用户名: 密码: 验证码:
变结构工序状态网的模型与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统上将工艺规划和生产调度作为两个独立过程,往往造成工艺规划结果实际调度中不可用的问题,工艺规划和调度集成(IPPS)模型的提出试图解决此问题,全面反映生产系统的物流信息、状态信息和控制信息的柔性工艺路线模型是解决IPPS问题的关键技术之一。柔性工艺路线的建模面临两个方面的挑战:工序间逻辑关系的动态性和产品的中间状态组合爆炸性。针对中间状态组合爆炸问题提出了工序状态网(process state net, PSN)模型,以该模型为基础,考虑工序关系的动态性,进一步提出了变结构工序状态网模型(process state net with changeablestructure, PSN-CS)模型。
     本文围绕变结构工序状态网展开工作,研究工序关系动态变化和产品中间状态组合爆炸条件下的柔性工艺路线的建模和优化;建立了基于PSN-CS的IPPS问题求解模型,探讨该模型下工序可并行情形的集成调度,主要工作集中于以下几点:
     1. PSN模型
     针对产品中间状态组合性增长问题提出了柔性工艺路线的PSN模型,该模型通过工序状态的概念,将产品中间状态表示为多个工序状态的组合,避免了每一个中间状态都需要模型中一个结点来表示,有效减少模型结点个数,简化了柔性工艺路线的模型表示。
     2. PSN-CS模型
     从工序输入角度探讨了导致工序逻辑动态变化的本质因素,提出了组合工件输入弧和组合工件使能弧的概念,进而给出了柔性工艺路线的PSN-CS模型,该模型有效表达了工序关系的动态变化而不增加模型结点数量,为柔性工艺路线模型自动生成打下了基础。
     3. PSN-CS模型的构建和优化
     将工件区分为基本工件和专用工件,并给出了基本工件提取算法,指出PSN-CS模型只需对基本工件建模,从结构上简化了PSN-CS模型,进而给出了工序逻辑关系映射为PSN-CS模型的算法。从经验规则、结构优化和层次优化三方面给出了PSN-CS模型的优化技术,有效降低了IPPS问题的求解空间。
     4. PSN-CS模型的应用
     建立了基于PSN-CS的IPPS问题模型,对生产任务的具体工艺路线生成和调整进行探讨,给出了工艺路线的生成和调整算法,研究了工序可并行条件下的IPPS问题遗传算法求解模型,提出了工序可并行情况下遗传算法调度的解码方法,最后以线束生产为例建立了线束IPPS原型系统。
The process planning and production scheduling are traditionally regarded as two independentprocedures, which often result in that the process planning is not usable in practical scheduling. TheIPPS (integrated process planning and scheduling) model is proposed for trying to solve the problem,where the flexible process route model which can completely reflect the logistics, state and controlinformation is one of the key technologies of IPPS. There are two challenges to build the flexibleprocess route model, i.e., the dynamics of logical relations between processes, and the combinationexplosion of intermediate states of products. Aiming at the combination explosion, the PSN (ProcessState Net) model is presented. Furthermore, considering the dynamics of process relations, thePSN-CS (Process State Net with Changeable Structure) model is proposed.
     In the present dissertation, systematic researches are carried through revolving around thePSN-CS. Building and optimizing the flexible process route model under the conditions of dynamicchanges of process relations and combination explosion of intermediate states of products, areinvestigated, and then the solution model of IPPS based on PSN-CS is built, and lastly the integratedscheduling based on this model when the processes are parallelizable is discussed. The main worksof the present dissertation are as follows:
     1. PSN model
     Aiming at the sharp growth of intermediate states of products, the PSN model of flexibleprocess route is put forward. The model uses the combination of some process states to represent theintermediate states of products by introducing the concept of process state, which avoids that eachintermediate state is represented by a node in the model. So the model effectively reduces thenumber of nodes and simplifies the model representation of flexible process route.
     2. PSN-CS Model
     The essence factors which result in the dynamic change of process logic relations are discussed,and the concepts of combination input arc of workpiece and combination enabling arc of workpieceare put forward, and then based on the two concepts, the PSN-CS model for flexible process route isproposed. The PSN-CS model effectively expresses the dynamic change of process relations withoutincreasing the number of nodes, thus lays the foundation for automatic generation of the flexibleprocess route model.
