用户名: 密码: 验证码:
ERR促进Glucokinase表达的功能研究PGC-1β调节ALAS1及线粒体相关基因的启动子转录机制的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤儿核受体ERRα和ERRγ均能被PPARγ的共激活因子PGC-1α所激活,PGC-1α是细胞能量代谢的关键调节子。葡萄糖激酶在调节肝脏中葡萄糖的利用发挥重要的作用,同时胰岛素可以促进其表达。我们的研究发现,葡萄糖激酶的启动子区有ERRα和ERRγ的结合位点,通过染色质免疫沉淀法进一步明确ERRγ可以结合在葡萄糖激酶的启动子区。同时发现在大鼠肝原代细胞中PGC-1α可以共激活ERR促进葡萄糖激酶基因的表达。这表明ERR在调节葡萄糖代谢方面发挥着重要的作用。当对葡萄糖激酶启动子区的ERR的结合元件进行突变,PGC-1α和ERR的共激活作用受到了抑制。对葡萄糖激酶的启动子区进行了一系列的截短实验,PGC-1α和ERR可以显著的共激活全长的葡萄糖激酶的启动子,但当截短至不含ERR的结合元件后,这种共激活作用受到了显著抑制。通过用合成的ERRα的抑制剂XCT790对ERRα进行抑制,明确了ERR在胰岛素促进葡萄糖激酶表达中起到了一定的作用。进一步的实验表明ERR和共激活子PGC-1α共同促进了葡萄糖激酶的mRNA,蛋白以及酶活性的表达。以上结果表明ERR能直接激活肝中葡萄糖激酶的表达并可以促进2型糖尿病葡萄糖的稳态的形成。
     PGC-1β是近年来发现的转录共激活子,它的组织分布和序列都和PGC-1α有高度的相似性。但是它的许多生物学功能还不清楚。和PGC-1α相似,PGC-1β在分化的肌管细胞中可以显著地激活线粒体的生物合成并且可以促进细胞呼吸。血红素是血红蛋白的重要组成成分,它的功能包括氧的运输和能量代谢。ALAS1是血红素合成的限速酶,它为呼吸链中的细胞色素提供血红素。通过5’端系列截短实验,我们发现PGC-1β可以通过ALAS1启动子的NRF-1结合位点促进其表达。ALAS1启动子有两个NRF1的识别位点,这两个位点对于PGC-1β促进ALAS1的转录起着重要的作用。当对其中一个结合位点进行突变,则大约60-70%的ALAS1的启动子活性受到抑制。当将两个结合位点都进行突变,则大约90%的ALAS1的启动子活性受到抑制。为了进一步明确NRF-1结合位点对于PGC-1β促进ALAS1的转录起着重要的作用,我们将NRF-1的显性负突变和PGC-1β共转染HepG2细胞,这时PGC-1β对ALAS1的促进作用明显受到了抑制。PGC-1β同样也可以通过结合和激活NRF-1,促进线粒体相关基因的转录。为了明确NRF-1对于表达内源性的PGC-1β的靶基因是必需的,我们通过RNA干扰的方法来降低内源性的NRF-1的表达,使其表达降低约70%,然后通过real-timePCR来检测由PGC-1β调节的线粒体相关基因的mRNA水平。实验结果表明,PGC-1β可以促进线粒体相关基因如ALAS1, Cytc, ATPase, Tfb2m, Tfam, COX7b, MRPL46的表达。当通过RNAi干扰NRF-1的表达后,PGC-1β对线粒体相关基因的促进作用明显受到了抑制。实验结果显示,PGC-1β在调节线粒体氧化代谢方面起着非常重要的作用。
The orphan nuclear receptor estrogen-related receptors(ERR a and ERRγ) are activated by the transcriptional coactivator peroxisome proliferator-activated receptorγ(PPARγ) coactivator 1α(PGC-1α), a critical regulator of cellular energy metabolism. Glucokinase plays a key role in the regulation of glucose utilization in liver and its expression is strongly enhanced by insulin. We report here that the regulatory sequences of the GK gene harbor a functional ERRαand ERRγbinding site and the co-stimulating effects of ERRs and PGC-1αon GK gene expression in the rat primary hepatocytes, suggesting a novel role for ERRs in controlling glucose metabolism. The co-stimulating effect was inhibited when the GK promoter fragment was mutated at the ERRE. In contrast to the dramatic effects of ERRs and PGC-1αon full length GK, they had only a small effect on the truncated GK construct that lacked the ERRE. By using a synthetic inhibitor of ERRα, the inhibitory result revealed that ERRαplay a key role in insulin stimulating GK expression. Furthermore, ERRαand ERRγincreased endogenous GK mRNA, protein and GK activity. Our data demonstrate that ERRs can directly activate GK expression in liver and may contribute to improving glucose homeostasis in type 2 diabetes.
