S.P., Schaeffer, J.M., McEwen, B.S., Alves, S.E.Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology, 2003, 144: 2055-2067.
    [171] Canteras, N.S., Simerly, R.B., Swanson, L.W.Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol, 1994, 348: 41-79.
    [172] Simonian, S.X., Spratt, D.P., Herbison, A.E.Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. J. Comp. Neurol, 1999, 411: 346-358.
    [173] Soper, B.D., Weick, R.F.Hypothalamic and extrahypothalamic mediation of pulsatile discharges of luteinizing hormone in the ovariectomized rat. Endocrinology, 1980, 106: 348-355.
    [174] Simerly, R.B.Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav. Brain Res, 1998, 92: 195-203.
    [175] Simerly, R.B.Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci, 2002, 25: 507-536.
    [176] Gu, G.B., Simerly, R.B.Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J. Comp. Neurol, 1997, 384: 142-164.
    [177] Le, W.W., Berghorn, K.A., Rassnick, S., Hoffman, G.E.Periventricular preoptic area neurons coactivated with luteinizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology, 1999, 140: 510-519.
    [178] Krouwels IM, Wiesmeijer K, Abraham TE, Molenaar C, Verwoerd NP, Tanke HJ, Dirks RW. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J Cell Biol, 2005, 170: 537-549
    [179] Melcher M, Schmid M, Aagaard L, Selenko P, Laible G, Jenuwein T.Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol Cell Bio, 2000, 20: 3728-3741
    [180] Mal AK. Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. Embo J, 2006, 25: 3323-3334
    [181] Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev, 2004, 18: 2627-2638
    [182] Tan X, Rotllant J, Li H, De Deyne P, Du SJ. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA, 2006, 103: 2713-2718
    [183] Du SJ, Rotllant J, Tan X. Muscle-specific expression of the smyd1 gene is controlled by its 5.3-kb promoter and 5'-flanking sequence in zebrafish embryos. Dev Dyn, 2006, 235: 3306-3315
    [184] Phan D, Rasmussen TL, Nakagawa O, McAnally J, Gottlieb PD, Tucker PW, Richardson JA, Bassel-Duby R, Olson EN.BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development, 2005, 132: 2669-2678
    [185] Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y.SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol, 2004, 6: 731-740
    [186] Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M, Gruber A, Sjoberg J, Xu D.The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res, 2007, 67: 2626-2631
    [187] Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, Surani MA. Blimpl associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol, 2006, 8: 623-630.
    [188] Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev, 2002, 16: 479-489.
    [189] Xu JY, Chen LB, Xu JY, Yang Z, Wei HY, Xu RH.[Inhibition of SMYD3 gene expression by RNA interference induces apoptosis in human hepatocellular carcinoma cell line HepG2]. Ai Zheng, 2006, 25: 526-532.
    [190] Sims RJ, 3rd, Weihe EK, Zhu L, O'Malley S, Harriss JV, Gottlieb PD.m-Bop, a repressor protein essential for cardiogenesis, interacts with skNAC, a heart- and muscle-specific transcription factor. J Biol Chem, 2002, 277: 26524-26529.
