用户名: 密码: 验证码:
人CD2AP基因启动子的鉴定及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     鉴定与分析人CD2AP(CD2-associated protein,CD2AP)基因启动子的结构与功能,研究其调控的分子机制,为探讨CD2AP在相关肾脏病发病中的作用积累基础研究。
     方法:
     采用5'-RACE法确定人CD2AP基因的转录起始位点,利用PCR进行逐段缺失突变,克隆其5'侧翼DNA序列,构建一系列荧光素酶报告载体,转染人肾小管上皮细胞等细胞系,确定CD2AP启动子的核苷酸范围。利用点突变技术、凝胶迁移率改变试验、染色质免疫沉淀、小RNA干扰和基因过表达等实验,分析CD2AP启动子区的转录因子结合位点。观察过氧化氢(H2O2)模拟氧化应激状态下CD2AP启动子的活性变化,以及血管内皮生长因子对CD2AP启动子活性的影响。转染CD2AP启动子荧光素酶报告质粒至人胚肾293细胞,研究呼吸道合胞病毒感染对CD2AP启动子活性的影响与机制。
     结果:
     第一部分:确定人CD2AP基因启动子位于转录起始位点上游-558bp至-1bp之间,一个CREB和两个SP1转录因子结合位点维持其基本转录活性。
     第二部分:证实在人肾小管上皮细胞中,表皮生长因子(epidermal growth factor,EGF)可以募集AP-1家族的JunD和c-fos成员形成复合体与CD2AP启动子区的一个AP-1样位点(5-TGAGCTCA-3)相结合,激活CD2AP启动子的转录活性,并对血管紧张素Ⅱ诱导的人肾小管上皮细胞凋亡产生拮抗作用。
     第三部分:证实在氧化应激状态下,CD2AP启动子活性下调,CD2AP与F-actin在细胞内的共定位减少。而低剂量的血管内皮生长因子可以拮抗H2O2诱导的5CD2AP启动子活性下调。
     第四部分:证实呼吸道合胞病毒感染早期激活CD2AP启动子活性,晚期则抑制其活化。AP-1家族的JunD参与呼吸道合胞病毒感染早期CD2AP启动子的活性调节。而呼吸道合胞病毒感染晚期CD2AP启动子活性的抑制至少部分依赖于RIG-1/MAVS信号的传导。
     结论:
     人CD2AP基因启动子位于转录起始位点上游-558至-1bp处,转录因子CREB和SP1维持其基本转录活性。EGF/AP-1/CD2AP启动子是一个促人肾小管上皮细胞生存的信号途径。低剂量的血管内皮生长因子拮抗氧化应激诱导的CD2AP启动子活性下调,可能是其肾脏保护作用的原因之一。呼吸道合胞病毒感染对CD2AP启动子活性的调节有双向作用。呼吸道合胞病毒感染后期造成的CD2AP启动子转录活性显著下调,可能是其产生肾脏损害的机制之一。
The human CD2-associated protein (CD2AP) is involved in several molecular signaling pathways and is an important factor responsible for nephrotic syndrome. Here we report the identification of the transcription start point and promoter region of the human CD2AP gene in renal tubular epithelial cells. With luciferase assays and deletion analysis, we found that the region between -558 and -1 bp ahead of the transcription start point is indispensable for the promoter activity of the human CD2AP gene. A CREB site and two SP1 sites were essential for maintaining the basal transcriptional activity of the human CD2AP promoter. Overexpression of phosphorylated CREB and SP1 transactivated the human CD2AP promoter, whereas small interfering RNA-mediated blockage of CREB and SP1 genes expressions inhibited markedly its activity. These findings provide the first analysis of the human CD2AP gene promoter and demonstrate that not only CREB but also SP1 plays a critical role in regulating basal CD2AP promoter activity in renal tubular epithelial cells.
     CD2AP plays a critical role in the maintenance of the kidney filtration barrier. In this study, we showed that epidermal growth factor (EGF) led to an increase of the CD2AP protein and mRNA in the human renal proximal tubular epithelial cell line HK-2 cells, which was due to the elevation of CD2AP promoter activity. Upon deletion and mutation analysis, electrophoretic mobility shift assays and chromatin immunoprecipitation, an AP-1-like element within CD2AP promoter was characterized, by which EGF recruited c-fos and JunD, two components of AP-1, to the human CD2AP gene promoter and suppressed angiotensin II-induced apoptosis in HK-2 cells. Specific siRNA was synthesized to knock down the human CD2AP gene in HK-2 cells. We found that CD2AP deficiency attenuated the inhibitory effects of EGF and predisposed the renal tubular epithelial cells to undergo angiotensin II-induced apoptosis. Furthermore, EGF induced increases of CD2AP protein and mRNA expressions in HK-2 cells were significantly inhibited by the transfection of dominant negative JunD or c-fos vector, which was in parallel with a marked reduction of antiapoptotic effect of EGF. These results indicated that the antiapoptotic effect of EGF/CD2AP signal transduction was mediated by JunD and c-fos, at least partially. Therefore we defined a new EGF/AP-1/CD2AP mediated cell-survival signaling in the human renal proximal tubular epithelial cell.