     PGC-1βis a recently identified transcriptional coactivator closely related to PGC-1αwhose biological activities are largely unknown. Like PGC-1α, PGC-1βstrongly activates mitochondrial biogenesis and cellular respiration in differentiated myotubes. Heme is an essential component of numerous hemoproteins with functions including oxygen transport, energy metabolism.5-aminolevulinate synthase (ALAS1) is the rate-limiting enzyme in heme biosynthesis which provide heme for cytochromes in the respiratory chain. By 5'promoter deletion assay, we found PGC-1βcould activate ALAS 1 promoter that depended on NRF 1 for full activity. The ALAS 1 promoter has two functional NRF-1 recognition sites that are essential for basal promoter activity.When either of the two NRF-1 elements was mutated, about 60-70% of promoter activity was lost; when both were mutated, full activity was diminished by approximately 90%. Furthermore, expression of a dominant negative NRF-1 inhibited the PGC-1βmediated increase in ALAS1 gene. PGC-1βcould also bind and co-activate NRF-1 and augment transcriptional activation of mitochondrial related gene. To determine whether NRF-1 is required for the expression of endogenous PGC-1βtargets, we used an adenovial RNAi vector (Ad-RNAi) toward NRF-1. Treatment of C2C12 myotubes with this Ad-RNAi reduces endogenous NRF-1 protein by approximately 70%. Ad-PGC-1βexpression in C2C12 myotubes stimulated mRNA abundance of several mitochondrial related gene such as ALAS-1, Cytc, ATPase, Tfb2m, Tfam, COX7b, MRPL46. The induction of all these genes in response to PGC-1β, however, is greatly impaired in the cells infected with Ad-RNAi compared to the control GFP. These results suggest that PGC-1βplay an important role in controlling mitochondrial oxidative energy metabolism.
引文
1. Ferre T, Riu E, Bosch F, Valera A. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J.1996; 10:1213-1218.
    2. Niswender KD, Shiota M, Postic C, Cherrington AD, Magnuson MA. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism.
    3. Magnuson MA. Glucokinase gene structure:functional implications of molecular genetic studies. Diabetes.1990; 39:523-527.
    4. Iynedjian PB.Mammalian glucokinase and its gene. Biochem J.1993; 293:1-13
    5. Printz RL, Magnuson MA, Granner DK. Mammalian glucokinase. Annu Rev Nutr.1993; 13:463-196
    6. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell.1998; 92:829-839.
    7. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, and Spiegelman BM. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1 alpha interaction. Nature.2003; 423:550-555.
    8. Yoon, J.C., et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature.2001; 413:131-138.
    9. Puigserver, P., and Spiegelman, B.M. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α):transcriptional coactivator and metabolic regulator. Endocr. Rev.2003; 24:78-90.
    10. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP and Spiegelman BM. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA.2001; 98:3820-3825.
    11. WuZ, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell BB, Scarpulla RC, SpiegelmanBM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell.1999; 98:115-124
    12. Giguere, V., N. Yang, P. Segui, and R. M. Evans. Identification of a new class of steroid hormone receptors. Nature.1988; 331:91-94.
    13. Heard, D. J., P. L. Norbu, J. Holloway, and H. Vissing. Human ERR γ,a third member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors:Tissue-specific isoforms are expressed during development and in the adult.Mol.Endocrinol.2000; 14:383-392.
