用户名: 密码: 验证码:
漂浮基刚、柔混合空间机器人系统智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间探索的深入,空间机器人将发挥越来越重要的作用。柔性臂空间机器人系统更是由于具有诸多优点而成为近二十年来空间机器人研究领域的热点。为了保证控制器的控制精度,在为柔性臂空间机器人系统进行轨迹跟踪控制器设计时必须同时考虑对柔性振动的抑制。针对系统惯性参数存在不确定或未知的情况下,研究了漂浮基刚、柔空间机器人系统的建模、轨迹跟踪控制问题,并系统地研究了柔性空间机器人系统的振动主动抑制问题。
     首先使用拉格朗日方程和假设模态法分别建立了刚、柔空间机器人系统的动力学方程,通过研究分析发现,该系统动力学方程为选择的系统组合惯性参数的线性函数。
     其次为刚性双臂空间机器人系统分别设计了自适应控制、模糊神经网络控制和鲁棒自适应神经网络控制来保证机器人载体姿态、关节角和末端爪手的轨迹跟踪。自适应控制可以克服系统部分参数未知对控制器的影响;模糊神经网络控制则完全不需要预知系统惯性参数便可对空间机器人系统进行控制;鲁棒自适应神经网络控制则可更好地利用已知的系统参数。以上三种控制方案还具有不需要测量载体位置、移动速度、移动加速度的优点。
     再次,分别对柔性臂空间机器人系统柔性振动不主动控制、复合控制算法、奇异摄动法和混合轨迹控制算法进行了研究。当不对柔性振动进行主动控制时,计算力矩法和模糊神经网络控制均可保证系统刚性轨迹的跟踪,但系统同时存在着较大的振动现象。使用自适应控制算法对柔性振动进行抑制时,可以快速实时地抑制柔性振动,但该复合控制算法理论上会削弱刚性轨迹控制器的鲁棒性。利用奇异摄动法,可将柔性臂空间机器人系统分解为慢变、快变两个子系统,在两个时间尺度的假设下分别对其进行控制,从理论上解决了控制器直接叠加的问题。基于虚拟控制力观念,设计了同时反应柔性振动和刚性期望轨迹的混合期望轨迹,并基于该混合期望轨迹分别设计了滑模变结构控制和滑模神经网络控制,这种混合轨迹控制方案不会出现振动控制器影响轨迹控制器性能的问题。
     最后,对所设计的系统控制器进行数值仿真分析。
     仿真结果表明,所有轨迹跟踪控制器均能保证系统轨迹跟踪,柔性振动抑制方案均能对振动进行快速实时地抑制。
With the development of space exploration, space robot will play more and moreimportant functions. Especially, the flexible space robot system becomes the majorsubject over the past two decades because of their advantages over rigid space robot.In order to ensure the operation of high accuracy, the vibration control of flexiblespace robot system must be considered during the controller design. In the presence ofunknown or uncertain system parameters unknown, the dynamics modeling, trajectorytracking controlling, and vibration suppression of rigid and flexible space-based spacerobot system are investigated.
     Firstly, the dynamic equations of rigid and flexible space robot system arederived by Lagrange equation and assumed modes method. It is found by analysis thatthe dynamic equations can be linearly dependent on a group of system inertialparameters.
     Secondly, the adaptive control, neural network fuzzy control, and robust-adaptiveneural network control are designed for dual-arm rigid space robot system toguarantee the trajectory tracking of base’s attitude, joint angles, and end-point. Inwhich, the adaptive control can overcome the effect of part unknown parameters. Theneural network fuzzy control doesn’t need the system parameters at all during thetrajectory tracking, while the robust-adaptive neural network control makes use of theknown system parameters better. In particular, it doesn't require measuring theposition, velocity nor acceleration of the base because of an effective exploitation ofthe particular property of the system dynamics.
     Then, the control schemes of flexible space robot system without vibrationsuppression, using composite control, under singular perturbation theory, and usinghybrid control are proposed respectively. When the flexible vibration is not controlactively, the tracking error is very small by computed torque method and neuralnetwork fuzzy control, but there are large vibrations during the control. Usingcomposite control, a simple direct parameter adaptive rule is presented to suppress thevibration more quickly. Since this composite controller regard the flexible vibrationstabilizer as a perturbation of the whole system, the rigid motion controller obviously loses a certain degree of robustness. By singular perturbation theory, the singularperturbation model of the flexible space robot system is obtained. The flexiblevibration stabilizer and the rigid trajectory tracking controller can be designed intwo-time scale, it solve the superposition of the two controllers in theory. In hybridcontrol, the virtual control force concept is employed to generate a new hybrid desiredtrajectory reflecting the flexible vibration modes as well as the rigid desired trajectory.As the proposed sliding-mode control and sliding-mode neural network control trackthe hybrid desired trajectory, the flexible mode can be stabilized. The problem ofcontroller superposition is not appearing in the hybrid control.