     The activity of CD2AP promoter was markedly decreased under oxidative stress conditions. Low-dose VEGF antagonized oxidative stress-induced down-regulation of CD2AP promoter activity in human embryonic kidney (HEK293) cells. At the early time of respiratory syncytial virus infection, the activity of CD2AP promoter was enhanced significantly, however, which gradually diminished in the later time of RSV infection. JunD and antiviral RIG-1/MAVS signaling were involved in the regulation of CD2AP promoter activity upon RSV infection.
     This study might be useful to clarify the molecular mechanisms responsible for CD2AP associated kidney diseases.
引文
1. G. Wolf, R.A. Stahl, CD2-associated protein and glomerular disease. Lancet, 2003, 362(9397): 1746-1748.
    2. N.J. Hutchings, N. Clarkson, R. Chalkley, A.N. Barclay, M.H. Brown, Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85. J. Biol. Chem, 2003, 278(25): 22396-22403.
    3. R.M. Scaife, W.Y. Langdon, c-Cbl localizes to actin lamellae and regulates lamellibodia formation and cell morphology. J. Cell. Sci, 2000, 113(27): 215–226.
    4. K.H. Kirsch, M.M. Georgescu, T. Shishido, W.Y. Langdon, R.B. Birge, H. Hanafusa, The adapter type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J. Biol. Chem, 2001, 276(7): 957-963.
    5. M.M. L?wik, P.J. Groenen, I.Pronk, M.R. Lilien, R. Goldschmeding, H.B. Dijkman, E.N. Levtchenko, L.A. Monnens, L.P. van den Heuvel, Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int, 2007, 72(10): 1198-1203.
    6. N.Y. Shih, J. Li, V. Karpitskii, A. Nguyen, M.L. Dustin, O. Kanagawa, J.H. Miner, A.S. Shaw, Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science, 1999, 286(5438): 312–315.
    7. W.E. Smoyer, P. Mundel, Regulation of podocyte structure during the development of nephrotic syndrome. J. Mol. Med, 1998, 76(34): 172–183.
    8. M.C. Gubler, Podocyte differentiation and hereditary proteinuria/nephrotic syndromes. J. Am. Soc. Nephrol, 2003, 14(90001): S22-26.
    9. T.B. Huber, B. Hartleben, J. Kim, M. Schmidts, B. Schermer, A. Keil, L. Egger, R.L. Lecha, C. Borner, H. Pavenst?dt, A.S. Shaw, G. Walz, T. Benzing, Nephrinand CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol. Cell. Biol, 2003, 23(14): 4917-4928.
    10. D.K. Lynch, S.C. Winata, R.J. Lyons, W.E. Hughes, G.M. Lehrbach, V. Wasinger, G. Corthals, S. Cordwell, R.J. Daly, A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J. Biol. Chem, 2003, 278(24): 21805-21813.
    11. M. Schiffer, P. Mundel, A.S. Shaw, E.P. B?ttinger, A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J. Biol.Chem, 2004, 279(23): 37004-37012.
    12. A.J. Shaywitz, M.E. Greenberg, CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 1999, 68(24): 821-861.
    13. P. Bouwman, S. Philipsen, Regulation of the activity of SP1-related transcription factors. Mol. Cell. Endocrinol, 2002, 195(5): 27-38.
    14. L. Li, S. He, J.M. Sun, J.R. Davie, Gene regulation by SP1 and Sp3. Biochem. Cell. Biol, 2004, 123(21): 460-471.
    15. Wolf G, Stahl RA. CD2-associated protein and glomerular disease. Lancet, 2003, 362: 1746-1748.
    16. Hutchings NJ, Clarkson N, Chalkley R et al. Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85. J Biol Chem, 2003, 278(12): 22396-22403.
    17. Li C, Ruotsalainen V, Tryggvason K et al. CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol, 2000, 279(13): 785–792.