    14. Mootha, V. K., C. Handschin, D. Arlow, X. Xie, J. St. Pierre, S. Sihag, W. Yang, D. Altshuler, P. Puigserver, N. Patterson, P. J. Willy, I. G. Schulman, R. A. Heyman, E. S. Lander, and B. M. Spiegelman. ERR α and Gabpa/b specify PGC-1 α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl. Acad. Sci. USA..2004; 101:6472-6477.
    15. Sladek, R., J.-A. Bader, and V. Gigue're. The orphan nuclear receptor estrogen-related receptor a is a transcriptional regulator of the human medium-chain acyl coenzyme a dehydrogenase gene. Mol. Cell. Biol.1997; 17:5400-5409.
    16. Vega, R. B., and D. P. Kelly. A role for estrogen-related receptor alpha in the control of mitochondrial fatty acid beta-oxidation during brown adipocyte differentiation. J. Biol. Chem. 1997; 272:31693-31699.
    17. Schreiber, S. N., D. Knutti, K. Brogli, T. Uhlmann, and A. Kralli. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERR α). J. Biol. Chem.2003; 278:9013-9018.
    18. Kamei, Y., H. Ohizumi, Y. Fujitani, T. Nemoto, T. Tanaka, N. Takahashi, T. Kawada, M. Miyoshi, O. Ezaki, and A. Kakizuka. PPAR γ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl. Acad. Sci. USA.2003; 100:12378-12383.
    19. Schreiber, S. N., R. Emter, M. B. Hock, D. Knutti, J. Cardenas, M. Podvinec, E. J. Oakeley, and A. Kralli. The estrogen-related receptor alpha (ERR α) functions in PPAR γ coactivator 1α (PGC-1α). induced mitochondrial biogenesis. Proc. Natl. Acad. Sci. USA.2004; 101:6472-6477.
    20. Immenschuh, S., Hinke, V., Ohlmann, A., Gifhorn, K.S., Katz, N., Jungermann, K. and Kietzmann, T. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem. J.1998; 334:141-146
    21. Brinkmann, A., Katz, N., Sasse, D. and Jungermann, K. increase of the gluco-neogenic and decrease of the glycolytic capacity of rat liver with a change of the meta-bolic zonation after partial hepatectomy. Hoppe Seylers. Z. Physiol. Chem.1978; 359:1561-1571
    22. Weinmann, A. S., and P. J. Farnham. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods.2002; 26:37-47.
    23. Trus, M.D.,W. S. Zawalich, P. T. Burch, D.K. Berner, V.A. Weil, and F. M. Matschinsky. Regulation of glucose metabolism in pancreatic islets. Diabetes.1981; 30:911-922.
    24.. Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extracts:physiological implications of higher cellular activity. Arch Biochem Biophys 1987; 253:156-167.
    25. Jetton, T. L., Liang, Y., Pettepher, C. C., Zimmerman, E. C., Cox, F. G.Horvath, K., Matschinsky, F. M., and Magnuson, M. A. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J. Biol.Chem.1994; 269:3641-3654
    26.Postic, C., Niswender, K.D., Decaux, J.F., Parsa, R., Shelton, K.D., Gouhot, B., Pettepher, CC., Granner, D.K.,Girard, J., and Magnuson, M.A. Cloning and characterization of the mouse glucokinase gene locus and identification of distal liver-specific DNase I hypersensitive sites. Genomics.1995; 29:740-750.
    27.Iynedjian, P.B., Jotterand, D., Nouspikel, T., Asfari, M., and Pilot, P.R. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J. Biol. Chem.1989; 264:21824-21829.
    28.Niswender, K.D., Postic, C., Jetton, T.L., Bennet, B., Piston, D., Efrat, S., and Magnuson, M.A. Cell-specific Expression and Regulation of a Glucokinase Gene Locus Transgene. J. Biol. Chem.1997; 272:22564-22569.
    29.Iynedjian, P.B. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem. J.1998; 333:705-712.