     Lastly, the numerical simulations are carried out for all system controllers.
     Simulations results confirm that all proposed trajectory tracking control schemescan dominates the trajectory tracking for space robot system, and all vibrationstabilizers can suppress the flexible vibration actively and quickly in real time.
引文
[1] E Papadopoulos, S Dubowsky. Dynamic singularities in free-floating space manipulators.Journal of Dynamic Systems, Measurement, and Control.1993,115:44-52.
    [2] Lindberg R E, Longman R W. Kinematics and dynamic properties of an elbow manipulatormounted on a satellite. The Journal of the Astronautical Sciences.1990,38(4):397-421.
    [3] Longman R W, Lindberg R E. Satellite-mounted robot manipulators-new kinematics andreaction moment compensation. International Journal of Robotics Research.1987,6(3):87-103.
    [4] Nakamura Y, Mukherjee R. Nonholonomic path planning of space robots via a bidirectionalapproach. IEEE Trans. Robot. Autom.1991,7(4):500-514.
    [5] Nakamura Y, Mukherjee R. Exploitng nonholonomic redundancy of free-flying spacerobots. IEEE Transactions on Robotics and Automation,1993,9(4):499-506.
    [6] G Hirzinger. Robots in space-A survey. Advanced Robotics.1995,9(6):625-651
    [7]朱纪洪,叶榛.美国NASA的遥机器人发展计划.空间机器人及遥科学研讨会论文集.中国,烟台,1999:340-343.
    [8]柳长安.多自由飞行空间机器人协调控制研究.哈尔滨工业大学博士学位论文,2001.
    [9] D L Akin, M L Minsky, E D Thiel, et al. Space applications of automation, robotics andmachine Intelligence Systems (ARAMIS) phase II, NASA-CR,1983:3734-3736.
    [10] Bruce A Aikenhead, Robert G Daniell, M Davis Frederick. Canadarm and the space shuttle.Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films,1983,1(2):126-132.
    [11] S S Sachdev, Canadarm-a review of its flights. Journal of Vacuum Science and TechnologyA: Vacuum, Surfaces, and Films,1986,4(3):268-272.
    [12] K Machida, K Akita, Y Souma. Development of advanced robotic hand system for ETS-VII.I-SAIRAS'97.1997:63-68.
    [13] M Oda. System engineering approach in designing the teleoperation system of the ETS-VIIrobot experiment satellite. IEEE Int. Conf. on Robotics and Automation,1997:3054-3061.
    [14] G Hirzinger, B Brunner, J Dietrich, et al. ROTEX-The first remotely controlled robot inspace. IEEE Transactions on Robotics and Automation,1994:2604-2611.
    [15] B Brunner, G Hirzinger, K Landzettel, et al. Multisensory shared autonomy andtele-sensor-programming-Key issues in the space robot technology experiment ROTEX.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,1993:2123-2139.
    [16] G Hirzinger, B Brunner, J Dietrich, et al. Sensor-based space robotics-ROTEX and itstelerobotic features. IEEE Transactions on Robotics and Automation,1993,9(5):649-663.
    [17] Geert MENNENGA. European robotic arm: Europe's grip on the international space station.Air and Space Europe,1999,1(4):62-63.
    [18] R Boumans, C Heemskerk. The European robotic arm for the international space station.Robotics and Autonomous Systems,1998,23(1):17-27.
    [19] T Matsueda, K Kuraoka, K Goma, et al. JEMRMS system design and development status.Telesystems Conference,1991:391-395.
    [20]王树国,蔡鹤皋.空间智能机器人地面实验综合平台实时仿真系统.中国宇航学会机器人学术会议(空间机器人专题)论文集,1992:49-52.
    [21]梁斌,陈建新,刘良栋.舱外自由移动机器人系统.全国第十届空间及运动体控制技术学术会议论文集,2002:310-315.
    [22] Y Umetani, K Yoshida. Resolved motion rate control of space manipulators withgeneralized Jacobian matrix. IEEE Trans. Robotics and Automation,19895(3):303-314.
    [23] D Nenchev Y Umetani. Analysis of a redundant free-flying spacecraft/manipulator system.IEEE Trans. Robotics and Automation,1992,8(1):1-6.
    [24] E Papadopoulos, S Dubowsky. Dynamic singularities in the control of free-floating spacemanipulators. ASME Journal of Dynamic System, Measure and Control,1993,115(1):702-704.
    [25] S Dubowsky, E Papadopoulos. The kinematics, dynamics, and control of free-flying andfree-floating space robot systems. IEEE Trans. Robotics and Automation,1993,9(5):531-543.
    [26] E Papadopoulos. On the dynamics and control of space manipulators. Ph. D. Disseration,Dept. Mech. Eng. MIT, Cambridge, MA, Oct.1990.