    18. Shih NY, Li J, Karpitski V et al. Congenital nephrotic syndrome in mice lackingCD2-associated protein. Science, 1999, 286(34): 312–315.
    19. Schiffer M, Mundel P, Shaw AS et al. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis. J Biol Chem, 2004, 279(22):37004-37012.
    20. Hutcheson IR, Knowlden JM, Jones HE et al. Inductive mechanisms limiting response to anti-epidermal growth factor receptor therapy. Endocr Relat Cancer, 2006, 13(2): 89-97.
    21. Clark JA, Lane RH, Maclennan NK et al. Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol, 2005, 288(41): G755-762.
    22. Moll SJ, Jones CJ, Crocker IP et al. Epidermal growth factor rescues trophoblast apoptosis induced by reactive oxygen species. Apoptosis, 2007, 12(11): 1611-1622.
    23. Sastry KS, Karpova Y, Kulik G. Epidermal growth factor protects prostate cancer cells from apoptosis by inducing BAD phosphorylation via redundant signaling pathways. J Biol Chem, 2006, 281(21): 27367-27377.
    24. Kennedy WA 2nd, Buttyan R, Garcia-Montes E et al. Epidermal growth factor suppresses renal tubular apoptosis following ureteral obstruction. Urology, 1997, 49(6): 973-980.
    25. Zhang J, Kalyankrishna S, Wislez M et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol, 2007, 170(11): 366-376.
    26. Ewald JA, Wilkinson JC, Guyer CA et al. Ligand- and kinase activity-independent cell survival mediated by the epidermal growth factor receptor expressed in 32D cells. Exp Cell Res, 2003, 282(13): 121-131.
    27. Wang Y, Pennock S, Chen X et al. Endosomal signaling of epidermal growthfactor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol, 2002, 22(133): 7279-7290.
    28. Shi B, Isseroff RR. Epidermal growth factor (EGF)-mediated DNA-binding activity of AP-1 is attenuated in senescent human epidermal keratinocytes. Exp Dermatol, 2005, 14(21): 519-527.
    29. Shiratsuchi T, Ishibashi H, Shirasuna K. Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP-1 decoy in human squamous cell carcinoma cell lines. J Cell Physiol, 2002, 193(14): 340-348.
    30. Ahn JD, Morishita R, Kaneda Y et al. Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene Ther, 2004, 11(21): 916-923.
    31. Lu Z, Tharappel JC, Lee EY et al. Effect of a single dose of polychlorinated biphenyls on hepatic cell proliferation and the DNA binding activity of NF-kappaB and AP-1 in rats. Mol Carcinog, 2003, 37(22):171-180.
    32. Shah S, Pishvaian MJ, Easwaran V et al. The role of cadherin, beta-catenin, and AP-1 in retinoid-regulated carcinoma cell differentiation and proliferation. J Biol Chem, 2002, 277(43): 25313-25322.
    33. Takeuchi K, Motoda Y, Ito F. Role of transcription factor activator protein 1 (AP1) in epidermal growth factor-mediated protection against apoptosis induced by a DNA-damaging agent. FEBS J, 2006, 273(31): 3743-3755.
    34. Lynch DK, Winata SC, Lyons RJ et al. A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J Biol Chem, 2003, 278(23): 21805-21813.
    35. Massy ZA, Stenvinkel P, Drueke TB. The role of oxidative stress in chronic kidney disease. Semin Dial, 2009, 22(4):405-408.
    36. Pflueger A, Abramowitz D, Calvin AD. Role of oxidative stress in contrast-induced acute kidney injury in diabetes mellitus. Med Sci Monit, 2009, 15(6):RA125-36.
    37. Csiszar A, Toth J, Peti-Peterdi J, Ungvari Z. The aging kidney: role of endothelial oxidative stress and inflammation. Acta Physiol Hung, 2007,94(1-2):107-115.
    38. Kalantar-Zadeh K, Balakrishnan VS. The kidney disease wasting: inflammation, oxidative stress, and diet-gene interaction. Hemodial Int, 2006,10(4):315-325.
    39. Agarwal R, Campbell RC, Warnock DG. Oxidative stress in hypertension and chronic kidney disease: role of angiotensin II. Semin Nephrol, 2004, 24(2):101-114.
    40. Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev, 2010, 23(1):74-98.
    41. Weisman LE. Respiratory syncytial virus (RSV) prevention and treatment: past, present, and future. Cardiovasc Hematol Agents Med Chem, 2009,7(3):223-233.