    30.Foretz, M., Guichard, C., Ferre, P. and Foufelle, F. Sterol regulatory element binding protein-lc is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U.S.A.1999; 96:12737-12742
    31.Brown, M. S., and Goldstein, J. L. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell.1997; 89:331-340
    32.Kim, J. B., Sarraf, P., Wright, M., Yao, K. M., Mueller, E., Solanes, G., Lowell,B. B., and Spiegelman, B. M. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest.1998; 101:1-9.
    33.Stoeckman, A.K. and Towle, H.C. The role of SREBP-lc in nutritional regulation of lipogenic enzyme gene expression. J.Biol.Chem.2002;277:27029-27035
    34.Kim, S.Y., Kim, H.I. and Ahn, Y.H. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J. Biol.Chem.2004; 279:30823-30829
    35.Hansmannel, F. Mordier, S. Iynedjian, P.B. Insulin induction of glucokinase and fatty acid synthase in hepatocytes:analysis of the roles of sterol-regulatory-element-binding protein-1c and liver X receptor. Biochem J.2006; 399(2):275-83.
    36.Gregori, C., Guillet-Deniau, I. and Pichard, A.L. Insulin regulation of glucokinase gene expression:evidence against a role for sterol regulatory element binding protein 1 in primary hepatocytes. FEBS Lett.2006; 580:410-414.
    37.Ulrike Roth, Katja Curth, Terry G. Unterman, and Thomas Kietzmann. The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem.2004; 279:2623-2631.
    38.Giguere, V. To ERR in the estrogen pathway. Trends Endocrinol. Metab.2002; 13:220-225.
    39.Hentschke, M., U. Susens, and U. Borgmeyer. PGC-1 and PERC, coactivators of the estrogen receptor-related receptor gamma. Biochem. Biophys. Res. Commun.2002; 299:872-879.
    40.Huss, J. M., R. P. Kopp, and D. P. Kelly. PGC-1 a coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and-γ. J. Biol. Chem.2002; 277:40265-40274.
    41.Kelly, D. P., and R. C. Scarpulla. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev.2004; 18:357-368.
    42.Lee, S. S. T., T. Pineau, J. Drago, E. J. Lee, J. W. Owens, D. L. Kroetz, P. M. Fernandez-Salguero, H. Westphal, and F. J. Gonzalez. Targeted disruption of the a isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol.1995; 15:3012-3022.
    43.Adam R. Wende, Janice M. Huss and Daniel P. Kelly. PGC-1 a coactivates PDK4 gene expression via the orphan nuclear receptor ERR a:a mechanism for transcriptional control of muscle glucose metabolism. Mol. Cell. Biol.2005; 25:10684-10694
    44.Huss, J. M., I. Pine'da Torra, B. Staels, V. Gigue're, and D. P. Kelly. ERR α dire-cts PPARα signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol. Cell. Biol.2004; 24:9079-9091.
    45.Laganiere, J., G. B. Tremblay, C. R. Dufour, S. Giroux, F. Rousseau, and V. Giguere.2004. A polymorphic autoregulatory hormone response element in the human estrogen-related receptor α (ERR α) promoter dictates peroxisome proliferator-activated receptor γ coactivator-1 α control of ERR a expression. J. Biol. Chem.2004; 279:18504-18510.
    46.Lin, J., Handschin, C., and Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab.2005; 1(6):361-370
    47.Herzog, B., Cardenas, J., Hall, R. K., Villena, J. A., Budge, P. J., Giguere, V., Granner, D. K., and Kralli, A. Estrogen-related Receptor (?)Is a Repressor of Phosphoenolpyruvate Carboxykinase Gene Transcription. J. Biol. Chem.2006; 281:99-106.
    48.Yi Zhang, Ke Ma and Edwards A. Park. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J. Biol. Chem.2006; 281:39897-39906
    49.Nake J, Park BC, Acdili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem,1999; 274: 15982-85.
    50.Rena G, Guo S, Cichy SC, et al. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem,1999; 274:17179-17183.
    51.Horton, J.D., Goldstein, J.L., and Brown, M.S. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest.2002;109:1125-1131.
