用户名: 密码: 验证码:
不对称变后掠翼飞行器多刚体建模与飞行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战场环境日愈提升的复杂度要求飞行器具备更高的性能和更好的适应性。作为新一代飞行器的重要发展方向,可变形飞行器能根据飞行环境和任务需求大尺度改变自身结构,以获取最优的气动布局和操控性。由于可变形飞行器结构复杂,气动特性及动力学特性特殊,因此其建模和控制都是当前的研究热点。作为一种经典的飞行器变形方式,变后掠翼为许多现役飞机采用。然而目前对变后掠翼飞行器的研究大多基于单刚体假设,并不符合其多刚体结构的固有特性。此外,不对称变后掠翼,以及将变后掠翼作为姿态控制机构的相关研究也很罕见。研究可不对称变后掠翼飞行器的建模和控制,可以为采用类似变形方式的飞行器研究提供新的思路和方法,具有重要意义。本文结合国家自然科学基金项目(61273090),对可不对称变后掠翼飞行器的多刚体建模和飞行控制进行了深入的研究,并介绍了相关硬件实验平台的工作进展。主要工作和研究内容如下:
     一、基于Kane方法的可不对称变后掠翼飞行器多刚体建模。
     二、对称和不对称变后掠翼分别作为俯仰和滚转姿态控制器的可行性研究,以及它们与传统舵面协同工作时的控制分配设计。
     三、考虑外部扰动和系统物理限制时,可不对称变后掠翼飞行器一体化航迹跟踪控制设计。
     四、基于Paparazzi UAV项目的无人机硬件实验平台介绍,以及当前实验进展。
The elevating complexity of modern battlefield requires higher performance and better adaptability of air vehicles. As an important development trend of new generation aircrafts, morphing aircrafts are capable of doing large-scale structural change to achieve optimal aerodynamic characteristic and controllability according to different flight environments and mission requirements. Because of their complex structures and special aerodynamic(dynamic) characteristics, modelling and control of morphing aircrafts have been lasting topics of interest for researchers. Variable sweep is a classical way of aircraft morphing, however, most former researches were done based on single-rigid-body hypothesis. Meanwhile, asymmetricmorphing and the feasibility of using morphing as additional controller were rarely considered. The study on modelling and control of asymmetric variable sweep morphing aircrafts can be enlightening for other morphing aircraft researches, and its importance is quite significant. Our research is supported by the National Natural Science Foundation of China(Grant No61273090). In this paper, we propose an intensive study on multi-body dynamic modelling and flight control of asymmetric variable sweep aircrafts, and report the progress of our UAV hardware experiment platform. The major work comprises the following aspects:
     1. Multi-body dynamic modelling of asymmetric morphing aircrafts based on Kane's method.
     2. The feasibility study of using symmetric(asymmetric) variable sweep morphing as additional attitude controller, and the following control allocating problem with traditional control surfaces.
     3.Integrated trajectory tracking control design of asymmetric variable sweep aircrafts with existence of external disturbances and system physical constraints.
     4.UAV hardware experiment platform based on Paparazzi UAV.
引文
[1]PERRY, R. Variable-sweep aircraft-A case history of multiple re-innovation[A]. In AIAA Third Annual Meeting[C],1966.
    [2]http://www.afwing.com/intro/Messerschmitt.htm
    [3]http://news.xinhuanet.com/tech/2008-07/28/content_8784281.htm
    [4]http://indiafoxtecho.blogspot.com/2010/04/unhappy-with-f-14.html
    [5]http://home.cetin.net.cn/storage/cetin2/report/s-weapon/plane/F-14.htm
    [6]http://www.primeportal.net/hangar/f-14_home.htm
    [7]Rodriguez, A. R. Morphing aircraft technology survey [A]. In 45th AIAA Aerospace Sciences Meeting and Exhibit[C],2007.
    [8]http://airspacetech.blogspot.com/2010/11/shaping-new-future-for-aerospace.html
    [9]http://www.abovetopsecret.com/forum/thread217383/pg5
    [10]http://www.flightglobal.com/news/articles/lockheed-martin-and-nextgen-aeronautics-start-fast-morphing-uav-tests-turning-attention-to-attack-formation-208463
    [11]Abdulrahim, M. Garcia, H. Ivey, G. F., etc. Flight testing a micro air vehicle using morphing for aeroservoelastic control [A]. In AIAA Structures, Structural Dynamics, and Materials Conference[C],2004.