    42. Liu XM, Wang Z, Guo Y. Respiratory syncytial virus nephropathy in rats. Kidney Int, 2007,71(5):388-396.
    43. Swedan S, Musiyenko A, Barik S. Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways. J Virol, 2009,83(19):9682-9693.
    44. Elliott J, Lynch OT, Suessmuth Y, Qian P, Boyd CR, Burrows JF, Buick R, Stevenson NJ, Touzelet O, Gadina M, Power UF, Johnston JA. Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase. J Virol, 2007,81(7):3428-3436.
    45. Bitko V, Shulyayeva O, Mazumder B, Musiyenko A, Ramaswamy M, Look DC, Barik S. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism andfacilitate virus growth. J Virol, 2007, 81(4):1786-1795.
    46. Ramaswamy M, Shi L, Varga SM, Barik S, Behlke MA, Look DC. Respiratory syncytial virus nonstructural protein 2 specifically inhibits type I interferon signal transduction. Virology, 2006, 344(2):328-339.
    47. Ling Z, Tran KC, Teng MN. Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J Virol, 2009, 83(8):3734-3742.
    48. Oshansky CM, Barber JP, Crabtree J, Tripp RA. Respiratory Syncytial Virus F and G Proteins Induce Interleukin 1alpha, CC, and CXC Chemokine Responses by Normal Human Bronchoepithelial Cells. J Infect Dis, 2010, 201(8):1201-1207.
    49. Fulton RB, Varga SM. Effects of aging on the adaptive immune response to respiratory virus infections. Aging health, 2009, 5(6):775.
    50. Resch B, Müller W. Systemic interleukin-6 response to respiratory syncytial virus infection. Pediatr Infect Dis J, 2009, 28(10):932-923.
    51. Groskreutz DJ, Monick MM, Yarovinsky TO, Powers LS, Quelle DE, Varga SM, Look DC, Hunninghake GW.Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J Immunol, 2007, 179(5):2741-2747.
    52. Lindemans CA, Coffer PJ, Schellens IM, de Graaff PM, Kimpen JL, Koenderman L. Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-kappaB-dependent mechanism. J Immunol, 2006, 176(9):5529-5537.
    53. H?gele H, Allam R, Pawar RD, Anders HJ. Double-stranded RNA activates type I interferon secretion in glomerular endothelial cells via retinoic acid-inducible gene (RIG)-1. Nephrol Dial Transplant, 2009, 24(11):3312-3318.
    54. Jia Y, Song T, Wei C, Ni C, Zheng Z, Xu Q, Ma H, Li L, Zhang Y, He X, Xu Y,Shi W, Zhong H. Negative regulation of MAVS-mediated innate immune response by PSMA7. J Immunol, 2009, 183(7):4241-4248.
    55. Scagnolari C, Midulla F, Pierangeli A, Moretti C, Bonci E, Berardi R, De Angelis D, Selvaggi C, Di Marco P, Girardi E, Antonelli G. Gene expression of nucleic acid-sensing pattern recognition receptors in children hospitalized for respiratory syncytial virus-associated acute bronchiolitis. Clin Vaccine Immunol, 2009, 16(6):816-823.
    56. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, García-Sastre A, Katze MG, Gale M Jr. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol, 2008, 82(1):335-345.
    57 A. Tabuchi, H. Sakaya, T. Kisukeda, H. Fushiki, M. Tsuda, Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J. Biol. Chem, 2002,277(34): 35920-35931.
    58 G. Hagen, S. Muller, M. Beato, G. Suske, SP1-mediated transcriptional activation is repressed by Sp3. EMBO J, 1994,13 (23) :3843-3851.
    59. A. Sapetschnig, G. Rischitor, H. Braun, A. Doll, M. Schergaut, F. Melchior, G. Suske, Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J, 2002, 21 (51) :5206–5215.
    60. R. Xu, P. Zhang, J. Huang, S. Ge, J. Lu, G. Qian, SP1 and Sp3 regulate basal transcription of the survivin gene. Biochem. Biophys. Res. Commun, 2007, 356 (21): 286-292.
    61. M. H?cker, R.. Raychowdhury, T. Plath, H. Wu, D.T. O'Connor, B. Wiedenmann, S. Rosewicz, T.C. Wang, SP1 and CREB Mediate Gastrin-dependent Regulation of Chromogranin A Promoter Activity in Gastric Carcinoma Cells. J. Biol.Chem, 1998, 273(41): 34000 - 34007.
    62. Hsieh TJ, Fustier P, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Fantus IG, Hamet P, Chan JS. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology, 2003, 144(10):4338-4349.