    52.Braiman L, Alt A, Kuroki T, et al. Activation of Protein Kinase CζInduces Serine Phosphorylation of VAMP2 in the GLUT4 Compartment and Increases Glucose Transport in Skeletal Muscle. Mol. Cell. Biol.2001; 21:7852-61.
    1. Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem.2002; 277:13918-13925.
    2. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator lbeta (PGC-1 beta), a novel PGC-1-related transcrip-tion coactivator associated with hostcell factor. J Biol Chem.2002; 277:1645-1648.
    3.Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, et al. Characterization of the human, mouse and rat PGC1 beta (peroxisomeproliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J.2003; 373:155-165.
    4. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, et al. PGC-lbeta in the regulation of hepatic glucose and energy metabolism. J Biol Chem.2003; 278:30843-30848.
    5. Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. A coldinducible coactive-ator of nuclear receptors linked to adaptive thermogenesis. Cell.1998; 92:829-839.
    6. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, et al. Bioenergetic analysis of peroxis-ome proliferator-activated receptor gamma coactivators 1 alpha and lbeta (PGC-1 alpha and PGC-lbeta) in muscle cells. J Biol Chem.2003; 278:26597-26603.
    7. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, et al. Control of hepatic glucon-eogenesis through the transcriptional coactivator PGC-1. Nature.2001; 413:131-138.
    8. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, et al. Defects in adaptive ener-gy metabolism with CNS-linked hyperactivity in PGC-lalpha null mice. Cell.2004; 119:121-135.
    9. Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, et al. PGC-1 promotes insulin resi-stance in liver through PPAR-alpha-dependent induction of TRB-3. Nature Med.2004; 10:530-534.
    10. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, et al. Hyperlipidemic effects of die-tary saturated fats mediated through PGC-lbeta coactivation of SREBP. Cell.2005; 120:261-273.
    11. Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1[beta] promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab.2006; 3:99-110.
    12. May, B. K., Dogra, S. C., Sadlon, T. J., Bhasker, C. R., Cox, T. C., and Bottomley, S. S. Molecular regulation of heme biosynthesis in higher vertebrates. Prog. Nucleic Acids Res. Mol. Biol.1995; 51:1-51.
    13. Ortiz de Montellano, P. R. The 1994 Bernard B. Brodie Award Lecture. Structure, mechanism, and inhibition of cytochrome P450. Drug Metab. Dispos.1995; 23:1181
    14. Sadlon, T. J., Dell'Oso, T., Surinya, K. H., and May, B. K. Regulation of erythr-oid 5-aminolevulinate synthase expression during erythropoiesis. Int. J. Biochem. Cell Biol.1999; 31:1153-1167.
    15. Ponka, P. Cell biology of heme. Am. J. Med. Sci.1999; 318(4):241-256.
    16. Sassa, S. Photodermatol. Photoimmunol. Photomed.2002; 18(2):56-67
    17. Lindberg, R. L., Porcher, C., Grandchamp, B., Ledermann, B., Burki, K., Brandner, S., Aguzzi, A., and Meyer, U. A. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat. Genet 1996; 12:195-199
    18. Granick, S., Sinclair, P., Sassa, S., and Grieninger, G. Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J. Biol. Chem. 1975; 250:9215-9225
    19. Lathrop, J. T., and Timko, M. P. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science.1993; 259:522-525
    20. Cable, E. E., Miller, T. G., and Isom, H. C. Regulation of heme metabolism in rat hepatocytes and hepatocyte cell lines:delta-aminolevulinic acid synthase and heme oxygenase are regulated by different heme-dependent mechanisms. (2000) Arch. Biochem. Biophys.2000; 384(2):280-295
    21. Chau, C. A., M. J. Evans, and R. C. Scarpulla. Nuclear respiratory factor 1 activation sites in genes encoding the gamma-subunit of ATP synthase, eukaryotic initiation factor 2a, and tyrosine aminotransferase. Specific interaction of purified NRF-1 with multiple target genes. J. Biol. Chem.1992; 267:6999-7006.