     3. Building and optimizing for PSN-CS model
     The workpieces are divided into the basic and special ones, and the extraction algorithm forbasic workpieces is given; it is pointed out that PSN-CS model should build just for basic workpieces,which simplifies the PSN-CS model from its structure. Then the algorithm is given for mapping process logic relationship to PSN-CS model. The optimization techniques for PSN-CS model areprovided from three aspects, i.e., experience rules, structure optimization and level optimization,which effectively reduce the solution space of IPPS problems.
     4. The application of PSN-CS Model
     The IPPS problem model is established based on PSN-CS. Generating and adjusting the specificprocess route of production tasks are discussed, and then the generation and adjustment algorithm ofprocess route is given. The GA (Genetic Algorithm) solution model for IPPS problems under thecondition of which process can be parallelizable, is researched, and the decoding procedure for GAis researched. At last, taking the wire harness production as an example, the harness IPPS prototypesystem has been developed.
引文
[1]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报,2003,39(10):73-78.
    [2] K. Hitomi. Non-mass, multi-product, small-sized production: the state of the art [J].Technovation,1989,9(4):357-369.
    [3]何霆,刘飞,马玉林,等.车间生产调度问题研究[J].机械工程学报,2000,36(5):97-102.
    [4] S. Rahman. Theory of constraints: a review of the philosophy and its applications [J].International Journal of Operations&Production Management,1998,18(4):336-355.
    [5] G. Da Silveira, D. Borenstein, F.S. Fogliatto. Mass customization: Literature review andresearch directions [J]. International Journal of Production Economics,2001,72(1):1-13.
    [6]朱剑英.现代制造系统模式、建模方法及关键技术的新发展[J].机械工程学报,2000,36(8):1-5.
    [7]潘全科.智能制造系统多目标车间调度研究[D].南京航空航天大学博士学位论文,2003.
    [8] F. L. Zhao, S. K. Tso, P. S. Y. Wu. A cooperative agent modelling approach for process planning[J]. Computers in industry,2000,41(1):83-97.
    [9] S. Subrahmanyam, M. Wozny. An overview of automatic feature recognition techniques forcomputer-aided process planning [J]. Computers in industry,1995,26(1):1-21.
    [10] Y. S. Kim, E. Wang. Recognition of machining features for cast then machined parts [J].Computer-aided design,2002,34(1):71-87.
    [11] T. N. Wong, K. W. Wong. A feature-based design system for computer-aided process planning[J]. Journal of materials processing technology,1995,52(1):122-132.
    [12] B. Khoshnevis, D. N. Sormaz, J. O. O. Y. Park. An integrated process planning system usingfeature reasoning and space search-based optimization [J]. IIE transactions,1999,31(7):597-616.
    [13]褚学宁,王治森,马登哲,等. CAPP技术的智能化发展思路[J].中国机械工程,2003,14(23):2062-2066.
    [14] A. Azab, H. Elmaraghy. Sequential process planning: A hybrid optimal macro-level approach[J]. Journal of Manufacturing Systems,2007,26(3-4):147-160.
    [15] X. G. Ming, K. L. Mak, J. Q. Yan. A hybrid intelligent inference model for computer aidedprocess planning [J]. Integrated Manufacturing Systems,1999,10(6):343-353.
    [16] P. T. Chang, C. H. Chang. An integrated artificial intelligent computer-aided process planningsystem [J]. International Journal of Computer Integrated Manufacturing,2000,13(6):483-497.
    [17]李新宇.工艺规划与车间调度集成问题的求解方法研究[D].华中科技大学博士学位论文,2009.
    [18] H. B Marri, A. Gunasekaran, R. J. Grieve. Computer-aided process planning: a state of art [J].The International Journal of Advanced Manufacturing Technology,1998,14(4):261-268.
    [19] X. Xu, L. Wang, S. T. Newman. Computer-aided process planning-A critical review of recentdevelopments and future trends [J]. International Journal of Computer IntegratedManufacturing,2011,24(1):1-31.
    [20] H. Lau, B. Jiang. A generic integrated system from CAD to CAPP: a neutral file-cum-GTapproach [J]. Computer Integrated Manufacturing Systems,1998,11(1-2):67-75.
    [21] H. C. Chang, F. F. Chen. A dynamic programming based process planning selection strategyconsidering utilisation of machines [J]. The International Journal of Advanced ManufacturingTechnology,2002,19(2):97-105.
    [22] C. Grabowik, K. Kalinowski, Z. Monica. Integration of the CAD/CAPP/PPC systems [J].Journal of materials processing technology,2005,164-165:1358-1368.
    [23] D. Xue. A multilevel optimization approach considering product realization process alternativesand parameters for improving manufacturability [J]. Journal of Manufacturing Systems,1997,16(5):337-351.