    [27] K Yamada, K Ysuchiya. Efficient computation algorithms for manipulator control of aspace robot. Trans of the Society of Instrument and Control Engineers,1990,26(7):31-38.
    [28] Z Vafa, S Dubowsky. On the dynamics of manipulators in space using the virtualmanipulator approach. IEEE Proc. of Int. Conf. on Robotics and Automation,1987,(4):579-585.
    [29] Z Vafa, S Dubowsky. The kinematics and dynamics of space manipulators: the virtualmanipulator approach. Int. Journal of Robotics Research,1990,9(4):3-21.
    [30] Osman Parlaktuna, Metin Ozkan. Adaptive control of free-floating space manipulatorsusing dynamically equivalent manipulator model. Robotics and Autonomous Systems,2004,46(3):185-193.
    [31]梁斌,刘良栋,李庚田.空间机器人的动力学等价臂.自动化学报,1998,24(6);761-767.
    [32]刘延柱.完全笛卡尔坐标描述的多体系统动力学.力学学报,1997,29(1):84-94.
    [33]陈力.空间机械臂的动力学与控制.上海交通大学博士论文,1997.2.
    [34] Sunada W H, Dubowsky S. On the dynamic analysis and behavior of industrial roboticmanipulators with elastic members. ASME Journal of Mechanisms, Transmissions, andAutomation in Design,1983,105:42-51.
    [35] Usoro P B, Nadira R, Mahil S S.A finite element/Lagrange approach to modelinglightweight flexible manipulators. ASME Journal of Dynamic Systems, Measurement, andControl,1986,108:198-205.
    [36] H Du, M K Lim, K M Liew. A nonlinear finite element model for dynamic of flexiblemanipulators. Mech. Mach. Theory,1996,31(8):1109-1119.
    [37]王树国,丁希仑,蔡鹤皋.机器人柔性臂动力学有限元建模方法的研究.哈尔滨工业大学学报,1997,29(1):114-116.
    [38]徐晨,张景会,史维祥.一个高精度单臂柔性机械手的动力学模型.机器人,1992,14(5):8-11.
    [39]曹彤,孙杏初.机器人弹性动力学研究及结构综合优化.机械工程学报,1995,31(5):64-69.
    [40]刘又午,阎绍林,张大均.计及动力刚化的柔体动力学.中国机械工程,1997,8(4):81-84.
    [41]蒋铁英.柔性机械臂建模、仿真及实验研究.天津:天津大学,1996.
    [42] Book W J. Recursive Lagrange dynamics of flexible manipulator arms. InternationalJournal of Robot Research,1984,3(3):87-101.
    [43]樊晓平,颜全胜,徐建闽等.平面双连杆受限柔性机器人臂的动力学建模.控制理论与应用,1998,15(5):933-938.
    [44]边宇枢,陆震.柔性机器人动力学建模的一种方法.北京航空航天大学学报,1999,25(4):486-490.
    [45] Sadler J. On the analytical lumped-mass model of an elastic four-bar mechanism. Journal ofEngineering for Industry,1975,97:561-565.
    [46] Sarkissyan Y, Stepanian K. Martirossian, approximate dynamic synthesis of linkages withelastic links.9th world congress on the theory of Machines and Mechanisms,1995:1571-1574.
    [47] Hiroshi Ueno, Yangsheng Xu, Tetsuji Yoshida. Modeling and control strategy of a3-Dflexible space robot. IEEE/RSJ International Workshop on Intelligent Robots and SystemsIROS'91, Nov.3-5,1991, Osaka, Japan, IEEE Cat. TH0375-6(91):978-983.
    [48] Zhao-Hui Jiang. Kinematics and dynamics of flexible space robot arms. Proceedings of the1992IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC,July7-101992:1681-1688.
    [49] K Senda, Y.Murotsu. Methodology for control of a space robot with flexible links. IEEEProc.-Control Theory Appl., November2000,147(6):562-568.
    [50] Wu Licheng, Sun Fuchun, Sun Zengqi, et al. Dynamic modeling, control and simulation offlexible dual-arm space robot. Proceedings of IEEE TENCON'02,1282-1285.
    [51]苏文敬,吴立成,孙富春等.空间柔性双臂机器人系统建模、控制与仿真研究.系统仿真学报,2003,15(8):1098-1100.
    [52] M Takegaki, S Arimote. A new feedback method for dynamic control of manipulators.ASME Journal of DSMC.1981,103(2):119-125.
    [53] Guangcheng Ma, Wanli Zhang, Banmin Feng, et al. A nonlinear law for the short distancetracing controller of space robot.1st International Symposium on Systems and Control inAerospace and Astronautics, January19-21,2006, Harbin, China.962-966.
    [54] Chu Zhongyi, Sun Fuchun. Robust tracking control of electrical driven free-floating spacerobot manipulators. IEEE/ICARCV.2006.