    [191] Mark Eben Massari and Comelis Murre. Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. Mol Cell Biol, 2000, 20(2): 429-40
    [192] M Shirakata and B M Paterson. The E12 inhibitory domain prevents homodimer formation and facilitates selective heterodimerization with the MyoD family of gene regulatory factors. EMBO J. 1995 April 18; 14(8): 1766-1772
    [193] Y Zhung, CG Kim, S Bartelmez, P Cheng, M Groudine and H Weintraub. Helix-Loop-Helix Transcription Factors E12 and E47 are Not Essential for Skeletal or Cardiac Myogenesis, Erythropoiesis, Chondrogenesis, or Neurogenesis. Proc Natl Acad Sci U S A,_1992 Dec 15; 89(24): 12132-6
    [194] S R Cordle, E Henderson, H Masuoka, P A Weil and R Stein. Pancreatic beta-cell-type-specific transcription of the insulin gene is mediated by basic helix-loop-helix DNA-binding proteins. Mol Cell Biol. 1991 March; 11(3): 1734-1738
    [195] AF Voronova and F Lee. The E2A and Tal-1 Helix-Loop-Helix Proteins Associate in vivo and are Modulated by Id Proteins During Interleukin 6-Induced Myeloid Differentiation. Proc Natl Acad Sci USA,_1994 Jun 21; 91 (13): 5952-6
    [196] Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988 Oct 21; 242(4877): 405-11
    [197] Wright WE, Sassoon DA, Lin VK. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 1989 Feb 24; 56(4): 607-17
    [198] Braun T, Buschhausen-Denker G, Bober E, Tannich E, Amold HH. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 1989 Mar; 8(3): 701-9
    [199] Rhodes SJ, Konieczny SF. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 1989 Dec; 3(12B): 2050-61
    [200] Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 1989 Sep 8; 58(5): 823-31
    [201] Chanoine C, Della Gaspera B, Charbormier F. Myogenic regulatory factors: redundant or specific functions? Lessons from Xenopus. Dev Dyn. 2004 Dec; 231 (4): 662-70
    [202] Dedieu S, Mazeres G, Cottin P, Brustis JJ. Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int J Dev Biol. 2002 Mar; 46(2): 235-41
    [203] Montarras D, Chelly J, Bober E, Arnold H, Ott MO, Gros F, Pinset C. Developmental patterns in the expression of Myf5, MyoD, myogenin, and MRF4 during myogenesis. New Biol. 1991 Jun; 3(6): 592-600
    [204] Lindon C, Montarras D, Pinset C. Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol. 1998 Jan 12; 140(1): 111-8
    [205] Rudnicki MA, Braun T, Hinuma S, Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 1992 Oct 30, 71 (3): 383-90
    [206] Tajbakhsh S, Rocancourt D, Buckingham M. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature. 1996 Nov 21; 384(6606): 266-70
    [207] Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993 Aug 5; 364(6437): 532-5.
    [208] Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature. 1993 Aug 5; 364(6437): 501-6
    [209] Patapoutian A, Miner JH, Lyons GE, Wold B. Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice. Development. 1993 May; 118(1): 61-9
    [210] Rhodes SJ, Konieczny SF. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 1989 Dec; 3(12B): 2050-61
    [211] Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6; 61(1): 49-59
    [212] Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-1ike proteins in vivo. Cell. 1991 Jul 26; 66(2): 305-15
    [213] Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992 Aug; 6(8): 1466-79
    [214] Spicer DB, Rhee J, Cheung WL, Lassar AB. Inhibition of myogenic bHLH and MEF2 transcriPtion factors by the bHLH protein Twist. Science. 1996 Jun 7; 272(5267): 1476-80
    [215] Lemercier C, To RQ, Carrasco RA, Konieczny SF. The basic helix-loop-helix transcription factor Mistl functions as a transcriptional repressor of myoD. EMBO J. 1998 Mar 2; 17(5): 1412-22
    [216] Terai S, Aoki H, Ashida K, Thorgeirsson SS. Human homologue of maid: A dominant inhibitory helix-loop-helix protein associated with liver-specific gene expression. Hepatology. 2000 Aug; 32(2): 357-66
    [217] Xia C, Bao Z, Tabassam F, Ma W, Qiu M, Hua S, Liu M. GCIP, a novel human grap2 and cyclin D interacting protein, regulates E2F-mediated transcriptional activity. J Biol Chem. 2000 Jul 7; 275(27): 20942-8
    [218] Yao Y, Doki Y, Jiang W, Imoto M, Venkatraj VS, Warburton D, Santella RM, Lu B, Yan L, Sun XH, Su T, Luo J, Weinstein IB. Cloning and characterization of DIP1, a novel protein that is related to the Id family of proteins. Exp Cell Res. 2000 May 25; 257(1): 22-32.
    [219] Xiang H, Wang J, Mao Y, Liu M, Reddy VN, Li DW. Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene. 2002 May 23; 21 (23): 3784-91
    [220] Dedieu S, Mazeres G, Cottin P, Brustis JJ. Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int J Dev Biol. 2002 Mar; 46(2): 235-41.