    [24]徐俊刚,戴国忠,王宏安.生产调度理论和方法研究综述[J].计算机研究与发展,2004,41(2):257-267.
    [25] F. T. S. Chan, H. K. Chan, A. Kazerooni. Real time fuzzy scheduling rules in FMS [J]. Journalof Intelligent Manufacturing,2003,14(3):341-350.
    [26] D. Dubois, H. Fargier, P. Fortemps. Fuzzy scheduling: Modelling flexible constraints vs. copingwith incomplete knowledge [J]. European Journal of Operational Research,2003,147(2):231-252.
    [27] V. Vinod, R. Sridharan. Scheduling a dynamic job shop production system withsequence-dependent setups: An experimental study [J]. Robotics and Computer-IntegratedManufacturing,2008,24(3):435-449.
    [28] V. Vinod, R. Sridharan. Simulation modeling and analysis of due-date assignment methods andscheduling decision rules in a dynamic job shop production system [J]. International Journal ofProduction Economics,2011,129(1):127-146.
    [29] A. Rossi, G. Dini. Flexible job-shop scheduling with routing flexibility and separable setuptimes using ant colony optimisation method [J]. Robotics and Computer-IntegratedManufacturing,2007,23(5):503-516.
    [30] G. Mejía, N. G. Odrey. An approach using petri nets and improved heuristic search formanufacturing system scheduling [J]. Journal of Manufacturing Systems,2005,24(2):79-92.
    [31] J. Gao, M. Gen, L. Sun, et al. A hybrid of genetic algorithm and bottleneck shifting formultiobjective flexible job shop scheduling problems [J]. Computers&Industrial Engineering,2007,53(1):149-162.
    [32]鞠全勇,朱剑英.多目标批量生产柔性作业车间优化调度[J].机械工程学报,2007,43(8):148-154.
    [33] G. Tuncel, G. M. Bayhan. Applications of Petri nets in production scheduling: a review [J]. TheInternational Journal of Advanced Manufacturing Technology,2007,34(7):762-773.
    [34] M. D. Jeng, S. C. Chen. A heuristic search approach using approximate solutions to Petri netstate equations for scheduling flexible manufacturing systems [J]. International journal offlexible manufacturing systems,1998,10(2):139-162.
    [35] A. R. Moro, H. Yu, G. Kelleher. Hybrid heuristic search for the scheduling of flexiblemanufacturing systems using Petri nets [J]. IEEE Transactions on Robotics and Automation,2002,18(2):240-245.
    [36] A. Reyes, H. Yu, G. Kelleher, et al. Integrating Petri nets and hybrid heuristic search for thescheduling of FMS [J]. Computers in industry,2002,47(1):123-138.
    [37] J. H. Chen, L. C. Fu, M. H. Lin, et al. Petri-net and GA-based approach to modeling,scheduling, and performance evaluation for wafer fabrication [J]. IEEE Transactions onRobotics and Automation,2001,17(5):619-636.
    [38]熊锐,吴澄.车间生产调度问题的技术现状与发展趋势[J].清华大学学报(自然科学版),1998,38(10):55-60.
    [39] C. Saygin, S. E. Kilic. Integrating flexible process plans with scheduling in flexiblemanufacturing systems [J]. The International Journal of Advanced Manufacturing Technology,1999,15(4):268-280.
    [40] S. Wang, L. Xi, B. Zhou. Filtered-beam-search-based algorithm for dynamic rescheduling inFMS [J]. Robotics and Computer-Integrated Manufacturing,2007,23(4):457-468.
    [41] M. Kumar, S. Rajotia. Integration of scheduling with computer aided process planning [J].Journal of materials processing technology,2003,138(1-3):297-300.
    [42] N. N. Gindy, S. M. Saad, Y. Yue. Manufacturing responsiveness through integrated processplanning and scheduling [J]. International Journal of Production Research,1999,37(11):2399-2418.
    [43]高亮,李新宇.工艺规划与车间调度集成研究现状及进展[J].中国机械工程,2011,22(8):1001-1007.
    [44]张志英,唐承统,张建民,等.遗传算法在柔性CAPP与生产调度集成中的应用[J].计算机集成制造系统,2002,8(8):621-624.
    [45] L. Wang, W. Shen, Q. Hao. An overview of distributed process planning and its integration withscheduling [J]. International journal of computer applications in technology,2006,26(1):3-14.