    63. Ross W, Gourse RL. Analysis of RNA polymerase-promoter complex formation. Methods, 2009, 47(1): 13-24.
    64. Zeng J, Zhu S, Yan H. Towards accurate human promoter recognition: a review of currently used sequence features and classification methods. Brief Bioinform, 2009, 10(5): 498-508.
    65. de Vooght KM, van Wijk R, van Solinge WW. Management of gene promoter mutations in molecular diagnostics. Clin Chem, 2009, 55(4): 698-708.
    66. Nechaev S, Adelman K. Promoter-proximal Pol II: when stalling speeds things up. Cell Cycle, 2008, 7(11): 1539-1544.
    67. Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT. The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol, 2008, 20(3): 253-259.
    68. Habener JF, Miller CP, Vallejo M.cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam Horm, 1995, 51(11): 1-57.
    69. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci, 2005, 28(8): 436-445.
    70. Johannessen M, Moens U. Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front Biosci, 2007, 12(13): 1814-1832.
    71. Gass P, Riva MA..CREB, neurogenesis and depression. Bioessays, 2007,29(10):957-961.
    72. Arany I, Megyesi JK, Reusch JE, Safirstein RL. CREB mediates ERK-induced survival of mouse renal tubular cells after oxidant stress. Kidney Int, 2005, 68(4):1573-1582.
    73. M. Johannessen, U. Moens, Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front Biosci, 2007, 433(12):1814-1832.
    74. Tan NY, Khachigian LM. SP1 phosphorylation and its regulation of gene transcription. Mol Cell Biol, 2009, 29(10):2483-2488.
    75. Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer, 2005, 41(16):2438-2448.
    76. Chu S, Ferro TJ. SP1: regulation of gene expression by phosphorylation. Gene, 2005, 28(348):1-11.
    77. Beltcheva O, Hjorleifsdottir EE, Kontusaari S, Tryggvason K. SP1 specifically binds to an evolutionarily conserved DNA segment within a region necessary for podocyte-specific expression of nephrin. Nephron Exp Nephrol, 2010, 114(1):e15-22.
    78. Ristola M, Arpiainen S, Saleem MA, Mathieson PW, Welsh GI, Lehtonen S, Holth?fer H.Regulation of Neph3 gene in podocytes--key roles of transcription factors NF-kappaB and SP1. BMC Mol Biol, 2009, 24(10):83-91.
    79. Lu C, Ren W, Su XM et al. CREB and SP1 regulate the human CD2AP gene promoter activity in renal tubular epithelial cells. Arch Biochem Biophys, 2008, doi: 10.1016/j.abb.2008.03.031.
    80. Fan Q, Xing Y, Ding J et al. The relationship among nephrin, podocin, CD2AP, and alpha-actinin might not be a true 'interaction' in podocyte. Kidney Int, 2006,69(25): 1207-1215.
    81. Shaw AS.T-cell activation and immunologic synapse. Immunol Res, 2005, 32(11): 247-252.
    82. Coward RJ, Foster RR, Patton D et al. Nephrotic plasma alters slit diaphragm-dependent signaling and translocates nephrin, Podocin, and CD2 associated protein in cultured human podocytes. J Am Soc Nephrol, 2005, 16(21): 629-637.
    83. Huber TB, Hartleben B, Kim J et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol, 2003, 23(14): 4917-4928.
    84. New DC, Wu K, Kwok AW et al. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J, 2007, 274(11): 6025-6036.
    85. Skladanowski A, Bozko P, Sabisz M et al. Dual inhibition of PI3K/Akt signaling and the DNA damage checkpoint in p53-deficient cells with strong survival signaling: implications for cancer therapy. Cell Cycle, 2007, 6(13): 2268-2275.
    86. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci, 2004, 117(16): 5965-5973.
    87. Gupta P, Prywes R. ATF1 phosphorylation by the ERK MAPK pathway is required for epidermal growth factor-induced c-jun expression. J Biol Chem, 2002, 277(16): 50550-50556.
    88. Young MR, Nair R, Bucheimer N et al. Transactivation of Fra-1 and consequent activation of AP-1 occur extracellular signal-regulated kinase dependently. Mol Cell Biol, 2002, 22(17): 587-598.
    89. Lamb JA, Ventura JJ, Hess P et al. JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell, 2003,11(19): 1479-1489.
    90. Weitzman JB, Fiette L, Matsuo K et al. JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell, 2000, 6(10): 1109-1119.
    91. Schreiber M, Baumann B, Cotten M et al. Fos is an essential component of the mammalian UV response. EMBO J, 1995, 14(22): 5338-5349.