    22. Evans, M. J., and R. C. Scarpulla. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF and intron Spl recognition sites. J. Biol. Chem.1989; 264:14361-14368.
    23. Evans, M. J., and R. C. Scarpulla. NRF-1:a trans-activator of nuclearencoded respiratory genes in animal cells. Genes Dev.1990; 4:1023-1034.
    24. Scarpulla, R. C. Nuclear control of respiratory chain expression in mammalian cells. J. Bioenerg. Biomembr.1997; 29:109-119.
    25. Huo, L., and R. C. Scarpulla. Mitochondrial DNA instability and peri-implant-tion lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol. Cell. Biol.2001; 21:644-654.
    26. Wu, Z., P. Puigserver, U. Andersson, C. Zhang, G. Adelmant, V. Mootha, A.Troy, S. Cinti, B. Lowell, R. C. Scarpulla, and B. M. Spiegelman. Mechanisms controlling mitochondrial biogenesis and function through the thermogenic coactivator PGC-1. Cell.1999; 98:115-124.
    27. Hamilton JW, Bement WJ, Sinclair PR, Sinclair JP, Alcedo JA, Wetterhahn KE. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half life and not by altering its rate of transcription. Arch Biochem Biophys Res Commun.1991; 289: 387-392.
    28. Pessayre D, Berson A, Fromenty B, Mansouri A. Mitochondria in steatohepatitis. Semin Liver Dis.2001; 21(1):57-69.
    29. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, et al. The nuclear receptor superfamily:the second decade. Cell.1995; 83(6):835-839.
    30. Finck BN, Kelly DP. PGC-1 coactivators:inducible regulators of energy metabolism in health and disease. J Clin Invest.2006 Mar; 116(3):615-622. Review.
    31. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM. Activation of PPART Coactivator-1 Through Transcription Factor Docking. Science.1999; 286:1368-1371.
    32. Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM (2000). Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell.2000; 6:307-316
    33.Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell.2003; 113(2):159-170.
    34.Giguere V. To ERR in the estrogen pathway. Trends Endocrinol Metab.2002; 13(5):220-225.
    35. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, KakizukaA. PPAR(?) coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA.2003; 100:12378-12383.
    36. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab.2006; 3(5):333-341.
    37.Leone TC, Lehman JJ, Finck BN, and Kelly DP. PGC-1 alpha deficiency causes multi-system energy metabolic derangements:muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol.2005 Apr;3(4):e101.
    38.Christoph Handschin, Jiandie Lin, James Rhee, and Bruce M. Spiegelman. Nutritional Regulation of Hepatic Heme Biosynthesis and Porphyria through PGC-1α.Cell.2005; 122:505-515
    39.Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochem Biophys Acta.2002; 1576:1-14
    40. Daniel P. Kelly and Richard C. Scarpulla. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes & Dev.2004; 18:357.
    41.Cam H, Balciunaite E, Blias A, Spektor A and Dynlacht BD. A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell.2004; 16:399-411
    42.Gugneja S, Scarpulla RC. Serine phosphorylation within a concise amino-terminal domain in nuclear respiratory factor 1 enhances DNA binding. J Biol Chem.1997; 272(30):18732-18739.
    43.Herzig RP, Scacoo S, Scarpulla RC. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome-c. J Biol Chem.2000; 275(17):13134-13141
    44. Gomez-Cuadrado A, Martin M, Noel M, Ruiz-Carrillo A. Initiation binding receptor, a factor that binds to the transcription initiation site of the histone h5 gene, is a glycosylated member of a family of cell growth regulation. Mol Cell Biol.1995; 15:6670-6685。
    45.Baar K. Involvement of PPAR γ co-activator-1, nuclear respiratory factors 1 and 2, and PPAR a in the adaptive response to endurance exercise. Proc Nutr Soc.2004; 63:269-273.
    [1]Apfel R, Ben brook D, Lernhardt E, et al. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily[J]. Mol Cell Biol,1994,14 (10):7025-7035.
    [2]Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway[J]. Genes Dev,1995,9(期):1033-1045.
    [3]Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway[J]. J Biol Chem,1997,272(6):3137-3140.