    [55] Fang-Shiung Chen, Jung-Shan Lin. Nonlinear backstepping design of robot manipulatorswith velocity estimation feedback.20045th Asian Control Conference,351-356.
    [56] Utkin V I. Variable structure systems with sliding modes. IEEE Trans. Aut. Contr.,1977,212-222.
    [57] Bonchis A, Corke P I, Rye D C, Ha Q P. Variable structure methods in hydraulic servosystems control. Automatica,2001,37(4):589-595.
    [58] Minihan T P, Lei S, Sun G, et al. Large motion tracking control for thrust magnetic bearingswith fuzzy logic, sliding mode, and direct linearization. Journal of Sound and Vibration,2003,263:549-567.
    [59] Hsu Y C, Chen C, Li H X. A fuzzy adaptive variable structure controller with applicationsto robot manipulators. IEEE Trans. SMC,2001,31(3):331-340.
    [60] Tong S, Li H X. Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEETrans FS,2003,11(3):354-360.
    [61] Ha Q P, Nguyen Q H, Rye D C, et al. Fuzzy sliding mode controllers with applications.IEEE Trans IE,2001,48(1):38-46.
    [62] Panfeng Huang, Jianpin Yuan, Bin Liang. Adaptive sliding-mode control of space robotduring manipulating unknown objects. IEEE International Conference on Control andAutomation, Guangzhou, CHINA, May30-June1,2007,2907-2912.
    [63] Lijun Xue, Songhua Hu, Wenyi Qiang, et al. Distributed variable structure control withsliding mode for free-flying space robot. Proceedings of the IEEE International Conferenceon Robotics and Biomimetics, December15-18,2007, Sanya, China,473-478.
    [64] Nurkan Yagiz, Yuksel Hacioglu. Robust control of a spatial robot using fuzzy sliding modes.Mathematical and Computer Modelling,2009,49(1-2):114-127.
    [65] Przemyslaw Herman. Sliding mode control of manipulators using first-order equations ofmotion with diagonal mass matrix. Journal of the Franklin Institute,2005,342:353-363.
    [66] David G W, Rush D R, Gordon G P, et al. Augmented sliding mode control for flexible linkmanipulators. Journal of Intelligent and Robotic Systems,2002,34:415-430.
    [67] Niaona Zhang, Yong Feng, Xinghuo Yu. Optimization of terminal sliding control fortwo-link flexible manipulators. The30th annual conference of the IEEE industrialElectronica Society, November2-6,2004, Busan, Korea,1318-1322.
    [68]陈志煌,陈力.漂浮基双臂空间机器人关运动的模糊变结构滑模控制.福州大学学报(自然科学版),2008,36(1):101-104.
    [69]郭益深,陈力.具有外部扰动的漂浮基空间机械臂姿态与关节协调运动的Terminal滑模控制.机械科学与技术,2008,27(11):1296-1300.
    [70]王积伟,陆一心,吴振顺.现代控制理论与工程.高等教育出版社,2003:325-327.
    [71] S Purwar, I N Kar, A N Jha. Adaptive control of robot manipulators using fuzzy logicsystems under actuator constraints. Fuzzy Sets and Systems,2005,152:651-664.
    [72] S Y Yi, M J Chung. A robust fuzzy logic controller for robot manipulators withuncertainties. IEEE Trans. Systems Man Cybernet,1997,27(4):706-713.
    [73] R G Berstecher, R Palm, H D Unbehauen. An adaptive fuzzy sliding mode controller. IEEETrans. Indust. Electron.,2001,8(1):18-31.
    [74] Chuan-Kai Lin. A reinforcement learning adaptive fuzzy controller for robots. Fuzzy Setsand Systems,2003,137(3):339-352.
    [75] Sylvia Kohn-Rich, Henryk Flashner. Robust fuzzy logic control of mechanical systems.Fuzzy Sets and Systems,2003,133(1):77-108.
    [76] Recep Burkan, Ibrahim Uzmay. A model of parameter adaptive law with time varyingfunction for robot control. Applied Mathematical Modelling,2005,29:361-371.
    [77] Tong Shaocheng, Chen Bin, Wang Yongfu. Fuzzy adaptive output feedback control forMIMO nonlinear systems. Fuzzy Sets and Systems.2005,156:285-299.
    [78] Haruhisa Kawasaki, Satoshi Ueki, Satoshi Ito. Decentralized adaptive coordinated controlof multiple robot arms without using a force sensor. Automatica.2005,42:481-488.
    [79] S Kirchoff, William W Melek. A saturation-type robust controller for modular manipulatorsarms. Mechatronics,2007,17:175-190.
    [80] C Q Huang, X F Peng, C Z Jia, et al. Guaranteed robustness/performance adaptive controlwith limited torque for robot manipulators. Mechatronics,2008.
    [81] Michael W, Walker. Adaptive control of space-based robot manipulators. IEEE Trans.Robot. Autom.,1992,7(6):828-835.