    [221] Langlands K, Yin X, Anand G, Prochownik EV. Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J Biol Chem. 1997 Aug 8; 272(32): 19785-93
    [222] Roberts VJ, Steenbergen R, Murre C. Localization of E2A mRNA expression in developing and adult rat tissues. Proc Natl Acad Sci USA. 1993 Aug 15; 90(16): 7583-7
    [223] Bounpheng MA, Morrish TA, Dodds SG, Christy BA. Negative regulation of selected bHLH proteins by eHAND. Exp Cell Res. 2000 Jun 15; 257(2): 320-31
    [224] Hsu HL, Cheng JT, Chen Q, Baer R. Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol Cell Biol. 1991 Jun; 11 (6): 3037-42
    [225] Ik Tsen Heng J, Tan SS. The role of class Ⅰ HLH genes in neural development--have they been overlooked? Bioessays. 2003 Jul; 25(7): 709-16
    [226] Kageyama R, Sasai Y, Akazawa C, Ishibashi M, Takebayashi K, Shimizu C, Tomita K, Nakanishi S. Regulation of mammalian neural development by helix-loop-helix transcription factors. Crit Rev Neurobiol. 1995; 9(2-3): 177-88
    [227] Aronheim A, Shiran R, Rosen A, Walker MD. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci U S A. 1993 Sep 1; 90(17): 8063-7
    [228] Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989 Aug 11; 58(3): 537-44
    [229] Choi JK, Shen CP, Radomska HS, Eckhardt LA, Kadesch T. E47 activates the Ig-heavy chain and TdT loci in non-B cells. EMBO J. 1996 Sep 16; 15(18): 5014-21
    [230] Frasca D, Nguyen D, Riley RL, Blomberg BB. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol. 2003 Jan 15; 170(2): 719-26
    [231] Sigvardsson M. Overlapping expression of early B-cell factor and basic helix-loop-helix proteins as a mechanism to dictate B-lineage-specific activity of the lambda5 promoter. Mol Cell Biol. 2000 May; 20(10): 3640-54
    [232] Terasawa E, Fernandez DL. Neurobiological mechanisms of the onset of puberty in primates. Endocrine reviews, 2001, 22: 111-151
    [233] de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E.Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A, 2003, 100: 10972-10976
    [234] Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Jr., Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF, Jr., Aparicio SA, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med, 2003, 349: 1614-1627
    [235] Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA.Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology, 2004, 80: 264-272
    [236] Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun, 2004, 320: 383-388
    [237] Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA.A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology, 2004, 145: 4073-4077
    [238] Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology, 2005, 146: 156-163
    [239] Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA, 2005, 102: 2129-2134
    [240] Seminara SB, Kaiser UB. New gatekeepers of reproduction: GPR54 and its cognate ligand, KiSS-1. Endocrinology, 2005, 146: 1686-1688
    [241] Stafford LJ, Xia C, Ma W, Cai Y, Liu M. Identifieation and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-coupled receptor. Cancer Res, 2002, 62: 5399-5404
    [242] Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR.KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst, 1996, 88: 1731-1737
    [243] Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, Malli R, Sharabi A, Hiden U, Graier W, Knofler M, Andreae F, Wagner O, Quaranta V, Desoye G.Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci, 2004, 117: 1319-1328
    [244] Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 2001, 411: 613-617
    [245] Terasawa EDevelopmental changes in the positive feedback effect of estrogen on luteinizing hormone release in ovariectomized female rhesus monkeys. Endocrinology, 1985, 117: 2490-2497
    [246] Lania A, Gangi E, Romoli R, Losa M, Travaglini P, Meringolo D, Ambrosi B, Faglia G, Beck-Peccoz P, Spada A 2002 Impaired estrogen-induced negative feedback on gonadotropin secretion in patients with gonadotropin-secreting and nonfunctioning pituitary adenomas. Eur J Clin Invest 32: 335-340