    [4]Robinson-Rechavi M, Carpentier AS, Duffraisse M, et al. How many nuclear hormone receptors are there in the human genome[J]? Trends Genet,2001,17(10):554-556.
    [5]Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors[J]. Genes Dev,2000,14(2):121-141.
    [6]Song C, Kokontis JM, Hiipakka RA, et al. Ubiquitous receptor:a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors[J]. Proc Natl Acad Sci USA,1994, 91(23):10809-10813.
    [7]Rastinejad F. Retinoid X receptor and its partners in the nuclear receptor family[J]. Curr Opin Struct Biol,2001,11(1):33-38.
    [8]Willy PJ, Mangelsdorf DJ. Unique requirements for retinoid-dependent transcriptional activation by the orphan receptor LXR[J]. Genes Dev,1997, 11(期):289-298.
    [9]Peet DJ, Turley SD, Ma W,, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear'oxysterol receptor LXR alpha[J]. Cell,1998,93(5):693-704.
    [10]Alberti S, Schuster G, Parini P,, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice[J]. J Clin Invest,2001,107(5):565-573.
    [11]Goodwin B, Watson MA, Kim H,, et al. Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-alpha[J]. Mol Endocrinol,2003,17(3):386-394.
    [12]Chiang JY, Kimmel R, Stroup D. Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha) [J]. Gene,2001,262(1-2): 257-265.
    [13]Costet P, Luo Y, Wang N,, et al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor[J]. J Biol Chem,2000,275(36):28240-28245.
    [14]Laffitte BA, Repa JJ, Joseph SB,, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes[J]. Proc Natl Acad Sci USA,2001,98(2): 507-512.
    [15]Schwartz K, Lawn RM, Wade DP. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR[J]. Biochem Biophys Res Commun,2000,274(3):794-802.
    [16]Venkateswaran A, Repa JJ, Lobaccaro JM,et al. Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols[J]. J Biol Chem,2000,275(19):14700-14707.
    [17]Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha[J]. Proc Natl Acad Sci USA,2000,97(22):12097-12102.
    [18]Schmitz G, Langmann T, Heimerl S. Role of ABCG1 and other ABCG family members in lipid metabolism[J]. J Lipid Res,2001,42:1513-1520.
    [19]Oram JF, Lawn RM, Garvin MR, et al. ABCA1 Is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages[J].J Biol Chem,2000,275 (44):34508-34511.
    [20]Haghpassand M, Bourassa PA, Francone OL, et al. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels[J]. J Clin Invest,2001,108(9):1315-1320.
    [21]van Eck M, Bos IS, Kaminski WE, et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues[J]. Proc Natl Acad Sci USA,2002, 99(9):6298-6303.
    [22]Joyce C, Freeman L, Brewer HB, et al. Study of ABCA1 function in transgenic mice[J]. Arterioscler Thromb Vase Biol,2003,23(6):965-971.
    [23]Graf GA, Li WP, Gerard RD, et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface[J]. J Clin Invest,2002,110(5):659-669.
    [24]Yu L, Hammer RE, Li-Hawkins J, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion[J]. Proc Natl Acad Sci USA,2002,99(25):16237-16242.
    [25]Repa JJ, Berge KE, Pomajzl C, et al. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta[J]. J Biol Chem,2002,277(21): 18793-18800.
    [26]Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC[J]. Transporters Science,2000,290(5497):1771-1775.
    [27]Hayek T, Masucci-Magoulas L, Jiang X, et al. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene[J]. J Clin Invest,1995,96(4):2071-2074.
    [28]Luo Y, Tall AR. Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element[J] J Clin Invest,2000,105 (4):513-520.
    [29]Hofker MH, van Vlijmen BJ, Havekes LM. Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis[J] Atherosclerosis,1998,137(1):1-11.
    [30]Zhang Y, Repa JJ, Gauthier K, et al. Reglulation of lipoprotein lipase by the oxysterol receptors, LXRa and LXRβ[J].J Biol Chem,2001,276(46):43018-43024.