    [82]马保离,霍伟.空间机器人系统的自适应控制控制理论与应用1996,13(2):191-197.
    [83] M Walker, L Wee. Adaptive control strategy for space based robot manipulators.Proceedings of IEEE Conference on Robotics and Automation,1991,2:1673-1680.
    [84] J J Slotine, W Li. On the adaptive control of robot manipulators. Int. J. Robotics Res,1987,6(3):49-59.
    [85] L Ehrenwald, M Guelman. Integrated adaptive control of space manipulators. Journal ofGuidance Control and Dynamics,1998,21(1):156-163.
    [86] Gu Y L, Xu Y S. A normal form augmentation approach to adaptive control of space robotsystems. J. Dyn. Cont.,1995,5:275-294.
    [87] Y L Gu, Y S Xu. A normal form augmentation approach to adaptive control of space robotsystems. Proc. of the IEEE Int. Conf. on Robotics and Automation,1993,(2):731-737.
    [88]陈力,刘延柱.参数不确定空间机械臂系统的自适应鲁棒性联合控制.宇航学报,1999,20(3):96-100.
    [89]陈力,刘延柱.参数不确定空间机械臂系统的增广自适应控制.航空学报,2000.3,21(2):150-154.
    [90]陈力,刘延柱.空间机械臂姿态及关节运动的自适应与鲁棒控制.中国机械工程,2001,12(5):582-585.
    [91]陈力,刘延柱.漂浮基空间机器人协调运动的自适应控制与鲁棒控制.机械工程学报,2001,37(8):18-22.
    [92]陈力,刘延柱.漂浮基空间机械臂关节轨迹跟踪的增广鲁棒控制方法.固体力学学报,2001,22(3):225-230.
    [93]陈力,刘延柱.空间机器人姿态与末端抓手协调运动的鲁棒自适应控制.工程力学,2002,19(3):165-170.
    [94]陈力,刘延柱.空间机械臂本体与末端抓手协调运动的自适应控制方法.控制理论与应用,2002,19(2):274-278.
    [95]陈力.空间机械臂载体与末端抓手协调运动的鲁棒与自适应混合控制方案.固体力学学报,2003,24(3):327-333.
    [96]陈力.参数不确定空间机械臂系统的鲁棒自适应混合控制.控制理论与应用,2004,21(4):512-516.
    [97]陈力.带滑移铰空间机械臂协调运动的自适应与鲁棒混合控制.空间科学学报,2002,22(1):82-90.
    [98]陈力.带滑移铰空间机械臂惯性空间轨迹的复合自适应跟踪控制.空间科学学报,2003,23(1):60-67.
    [99]陈力.带滑移铰空间机器人惯性空间轨迹跟踪的鲁棒混合自适应控制.工程力学,2004,21(3):174-179.
    [100] J H Shin, I K Jeong, J J Lee, et al. Adaptive robust control for free-flying space robots usingnorm-bounded property of uncertainty. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robotsand Systems,1995,2:59-64.
    [101]唐晓腾,陈力.双臂空间机器人惯性空间轨迹跟踪的鲁棒混合自适应控制.工程力学,2008,25(12):229-234.
    [102]唐晓腾,陈力.双臂空间机器人关节运动的一种增广鲁棒控制方法.空间科学学报,2007,27(5):435-440.
    [103]郭益深,陈力.双臂空间机器人的自适应鲁棒性联合控制.系统仿真学报,2009,21(3):625-628.
    [104]郭益深,陈力.双臂空间机器人姿态与关节协调运动的自适应控制、鲁棒控制.中国机械工程,2008,19(6):636-639.
    [105]洪昭斌,陈力.双臂空间机器人关节运动的一种增广自适应控制方法.空间科学学报,2007,27(4):347-352.洪昭斌,陈力.双臂空间机器人相对载体运动的增广自适应控制方法.力学季刊,2007,28(3):375-381.
    [106]洪昭斌,陈力.参数未知双臂空间机器人姿态、关节运动的自适应控制.工程力学,2009,26(3):251-256.
    [107]洪昭斌,陈力.具有未知参数漂浮基双臂空间机器人惯性空间复合自适应控制.中国机械工程,2010,21(1):12-16.
    [108] R J Wai, K Y Hsieh. Tracking control design for robot manipulator via fuzzy neuralnetwork. IEEE Int. Conf. on Fuzzy Systems.2002,2:1422-1427.
    [109] Y Cao, C W de Silva. Neural network adaptive control of a space platform-baseddeployable manipulator. IEEE Pacific Rim Conf. on Communications, Computers andSignal Processing.2003,2:860-863.
    [110] W Chatlatanagulchai, P H Meckl. Motion control of two-link flexible-joint robot withactuator nonlinearities using neural networks and direct method. Proceedings of2005IEEEConference on Control Applications,2005:1552-1557.