    [46] R. J. Seethaler, I. Yellowley. Process control and dynamic process planning [J]. InternationalJournal of Machine Tools and Manufacture,2000,40(2):239-257.
    [47] Y. F. Zhang, A. N. Saravanan, J. Y. H. Fuh. Integration of process planning and scheduling byexploring the flexibility of process planning [J]. International Journal of Production Research,2003,41(3):611-628.
    [48] M. Kumar, S. Rajotia. Integration of process planning and scheduling in a job shopenvironment [J]. The International Journal of Advanced Manufacturing Technology,2006,28(1):109-116.
    [49] L. Wang, W. Shen. DPP: an agent-based approach for distributed process planning [J]. Journalof Intelligent Manufacturing,2003,14(5):429-439.
    [50] G. K. Hutchinson, K. A. Pflughoeft. Flexible process plans: their value in flexible automationsystems [J]. International Journal of Production Research,1994,32(3):707-719.
    [51] T. O. Boucher, A. Yalcin, T. Tai. Dynamic routing and the performance of automatedmanufacturing cells [J]. IIE transactions,2000,32(10):975-988.
    [52] N. E. Larsen, L. Alting. Dynamic planning enriches concurrent process and production planning[J]. International Journal of Production Research,1992,30(8):1861-1876.
    [53] H. Tsubone, M. Horikawa. A comparison between machine flexibility and routing flexibility [J].International journal of flexible manufacturing systems,1999,11(1):83-101.
    [54] J. Ciurana, M. L. Garcia-Romeu, I. Ferrer, et al. A model for integrating process planning andproduction planning and control in machining processes [J]. Robotics and Computer-IntegratedManufacturing,2008,24(4):532-544.
    [55] C. G lo lu. A constraint-based operation sequencing for a knowledge-based process planning[J]. Journal of Intelligent Manufacturing,2004,15(4):463-470.
    [56] Y. J. Tseng, C. H. Lin, Y. H. Lin. Integrated assembly and machining planning for electronicproducts using a genetic algorithm approach [J]. The International Journal of AdvancedManufacturing Technology,2008,36(1):140-155.
    [57]袁崇义. Petri网原理与应用[M].电子工业出版社,2005.
    [58] W. J. Zhang, S. Q. Xie. Agent technology for collaborative process planning: a review [J]. TheInternational Journal of Advanced Manufacturing Technology,2007,32(3):315-325.
    [59] J. M. Usher, K. J. Fernandes. Dynamic process planning--the static phase [J]. Journal ofmaterials processing technology,1996,61(1-2):53-58.
    [60] Y. C. Ho, C. L. Moodie. Solving cell formation problems in a manufacturing environment withflexible processing and routeing capabilities [J]. International Journal of Production Research,1996,34(10):2901-2923.
    [61] J. P. Kruth, J. Detand, G. Van Zeirjan, et al. Methods to improve the response time of a CAPPsystem that generates non-linear process plans [J]. Advances in Engineering Software,1996,25(1):9-17.
    [62] D. Kiritsis, M. Porchet. A generic Petri net model for dynamic process planning and sequenceoptimization [J]. Advances in Engineering Software,1996,25(1):61-71.
    [63]吴玉光,高曙明.一种有效确定相交特征加工顺序的方法[J].计算机辅助设计与图形学学报,2001,13(10):937-942.
    [64] A. Azab, H. A. Elmaraghy. Mathematical modeling for reconfigurable process planning [J].CIRP Annals-Manufacturing Technology,2007,56(1):467-472.
    [65] D. N. ormaz, B. Khoshnevis. Process sequencing and process clustering in process planningusing state space search [J]. Journal of Intelligent Manufacturing,1996,7(3):189-200.
    [66] D. N. ormaz, B. Khoshnevis. Modeling of manufacturing feature interactions for automatedprocess planning [J]. Journal of Manufacturing Systems,2000,19(1):28-45.
    [67] D. Borenstein. A directed acyclic graph representation of routing manufacturing flexibility [J].European Journal of Operational Research,2000,127(1):78-93.
    [68]胡于进,张正义,凌玲,等.基于工艺约束矩阵的加工序列优化[J].中国机械工程,2009,20(9):1062-1066.
    [69] T. Kis. Job-shop scheduling with processing alternatives [J]. European Journal of OperationalResearch,2003,151(2):307-332.
    [70] J. Blazewicz, E. Pesch, M. Sterna. The disjunctive graph machine representation of the job shopscheduling problem [J]. European Journal of Operational Research,2000,127(2):317-331.