    [31]Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-binding protein-lc gene (SREBP-lc) by oxysterol receptors, LXRalpha and LXRbeta[J]. Genes Dev, 2000,14(22):2819-2830.
    [32]Yoshikawa T, Shimano H, Amemiya-Kudo M, et al.Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein lc gene promoter[J]. Mol Cell Biol,2001,21(9):2991-3000.
    [33]Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis[J]. Genes Dev, 2000,14(22):2831-2838.
    [34]DeBose-Boyd RA, Ou J, Goldstein JL, et al. Expression of sterol regulatory element-binding protein lc (SREBP-lc) mRNA in rat hepatoma cells requires endogenous LXR ligands[J]. Proc Natl Acad Sci USA,2001,98(4):1477-1482.
    [35]Kaplan R, Zhang T, Hernandez M, et al. Regulation of the angiopoietin-like protein 3 gene by LXR[J]. J Lipid,2003,44(1):136-143.
    [36]Koishi R, Ando Y, Ono M, et al. Angptl3 regulates lipid metabolism in mice[J]. Nat Genet, 2002,30(2):151-157.
    [37]Tobin KA, Ulven SM, Schuster GU, et al. Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis[J]. J Biol Chem,2002,277(12):10691-10697.
    [38]Joseph SB, Laffitte BA, Patel PH, et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors[J]. J Biol Chem,2002,277(13):11019-11025.
    [39]Stulnig TM, Steffensen KR, Gao H, et al. Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue[J]. Mol Pharmacol,2002,62(6):1299-1305.
    [40]Stulnig TM, Oppermann U, Steffensen KR, et al. Liver X receptors downregulate 11beta-hydroxysteroid dehydrogenase type 1 expression and activity[J]. Diabetes,2002,51 (8):2426-2433.
    [41]Brown MS, Goldstein JL. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J]. Cell,1997,89(3):331-340.
    [42]Hegarty BD, Bobard A, Hainault I, et al. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory elementbinding protein-lc[J]. Proc Natl Acad Sci USA,2005,102(3):791-796.
    [43]Chen G, Liang G, Ou J, et al. Central role for liver X receptor in insulin-mediated activation of Srebp-lc transcription and stimulation of fatty acid synthesis in liver[J]. Proc Natl Acad Sci USA,2004,101(31):11245-11250.
    [44]Cao G, Liang Y, Broderick CL, et al. Antidiabetic action of a liver receptor agonist mediated by inhibition of hepatic gluconeogenesis[J]. J Biol Chem,2003,278(2):1131-1136.
    [45]Laffitte BA, Chao LC, Li J, et al. Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue[J]. Proc Natl Acad Sci USA,2003,100(9):5419-5424.
    [46]Dalen KT, Ulven SM, Bamberg K, et al. Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha[J]. J Biol Chem,2003, 278(48):48283-48291.
    [47]Grefhorst A, van Dijk TH, Hammer A, et al. Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice[J]. Am J Physiol Endocrinol Metab,2005,289(5):E829-E838.
    [48]Efanov AM, Barrett DG, Brenner MB, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function[J]. Endocrinology,2005,146(9):3696-3701.
    [49]Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCA1 path-way in macrophages is involved in cholesterol efflux and atherogenesis[J]. Mol Cell,2001,7(1):161-171.
    [50]Ross SE, Erickson RL, Gerin I, et al. Microarray analyses during adipogenesis:understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism[J]. Mol Cell Biol,2002,22(16):5989-5999.
    [51]Kase ET, Wensaas AJ, Aas V, et al. Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway[J]. Diabetes,2005,54(4):1108-1115.
    [52]Dressel U, Allen TL, Pippal JB, et al. The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells[J]. Mol Endocrinol,2003,17(12):2477-2493.
    [53]Muscat GE, Wagner BL, Hou J, et al. Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptors[J]. J Biol Chem,002 77(43):40722-40728.
    [54]Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr,1996,16(期):179-203.
    [55]Wiegman CH, Bandsma RH, Ouwens M, et al. Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis but is less sensitive to the suppressive effects of insulin[J]. Diabetes,2003,52(5):1081-1089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700