    [111] A G Ak, G Cansever. Adaptive neural network based fuzzy sliding mode control of robotmanipulator. IEEE Conference on Cybernetics and Intelligent Systems.2006:1-6.
    [112] K Kiguchi, T Fukuda. Position/force control of robot manipulators for geometricallyunknown objects using fuzzy neural networks. IEEE Trans. Ind. Electron.2000,47(3):641-649.
    [113] F Sun, Z Sun, L Li, et al. Neuro-fuzzy adaptive control based on dynamic inversion forrobotic manipulators. Fuzzy Sets Syst.,2003,134(1):117-133.
    [114]王耀南,孙炜.基于模糊神经网络的机器人自学习控制.电机与控制学报.2001.6,5(2):92-94.
    [115] Rong-Jong Wai, Po-Chen Chen. Intelligent tracking control for robot manipulator includingactuator dynamics via TSK-type fuzzy neural network. IEEE Transactions on FuzzySystems, August,2004,12(4):552-559.
    [116] Rong-Jong Wai, Chun-Yen Tu, Po-Chen Chen. Robust neural-fuzzy-network control forrigid-link electrically driven robot manipulator. The30th Annual Conference of the IEEEIndustrial Electronics Society, November2-6,2004, Busan, Korea,1763-1768.
    [117] HU Tingliang, ZHU Jihong, SUN Zengqi. Robust adaptive neural control of a class ofMIMO nonlinear systems. Tsinghua Science and Technology. February2007,12(1):14-21.
    [118] Ali T Hasan, A M S Hamouda, N Ismail, et al. An adaptive-learning algorithm to solve theinverse kinematics problem of a6D.O.F serial robot manipulator. Advances in EngineeringSoftware,2006,37:432-438.
    [119] JIA Qing-xuan, ZHANG Xiao-dong, SUN Han-xu. Integral backstepping sliding-modecontrol for space manipulator modular joint using RBFN observer. Proceedings of theInternational Conference on Information Acquisition, July9-11,2007, Jeju City, Korea.385-390.
    [120] Panfeng Huang, Yangsheng Xu, Bin Liang. Modeling human intelligence and application tospace object capturing. Proceedings of the IEEE International Conference on InformationAcquisition, June27-July3,2005, Hong Kong and Macau, China.210-215.
    [121] D Gorinevsky, A Kapitanovsky, A Goldenberg. Radial basis function network architecturefor nonholonomic motion planning and control of free-flying manipulators. IEEE trans. onRobotics&Automation.,1996,12(3):491-496.
    [122] R M Sanner, E E Vance. Adaptive control of free-floating space robots using neuralnetworks. Proc. of American Control Conference, USA.1995:2790-2794.
    [123] Baomin Feng, Guangcheng Ma, Weinan Xie, et al. Robust tracking control of space robotvia neural network. Systems and Control in Aerospace and Astronautics,2006,902-906.
    [124] R. Newton, Y S Xu. Neural network control of a space manipulator. IEEE Control System.,1993,13(6):14-22.
    [125]洪昭斌,陈力.漂浮基双臂空间机器人系统的模糊神经网络自学习控制.机器人,2008,30(5):435-439.
    [126] Guo Yishen, Chen Li. Adaptive neural network control of free-floating space manipulatorsystem in joint space. Proceedings of the26#Chinese Control Conference,2007:117-120.
    [127]黄登峰,陈力.漂浮基空间机械臂基于双向映射神经元网络的逆运动学控制.应用力学学报,2009.6,26(2):253-258.
    [128] Lucibello P. Output tracking for a nonlinear flexible arm. ASME Journal of DynamicSystems, Measurement and Control,1993,115:75-85.
    [129] Xia, Jack Zhijie, Menq, et al. Real time estimation of elastic deformation for end-pointtracking control of flexible two-link manipulators. Journal of Dynamic Systems,Measurement and Control,1993,115(3):75-85.
    [130] F Ozen. An optimal switched compensation controller for flexible-link manipulators.Proceedings of the American Control Conference, Philadelphia,1998.6,1804-1809.
    [131]洪在地,贠超,陈力.柔性臂漂浮基空间机器人建模与轨迹跟踪控制.机器人,2007,29(1):92-96.
    [132] D Kodiscbek. Natural motion for robot arms. Proc. IEEE conf. on Decision and Control,1994,733-735.
    [133] Wang Dongmei. The design of terminal sliding controller of two-link flexible manipulators.2007IEEE International Conference on Control and Automation, Guangzhou, CHINA-May30to June1,2007,733-737.
    [134]228Yu-Hu Cheng, Xue-Song Wang, Jian-Qiang Yi. Fuzzy variable structure control fortrajectory tracking of two-link flexible manipulators. Proceedings of the SecondInternational Conference on Machine Learning and Cybernetics, Xi'an, November2-5,2003,711-714.