    [71] D. H. Chung, S. H. Suh. ISO14649-based nonlinear process planning implementation forcomplex machining [J]. Computer-aided design,2008,40(5):521-536.
    [72] T. Kis, D. Kiritsis, P. Xirouchakis, et al. A Petri net model for integrated process and job shopproduction planning [J]. Journal of Intelligent Manufacturing,2000,11(2):191-207.
    [73] K. E. Moore, A. Gungor, S. M. Gupta. A Petri net approach to disassembly process planning [J].Computers&Industrial Engineering,1998,35(1-2):165-168.
    [74] C. Girault, R. Valk. Petri nets for systems engineering: a guide to modeling, verification, andapplications [M]. Springer Verlag,2003.
    [75] W. D. Li, S. K. Ong, A. Y. C. Nee. Optimization of process plans using a constraint-based tabusearch approach [J]. International Journal of Production Research,2004,42(10):1955-1985.
    [76] G. Nallakumarasamy, P. S. S. Srinivasan, K. Venkatesh Raja, et al. Optimization of operationsequencing in CAPP using simulated annealing technique (SAT)[J]. The International Journalof Advanced Manufacturing Technology,2011,54(5):521-528.
    [77] Y. W. Guo, A. R. Mileham, G. W. Owen, et al. Operation sequencing optimization using aparticle swarm optimization approach [J]. Proceedings of the Institution of MechanicalEngineers, Part B: Journal of Engineering Manufacture,2006,220(12):1945-1958.
    [78] M. D. Jeng, C. S. Lin, Y. S. Huang. Petri net dynamics-based scheduling of flexiblemanufacturing systems with assembly [J]. Journal of Intelligent Manufacturing,1999,10(6):541-555.
    [79] J. Wang, Y. F. Zhang, A. Y. C. Nee, et al. Reducing tardy jobs by integrating process planningand scheduling functions [J]. International Journal of Production Research,2009,47(21):6069-6084.
    [80] M. K. Lim, Z. Zhang. A multi-agent based manufacturing control strategy for responsivemanufacturing [J]. Journal of materials processing technology,2003,139(1-3):379-384.
    [81] W. Shen, L. Wang, Q. Hao. Agent-based distributed manufacturing process planning andscheduling: a state-of-the-art survey [J]. IEEE Transactions on Systems, Man, and Cybernetics,Part C: Applications and Reviews,2006,36(4):563-577.
    [82] T. N. Wong, C. W. Leung, K. L. Mak, et al. Dynamic shopfloor scheduling in multi-agentmanufacturing systems [J]. Expert Systems with Applications,2006,31(3):486-494.
    [83] Y. K. Kim, K. Park, J. Ko. A symbiotic evolutionary algorithm for the integration of processplanning and job shop scheduling [J]. Computers&Operations Research,2003,30(8):1151-1171.
    [84] X. Shao, X. Li, L. Gao, et al. Integration of process planning and scheduling--A modifiedgenetic algorithm-based approach [J]. Computers&Operations Research,2009,36(6):2082-2096.
    [85] X. Li, L. Gao, X. Shao, et al. Mathematical modeling and evolutionary algorithm-basedapproach for integrated process planning and scheduling [J]. Computers&Operations Research,2010,37(4):656-667.
    [86] H. Liu, A. Abraham, O. Choi, et al. Variable neighborhood particle swarm optimization formulti-objective flexible job-shop scheduling problems [J]. Simulated Evolution and Learning,2006,197-204.
    [87] Y. Guo, W. Li, A. R. Mileham, et al. Optimisation of integrated process planning and schedulingusing a particle swarm optimisation approach [J]. International Journal of Production Research,2009,47(14):3775-3796.
    [88] G. J. Palmer. A simulated annealing approach to integrated production scheduling [J]. Journal ofIntelligent Manufacturing,1996,7(3):163-176.
    [89] W. D. Li, C. A. Mcmahon. A simulated annealing-based optimization approach for integratedprocess planning and scheduling [J]. International Journal of Computer IntegratedManufacturing,2007,20(1):80-95.
    [90] P. Brandimarte. Routing and scheduling in a flexible job shop by tabu search [J]. Annals ofOperations Research,1993,41(3):157-183.
    [91] A. Weintraub, D. Cormier, T. Hodgson, et al. Scheduling with alternatives: a link betweenprocess planning and scheduling [J]. IIE transactions,1999,31(11):1093-1102.
    [92] R. Swarnkar, M. K. Tiwari. Modeling machine loading problem of FMSs and its solutionmethodology using a hybrid tabu search and simulated annealing-based heuristic approach [J].Robotics and Computer-Integrated Manufacturing,2004,20(3):199-209.