    92. Zhou H, Gao J, Lu ZY et al. Role of c-Fos/JunD in protecting stress-induced cell death. Cell Prolif, 2007, 40(44): 431-444.
    93. Kalra N, Kumar V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J Biol Chem, 2004, 279(33): 25313-25319.
    94. Le Dorze M, Legrand M, Payen D, Ince C. The role of the microcirculation in acute kidney injury. Curr Opin Crit Care, 2009,15(6):503-508.
    95. Wagener FA, Dekker D, Berden JH, Scharstuhl A, van der Vlag J. The role of reactive oxygen species in apoptosis of the diabetic kidney. Apoptosis, 2009,14(12):1451-1458.
    96. Okamura DM, Himmelfarb J. Tipping the redox balance of oxidative stress in fibrogenic pathways in chronic kidney disease. Pediatr Nephrol, 2009, 24(12):2309-2319.
    97. Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol, 2007, 376(1-2):1-43.
    98. Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal, 2008, 10(3):601-619.
    99. Kawachi H, Miyauchi N, Suzuki K, Han GD, Orikasa M, Shimizu F. Role of podocyte slit diaphragm as a filtration barrier. Nephrology (Carlton), 2006,11(4):274-281.
    100. ObeidováH, Merta M, ReiterováJ, MaixnerováD, StekrováJ, RysaváR, TesarV. Genetic basis of nephrotic syndrome--review. Prague Med Rep, 2006, 107(1):5-16.
    101. Durvasula RV, Shankland SJ. Podocyte injury and targeting therapy: an update. Curr Opin Nephrol Hypertens, 2006, 15(1):1-7.
    102. Akhtar M, Al Mana H. Molecular basis of proteinuria. Adv Anat Pathol, 2004,11(6):304-309.
    103. Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol, 2003, 7(4):255-259.
    104. Wolf G, Stahl RA. CD2-associated protein and glomerular disease. Lancet, 2003,362(9397):1746-1748.
    105. Gubler MC. Podocyte differentiation and hereditary proteinuria/nephrotic syndromes. J Am Soc Nephrol, 2003, 14( Suppl 1):S22-S26.
    106. Oda T, Stegmann H, Schr?der RR, Namba K, Maéda Y. Modeling of the F-actin structure. Adv Exp Med Biol, 2007, 592(22):385-401.
    107. Welsch T, Endlich N, Kriz W, Endlich K. CD2AP and p130Cas localize to different F-actin structures in podocytes. Am J Physiol Renal Physiol, 2001, 281(4):F769-777.
    108. Yuan H, Takeuchi E, Salant DJ. Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. Am J Physiol Renal Physiol, 2002,282(4):F585-591.
    109. Lehtonen S, Zhao F, Lehtonen E. CD2-associated protein directly interacts with the actin cytoskeleton. Am J Physiol Renal Physiol, 2002, 283(4):F734-743.
    110. Foster RR. The importance of cellular VEGF bioactivity in the development of glomerular disease. Nephron Exp Nephrol, 2009, 113(1):e8-e15.
    111. Chen S, Ziyadeh FN. Vascular endothelial growth factor and diabetic nephropathy. Curr Diab Rep, 2008, 8(6):470-476.
    112. Birk DM, Barbato J, Mureebe L, Chaer RA. Current insights on the biology and clinical aspects of VEGF regulation. Vasc Endovascular Surg, 2009, 42(6):517-530.
    113.魏倩萍,邓华聪,赵劼.P38MAPK信号通路在大鼠肾小球系膜细胞表达VEGF中的作用.重庆医学,2005,34(1):16-18.
    114.唐雪梅,李秋,蒋丽萍,赵晓东,王莉佳,王墨,杨锡强.TGF-β1、VEGF在儿童原发性肾病综合征中的表达及其临床意义.临床儿科杂志,2006,24(4):270-275.
    115.曾雪琪,许自川,党西强,何小解,易著文.血管内皮生长因子与紫癜性肾炎肾间质微血管损伤的关系.中国当代儿科杂志,2009, 11(9): 717-721.
    116. Kim I, Ryu YS, Kwak HJ, Ahn SY, Oh JL, Yancopoulos GD, Gale NW, Koh GY. EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. FASEB J, 2002, 16(9):1126-1138.
    117. Chang X, Firestone GL, Bjeldanes LF. Inhibition of growth factor-induced Ras signaling in vascular endothelial cells and angiogenesis by 3,3'-diindolylmethane. Carcinogenesis, 2006,27(3):541-550.