    [135] Song Z S, Yi J Q, Zhao D B, et al. A computed torque controller for uncertain roboticmanipulator system: fuzzy approach. Fuzzy sets and systems,2005,154:208-226.
    [136] Bai P. Robust neural-network compensating control for robot manipulator based oncomputed torque control. Control Theory and Application,2001,18(6):897-901.
    [137] DENG Hui, SUN Fu Chun, SUN Zengqi. Observer-based adaptive controller design offlexible manipulators using time-delay neuro-fuzzy networks. Journal of Intelligent andRobotic Systems,2002,34:453-466.
    [138] J Carusone, K S Buchan, G M T D'Eleuterio. Experiments in end-effector tracking controlfor structurally flexible space manipulators. IEEE TRANSACTIONS ON ROBOTICSAND AUTOMATION, October1993,9(5):553-560.
    [139] Carusone J, Buchan K S, D'Eleuterio G M T. End-effector tracking control for structurallyflexible manipulators.1989American Control Conference,1389-1396.
    [140]洪昭斌,陈力.基于高斯基模糊神经网络的漂浮基柔性空间机械臂自学习控制.工程力学,2009,26(6):172-177.
    [141] Sadettin Kapucu, Nihat Yildirim, Hakan Yavuz, et al. Suppression of residual vibration of atranslating–swinging load by a flexible manipulator. Mechatronics,2008,18:121-128.
    [142]204Joo-Han Park, Soon-Geul Lee, Sungsoo Rhim. Adaptation of time-delay in adaptivecommand shaping filter for flexible manipulator control. SICE-ICASE International JointConference,2006, Oct.18-21,2006in Bexco, Busan, Korea,2595-2599.
    [143]戈新生,崔玮,赵秋玲.刚柔性耦合机械臂轨迹跟踪与振动抑制.工程力学,2005.12,22(6):188-191.
    [144] Masahiro Isogai, Fumihito Arai, Toshio Fukuda. Modeling and vibration control with neuralnetwork for flexible multi-link structures. Proceedings of the1999IEEE InternationalConference on Robotics and Automation, Detroit, Michigan, May1999,1096-1101.
    [145] Joono C, Wan K C, Youngil Y. Fast suppression of vibration for multi-link flexible robotsusing parameter adaptive control. Proceedings of the2001IEEE/RSJ, InternationalConference on Intelligent Robots and System, Maui, Hawaii, USA, Oct.29,913-918.
    [146] S Abiko, K Yoshida. An adaptive control of a space manipulator for vibration suppression.2005IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Edmonton, Canada, August2-August6,2005,2167-2172.
    [147] Peter V Kokotovic. Application of singular perturbation techniques to control problems,SIAM Review,1984,26(4):501-550.
    [148] D Subbaram Naidu. Singular perturbation and time scales in control theory and applications:an overview. Dynamics of Continuous, Discrete and Impulsive Systems, Series B:Applications&Algorithms,2002,9:233-278.
    [149]刘华平,孙富春,何克忠等.奇异摄动控制系统:理论与应用.控制理论与应用,2003,20(1):1-7.
    [150] R G K M AARTS, J B JONKER. Dynamic simulation of planar flexible link manipulatorsusing adaptive modal integration. Multibody System Dynamics,2002,7:31-50.
    [151] Y Li, G Liu, T Hong, et al. Robust control of a two-link flexible manipulator withquasi-static deflection compensation using neural networks. Journal of Intelligent andRobotic Systems,2005,44:263-276.
    [152] Ali Bazaei, Vahid Johari Majd. Neuro-adaptive friction compensation for single-linkflexible robots using serial-gray-box modeling strategy. Journal of Dynamic Systems,Measurement, and Control., June2006,128:297-308.
    [153] H R Karimi, M J Yazdanpanah. A new modeling approach to single-link flexiblemanipulator using singular perturbation method. Electrical Engineering,2006,88:375-382.
    [154] H R Karimi, M J Yazdanpanah, R V Patel, et al. Modeling and control of linear two-timescale systems: applied to single-link flexible manipulator. Journal of Intelligent RobotSystem,2006,45:235-265.
    [155]张友安,吕凤琳,孙富春.基于奇异摄动的双连杆柔性臂模糊控制.计算机仿真,2004,4:109-112.
    [156] Yuanchun Li, Baojian Tang, Zhixia Shi, et al. Experimental study for trajectory tracking ofa two-link flexible manipulator. International Journal of System Science,2000,31(1):3-9.
    [157] Yoshisada Murotsu, Kei Senda, Masato Hayashi. Some trajectory control schemes forflexible manipulators on a free-flying space robot. Proceedings of the1992IEEE/RSJInternational Conference on Intelligent Robots and System, Raleigh, NC, July7-10,1992,1697-1704.
    [158] Yoshisada Murotsu, Showzow Tsujio, Kei Senda, et al. Trajectory control of flexiblemanipulators on a free-flying space robot. IEEE Control system, June1992,51-57.