    [93] F. T. S. Chan, V. Kumar, M. K. Tiwari. The relevance of outsourcing and leagile strategies inperformance optimization of an integrated process planning and scheduling [J]. InternationalJournal of Production Research,2009,47(1):119-142.
    [94] J. Gao, L. Sun, M. Gen. A hybrid genetic and variable neighborhood descent algorithm forflexible job shop scheduling problems [J]. Computers&Operations Research,2008,35(9):2892-2907.
    [95] X. Li, X. Shao, L. Gao, et al. An effective hybrid algorithm for integrated process planning andscheduling [J]. International Journal of Production Economics,2010,126(2):289-298.
    [96]刘晓平,程光春,吴黄,等.多连通图的参数化表示与分解算法[J].工程图学学报,2009,30(2):114-119.
    [97]徐本柱,刘晓平.柔性线束工艺设计建模研究[J].工程图学学报,2010,31(5):47-52.
    [98] T. Murata. Petri nets: Properties, analysis and applications [J]. Proceedings of the IEEE,1989,77(4):541-580.
    [99] M. Uzam, G. Gelen. The real-time supervisory control of an experimental manufacturingsystem based on a hybrid method [J]. Control Engineering Practice,2009,17(10):1174-1189.
    [100] M. Uzam, A. H. Jones. Discrete event control system design using automation Petri nets andtheir ladder diagram implementation [J]. The International Journal of Advanced ManufacturingTechnology,1998,14(10):716-728.
    [101]张树有,王彦超,裘乐淼.面向订单产品配置设计的非标结构单元层次转化技术[J].计算机集成制造系统,2010,16(9):1809-1815.
    [102] J. Jiao, M. M. Tseng, Q. Ma, et al. Generic bill-of-materials-and-operations for high-varietyproduction management [J]. Concurrent Engineering,2000,8(4):297-321.
    [103]谭建荣,李涛,戴若夷.支持大批量定制的产品配置设计系统的研究[J].计算机辅助设计与图形学学报,2003,15(8):931-937.
    [104] S. Benjaafar, R. Ramakrishnan. Modelling, measurement and evaluation of sequencingflexibility in manufacturing systems [J]. International Journal of Production Research,1996,34(5):1195-1220.
    [105] U. Bilge, M. Firat, E. Albey. A parametric fuzzy logic approach to dynamic part routingunder full routing flexibility [J]. Computers&Industrial Engineering,2008,55(1):15-33.
    [106] K. H. Kim, P. J. Egbelu. A mathematical model for job shop scheduling with multiple processplan consideration per job [J]. Production Planning&Control,1998,9(3):250-259.
    [107] C. Ozguven, L. Ozbakir, Y. Yavuz. Mathematical models for job-shop scheduling problemswith routing and process plan flexibility [J]. Applied Mathematical Modelling,2010,34(6):1539-1548.
    [108] E. Hart, P. Ross. A systematic investigation of GA performance on jop shop schedulingproblems [C]. In: Proceedings of the EvoWorkshops2000, LNCS1803, Springer-Verlag,2000:277-286.
    [109]王凌.车间调度及其遗传算法[M].清华大学出版社,2003.
    [110] R. Cheng, M. Gen, Y. Tsujimura. A tutorial survey of job-shop scheduling problems usinggenetic algorithms--I. representation [J]. Computers&Industrial Engineering,1996,30(4):983-997.
    [111] M. Pinedo. Scheduling: theory, algorithms, and systems [M]. Springer Verlag,2008.
    [112] G. Shi. A genetic algorithm applied to a classic job-shop scheduling problem [J]. InternationalJournal of Systems Science,1997,28(1):25-32.
    [113]任庆生,叶中行.交叉算子的探索能力[J].计算机研究与发展,1999,36(11):1317-1322.
    [114] K. Deep, M. Thakur. A new crossover operator for real coded genetic algorithms [J]. AppliedMathematics and Computation,2007,188(1):895-911.
    [115] D. W. Coit, A. E. Smith. Reliability optimization of series-parallel systems using a geneticalgorithm [J]. IEEE Transactions on Reliability,1996,45(2):254-260,266.
    [116] R. Cheng, M. Gen, Y. Tsujimura. A tutorial survey of job-shop scheduling problems usinggenetic algorithms, part II: hybrid genetic search strategies [J]. Computers&IndustrialEngineering,1999,36(2):343-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700