    118. Byeon SH, Lee SC, Choi SH, Lee HK, Lee JH, Chu YK, Kwon OW. Vascular endothelial growth factor as an autocrine survival factor for retinal pigment epithelial cells under oxidative stress via the VEGF-R2/PI3K/Akt. Invest Ophthalmol Vis Sci, 2010, 51(2):1190-1197.
    119. Wang K, Jiang YZ, Chen DB, Zheng J. Hypoxia enhances FGF2- and VEGF-stimulated human placental artery endothelial cell proliferation: roles of MEK1/2/ERK1/2 and PI3K/AKT1 pathways. Placenta, 2009,30(12):1045-1051.
    120. Tang J, Wang J, Kong X, Yang J, Guo L, Zheng F, Zhang L, Huang Y, Wan Y. Vascular endothelial growth factor promotes cardiac stem cell migration via thePI3K/Akt pathway. Exp Cell Res, 2009, 315(20):3521-3531.
    121. Xu Z, Yu Y, Duh EJ. Vascular endothelial growth factor upregulates expression of ADAMTS1 in endothelial cells through protein kinase C signaling. Invest Ophthalmol Vis Sci, 2006, 47(9):4059-4066.
    122. Botero TM, Son JS, Vodopyanov D, Hasegawa M, Shelburne CE, N?r JE. MAPK signaling is required for LPS-induced VEGF in pulp stem cells. J Dent Res, 2010, 89(3):264-269.
    123. O'Sullivan AW, Wang JH, Redmond HP. P38 MAP Kinase inhibition promotes primary tumour growth via VEGF independent mechanism. World J Surg Oncol, 2009, 7(12):89-93.
    124.吴瑾,王峥,陶于洪.激素敏感型单纯性肾病综合征患儿尿液呼吸道病毒表达及其与发病的相关性.实用儿科临床杂志, 2007, 22(17):1296-1298.
    125. Weitzman JB, Fiette L, Matsuo K, Yaniv M. JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell, 2000, 6(5):1109-1119.
    126. Sabbah A, Bose S. Retinoic acid inducible gene I activates innate antiviral response against human parainfluenza virus type 3. Virol J, 2009,6 (12):200-210.
    127. Ikegame S, Takeda M, Ohno S, Nakatsu Y, Nakanishi Y, Yanagi Y. Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells. J Virol, 2010, 84(1):372-379.
    128. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol, 2009,183(3):2150-2158.
    129. Gao D, Yang YK, Wang RP, Zhou X, Diao FC, Li MD, Zhai ZH, Jiang ZF, Chen DY. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One, 2009, 4(6):e5760-5766.
    130. Johnsen IB, Nguyen TT, Bergstroem B, Fitzgerald KA, Anthonsen MW.The tyrosine kinase c-Src enhances RIG-I (retinoic acid-inducible gene I)-elicited antiviral signaling. J Biol Chem, 2009, 284(28):19122-19131.
    131. Tang ED, Wang CY. TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One, 2010, 5(2):e9172-9181.
    132. Liu P, Lu M, Tian B, Li K, Garofalo RP, Prusak D, Wood TG, Brasier AR. Expression of an IKKgamma splice variant determines IRF3 and canonical NF-kappaB pathway utilization in ssRNA virus infection. PLoS One, 2009,4(11):e8079-8085.
    133. Lei Y, Moore CB, Liesman RM, O'Connor BP, Bergstralh DT, Chen ZJ, Pickles RJ, Ting JP. MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One, 2009,4(5):e5466-5472.
    134. Ohman T, Rintahaka J, Kalkkinen N, Matikainen S, Nyman TA. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages. J Immunol, 2009,182(9):5682-5692.
    135. Paz S, Vilasco M, Arguello M, Sun Q, Lacoste J, Nguyen TL, Zhao T, Shestakova EA, Zaari S, Bibeau-Poirier A, Servant MJ, Lin R, Meurs EF, Hiscott J. Ubiquitin-regulated recruitment of IkappaB kinase epsilon to the MAVS interferon signaling adapter. Mol Cell Biol, 2009,29(12):3401-3412.
    136. Tang ED, Wang CY. MAVS self-association mediates antiviral innate immune signaling. J Virol, 2009, 83(8):3420-3428.
    137. Deng L, Dai P, Parikh T, Cao H, Bhoj V, Sun Q, Chen Z, Merghoub T, Houghton A, Shuman S. Vaccinia virus subverts a mitochondrial antiviral signaling protein-dependent innate immune response in keratinocytes through its double-stranded RNA binding protein, E3. J Virol, 2008, 82(21):10735-10746.