    [159] J.Lin, Z.Z.Huang, P.H.Huang. An active damping control of robot manipulators withoscillatory bases by singular perturbation approach. Journal of Sound and Vibration,2007,304:345-360.
    [160]洪昭斌,陈力.漂浮基柔性空间机械臂基于奇异摄动法的模糊控制和柔性振动主动控制.机械工程学报,2010,46(7):35-41.
    [161] Hong Zhaobin, Chen Li. Robust adaptive composite control and active vibrationsuppression of free-floating space flexible manipulator with parameter uncertainties inWorkspace.60th International Astronautical Congrees. Daejeon, Republic of Korea,2009.10.
    [162] Petterson B J, Robinett R D, Werner J C. Parameter-scheduled trajectory planning forsuppression of coupled horizontal and vertical vibrations in a flexible rod. IEEE roboticsand automation conference, Cincinnati, OH (USA),13-18May1990,916-921.
    [163] Kyung-Jo Park. Flexible robot manipulator path design to reduce the end point residualvibration under torque constraints. Journal of Sound and Vibration,2004,275:1051-1068.
    [164] Lee S H, Lee C W. Hybrid control scheme for robust tracking of two-link flexiblemanipulator. Journal of Intelligent and Robotic Systems,2002,34:431-452.
    [165]孙增圻.智能控制理论与技术.北京,1997.4.清华大学出版社.
    [166] Fu K S, Gonzalez R C, Lee C S G. Robotics, control, sensing, version and intelligence.McGraw-Hill, Book Company,1987.
    [167]戈新生,姜兵利,刘延柱.空间刚柔性机械臂动力学模型与轨迹跟踪控制.机械科学与技术,1998,17(4):606-608.
    [168] S Timoshenko, D H Young, W Weaver, et al. Vibration problems in engineering. John Wileyand Sons, Inc.19744th ED.
    [169] J Lin, F L Lewis. Two-time scale fuzzy logic controller of flexible link robot arm. FuzzySets and Systems,2003,139(1):125-149.
    [170] G S Ladde, S G Rajalakshmi. Singular perturbations of linear systems with multiparametersand multiple time scales. Journal of Mathematical Analysis and Applications,1988,129(2):457-481.
    [171] Signh R P, Vandervoort R J, Likins P W. Dynamics of flexible bodies in tree topology-AComputer oriented approach. J. Guidance Control Dynamics,1985,8:584-590.
    [172] Slotine J J, Li W. Applied nonlinear control. NJ: Prentice-Hall, Englewood Cliffs,1991.
    [173] Yuangang Tang, Fuchun Sun, Zengqi Sun. Neural network control of flexible-linkmanipulators using sliding mode. Neurocomputing,2006,70:288-295.
    [174] Patel R V, Toda M, Sridhar B. Robustness of linear quadratic state feedback designs in thepresence of system uncertainty. IEEE Trans. Automat. Control,1978,21:945-949.
    [175] William C. Dickson, Robert H. Cannon, Jr. Experimental results of two free-flying robotscapturing and manipulating a free-flying object. In: Proceedings of the InternationalConference on Intelligent Robots and Systems, August05-09,1995,2:51-58.
    [176] Xavier Cyril, Gilbert J. Jaar, Arun K. Misra. The effect of payload impact on the dynamicsof a space robot. Proceedings of the1993IEEE/RSJ International Conference on IntelligentRobots and Systems, Yokohama, Japan, July26-30,1993:2070-2075.
    [177] Dimitar Nikolaev Dimitrov, Kazuya Yoshida. Utilization of the bias momentum approachfor capturing a tumbling satellite. Proceedings of2004IEEE/RSJ International Conferenceon Intelligent Robots and Systems, September28-October2,2004, Sendai, Japan,3333-3338.
    [178] Tomohisa Oki, Hiroki Nakanishi, Kazuya Yoshida. Whole-body motion control forcapturing a tumbling target by a free-floating space robot. Proceedings of the IEEE/RSJInternational Conference on Intelligent Robots and Systems, San Diego, CA, USA, Oct29-Nov2,2007,2256-2261.
    [179] Hiroki Nakanishi, Kazuya Yoshida. Impedance control for free-flying space robots–basicequations and applications. Proceedings of the IEEE/RSJ International Conference onIntelligent Robots and Systems, October9-15,2006, Beijing, China,3137-3142.
    [180] Wenfu Xu, Yu Liu, Bin Liang, et al. Autonomous path planning and experiment study offree-floating space robot for target capturing. Journal of Intelligent Robot System,2008,51:303-331.
    [181] Noriyasu Inaba, Mitsushige Oda. Autonomous satellite capture by a space robot.Proceedings of the2000IEEE International Conference on Robotics and Automation, SanFrancisco, CA, April2000,1169-1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700