    [247] Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of KiSS1 gene expression in the brain of the female mouse. Endocrinology, 2005, 146: 3686-3692
    [248] Estrada KM, Clay CM, Pompolo S, Smith JT, Clarke IJ. Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback. J Neuroendocrinol, 2006, 18: 806-809
    [249] richard n, Galmiche G, Corvaisier S, Kottler M.Expressions of KISS1 and GPR54 are differentially regulated by estradiol and GnRH in adult female rat pituitary. Endocrine Abstracts, 2006, 11: 686
    [250] Lonard DM, O'Malley BW. The expanding cosmos of nuclear receptor coactivators. Cell, 2006, 125: 411-414
    [251] Fleming JG, Spencer TE, Safe SH, Bazer FW. Estrogen regulates transcription of the ovine oxytocin receptor gene through GC-rich SP1 promoter elements. Endocrinology, 2006, 147: 899-911
    [252] Safe S, Kim K.Nuclear receptor-mediated transactivation through interaction with Sp proteins. Progress in nucleic acid research and molecular biology, 2004, 77: 1-36
    [253] Khan S, Abdelrahim M, Samudio I, Safe S. Estrogen receptor/Sp1 complexes are required for induction of cad gene expression by 17beta-estradiol in breast cancer cells. Endocrinology, 2003, 144: 2325-2335
    [254] Suske G. The Sp-family of transcription factors. Gene, 1999, 238: 291-300
    [255] Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams A J, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 2004, 116: 499-509
    [256] Wang W, Dong L, Saville B, Safe S. Transcriptional activation of E2F1 gene expression by 17beta-estradiol in MCF-7 cells is regulated by NF-Y-Sp1/estrogen receptor interactions. Mol Endocrinol, 1999, 13: 1373-1387
    [257] Wang F, Wang W, Safe S. Regulation of constitutive gene expression through interactions of Sp1 protein with the nuclear aryl hydrocarbon receptor complex. Biochemistry, 1999, 38: 11490-11500
    [258] Krishnan V, Wang X, Safe S.Estrogen receptor-Sp1 complexes mediate estrogen-induced cathepsin D gene expression in MCF-7 human breast cancer cells. J Biol Chem, 1994, 269: 15912-15917
    [259] Pang RT, Lee LT, Ng SS, Yung WH, Chow BK. CpG methylation and transcription factors Sp1 and Sp3 regulate the expression of the human secretin receptor gene. Mol Endocrinol 18: 471-483
    [260] Magee C, Nurminskaya M, Faverman L, Galera P, Linsenmayer TF 2005 SP3/SP1 transcription activity regulates specific expression of collagen type Ⅹ in hypertrophic chondrocytes. J Biol Chem, 2004, 280: 25331-25338
    [261] Wooten LG, Ogretmen B. Sp1/Sp3-dependent regulation of human telomerase reverse transcriptase promoter activity by the bioactive sphingolipid ceramide. J Biol Chem, 2005, 280: 28867-28876
    [262] Porter W, Wang F, Wang W, Duan R, Safe S. Role of estrogen receptor/Sp1 complexes in estrogen-induced heat shock protein 27 gene expression. Mol Endocrinol, 1996, 10: 1371-1378
    [263] Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology, 2005, 146: 2976-2984
    [264] Blondet A, Gout J, Durand P, Begeot M, Naville DExpression of the human melanocortin-4 receptor gene is controlledby several members of the Sp transcription factor family. J Mol Endocrinol, 2005, 34: 317-329
    [265] Lee LT, Tan-Un KC, Pang RT, Lam DT, Chow BK. Regulation of the human secretin gene is controlled by the combined effects of CpG methylation, Sp1/Sp3 ratio, and the E-box element. Mol Endocrinol, 2004, 18: 1740-1755
    [266] Nazian SJ. Role of metastin in the release of gonadotropin-releasing hormone from the hypothalamus of the male rat. J Androl, 2006, 27: 444-449
    [267] Castellano JM, Navarro VM, Fernandez-Fernandez R, Castano JP, Malagon MM, Aguilar E, Dieguez C, Magni P, Pinilla L, Tena-Sempere M.Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol Cell Endocrinol, 2006, 257-258: 75-83
    [268] Mitchell DC, Stafford LJ, Li D, Bar-Eli M, Liu MTranscriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene, 2006.
    [269] Mitchell DC, Abdelrahim M, Weng J, Stafford LJ, Safe S, Bar-Eli M, Liu M Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem, 2006, 281: 51-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700