    138. Scott I, Norris KL. The mitochondrial antiviral signaling protein, MAVS, is cleaved during apoptosis. Biochem Biophys Res Commun, 2008, 375(1):101-106.
    139. Shih NY, Li J, Karpitskii V, Nguyen A; Dustin ML, Kanagawa O, Miner JH, Shaw AS. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science, 1999, 286(24): 312-315.
    140. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science, 2003, 300(31):1298-1300.
    141. Huber TB, Hartleben B, Kim J, Schmidts M, Schermer B, Keil A, Egger L, Lecha RL, Borner C, Pavenst?dt H, Shaw AS, Walz G, Benzing T. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol, 2003, 23(11): 4917-4928.
    142. Kirsch KH, Georgescu MM, Ishimaru S, Hanafusa H. CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc Nat Acad Sci, 1999, 96(21): 6211-6216.
    143. Schiffer M, Mundel P, Shaw AS, and B?ttinger EP. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-β-induced apoptosis. J Biol Chem, 2004, 279 (35): 37004-37012.
    144. de Paulo V, Teixeira C, Blattner SM, Li M, Anders HJ, Cohen CD, Edenhofer I, Calvaresi N, Merkle M, Rastaldi MP, Kretzler M. Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int, 2005, 67(9):514-523.
    145. Schaefer L, Ren S, Schaefer RM, Mihalik D, Babelova A, Huwiler A, Pfeilschifter J. Nephrin expression is increased in anti-Thy1.1-induced glomerulonephritis in rats. Biochem Biophys Res Commun, 2004, 324(12):247-254.
    146. Miner JH, Morello R, Andrews KL, Li C, Antignac C, Shaw AS, Lee B. Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. J Clin Invest, 2002, 109(33): 1065-1072.
    147. Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, Behringer RR, Huff V. The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol, 2004, 24(31):9899-9910.
    148. Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet, 2002, 30(1):13-19.
    149. Kondrashov FA, Koonin EV. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet, 2003, 19(17):115-119.
    150.周国平,陈吉庆,吴升华,陈晓禹,陈辉,吴元俊.钾-氯协同转运子1新的同分异构体的发现及其转录调控意义.中华肾脏病杂志,2005,21(1):47-51.
    151. Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy. Nat Biotech, 2004, 22(31):535-546.
    152. Smale ST. Core promoters: active contributors to combinatorial gene regulation. Genes and Dev, 2001, 15(14): 2503-2508.
    153. Willy PJ, Kobayashi R, Kadonaga JT. A basal transcription factor that activates or represses transcription. Science, 2000, 290(41):982-985.
    154. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302(15):2141-2144.
    155.周国平,陈吉庆,吴升华,陈晓禹,陈辉,吴元俊.低氧对钾-氯协同转运子1启动子的调控作用.中华肾脏病杂志, 2005, 21(3):24-27.
    156. Sharma S, tenOever BR, Grandvaux N (1st authors), Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science (USA), 2003, 16(300):1148-1151.
    157. Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T. Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell, 2002, 10 (1):21-33.
    158. Juven-Gershon T, Hsu J-Y, Kadonaga JT. Perspectives on the RNA polymerase II core promoter. Biochem. Soc. Trans, 2006, 34(3):1047–1050.
    159. Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet, 2007, 8(13):424–436.
    160. Juven-Gershon T, Hsu J-Y, Theisen JW, Kadonaga JT. The RNA polymerase II core promoter - the gateway to transcription. Curr. Opin. Cell Biol, 2008,20(3):253–259.
    161. Kutach AK, Kadonaga JT. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell Biol, 2000, 20(17):4754–4764.
    162. Smale ST, Baltimore D. The“initiator”as a transcription control element. Cell, 1989,57(12):103–113.
    163. van Werven FJ, van Bakel H, van Teeffelen HA, Altelaar AF, Koerkamp MG, Heck AJ, Holstege FC, Timmers HT. Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev, 2008, 22(12):2359–2369.
    164. Kutach AK, Kadonaga JT. The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol. Cell Biol,2000, 20(21):4754–4764.
    165. Juven-Gershon T, Cheng S, Kadonaga JT. Rational design of a super core promoter that enhances gene expression. Nat. Methods, 2006, 3(123):917–922.
    166. Butler JEF, Kadonaga JT. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev, 2002, 16(41):2583–2592.
    167. Smale ST. Core promoters: active contributors to combinatorial gene regulation. Genes Dev, 2001,15(17):2503–2508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700