    [12]Abdulrahim, M, Garcia, H.,Lind, R. Flight characteristics of shaping the membrane wing of a micro air vehicle[J]. Journal of Aircraft,2005,42 (1):131-137.
    [13]Abdulrahim, M, Lind, R. Flight testing and response characteristics of a variable gull-wing morphing aircraft[A].In AIAA Guidance, Navigation, and Control Conference and Exhibit[C], 2004.
    [14]Abdulrahim, M, Lind, R. Control and simulation of a multi-role morphing micro air vehicle[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],2005.
    [15]Abdulrahim, M, Lind, R. Modeling and control of micro air vehicles with biologically-inspired morphing[A]. In American Control Conference,2006[C],2006; 2718-2723.
    [16]Boothe, K.,Fitzpatrick, K.,Lind, R. Controllers for disturbance rejection for a linear input-varying class of morphing aircraft[A]. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference[C],2005.
    [17]Chakravarthy, A.,Grant, D. T.,Lind, R. Time-varying dynamics of a micro air vehicle with variable-sweep morphing[J]. Journal of Guidance, Control, and Dynamics,2012,35 (3): 890-903.
    [18]Grant, D.,Chakravarthy, A.,Lind, R. Modal interpretation of time-varying eigenvectors of morphing aircraft[A]. In AIAA Atmospheric Flight Mechanics Conference[C],2009.
    [19]Stanford, B.,Abdulrahim, M.,Lind, R., etc. Design and optimization of morphing mechanisms for highly flexible micro air vehicles[A]. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere[C],2006.
    [20]Grant, D. T.,Lindy, R. Effects of time-varying inertias on flight dynamics of an asymmetric variable-sweep morphing aircraft[A]. In AIAA Atmospheric Flight Mechanics Conference and Exhibit[C],2007.
    [21]Grant, D. T. A linear input-varying framework for modeling and control of morphing aircraft[D]. UNIVERSITY OF FLORIDA 2011.
    [22]SAMUEL, J. B.,Pines, D. Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles[J]. Journal of Aircraft,2007,44 (4):1088-1099.
    [23]Henry, J. J.,Blondeau, J. E.,Pines, D. J. Stability Analysis for UAVs with a Variable Aspect Ratio Wing[A]. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference[C],2005.
    [24]Henry, J. J. Roll control for UAVs by use of a variable span morphing wing[D]. University of Maryland 2005.
    [25]Hong, C. H.,Cheplak, M.,Choi, J. Y., etc. Flexible multi-body design of a Morphing UCAV[A]. In AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit[C],2004.
    [26]Rusnell, M. T. Morphing UAV pareto curve shift for enhanced performance[A]. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference[C], 2004.
    [27]Neal, D. A.,Good, M. G.Johnston, C. O., etc. Design and wind-tunnel analysis of a fully adaptive aircraft configuration[A]. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference[C],2004.
    [28]Bilgen, O.,Butt, L. M.,Day, S. R., etc. A novel unmanned aircraft with solid-state control surfaces:Analysis and flight demonstration[J]. Journal of Intelligent Material Systems and Structures,2012,24.2:147-167.
    [29]Bilgen,O.,Kochersberger, K.,Diggs, E., etc. Morphing wing aerodynamic control via macro-fiber-composite actuators in an unmanned aircraft[A]. In AIAA Infotech@Aerospace 2007 Conference and Exhibit[C],2007.
    [30]Bilgen, O.,Kochersberger, K.,Diggs, E. C., etc. Morphing wing micro-air-vehicles via macro-fiber-composite actuators[A]. In AIAA Structural Dynamics and Materials Conference[C],2007.
    [31]Bae, J. S.,Seigler, T. M.,Inman, D. J. Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing[J]. Journal of Aircraft,2005,42 (2):528-534.
    [32]Reich, G.,Bowman, J.,Sanders, B., etc. Development of an integrated aeroelastic multibody morphing simulation tool[A]. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confere[C],2006.
    [33]Henry, J.,Pines, D. A mathematical model for roll dynamics by use of a morphing-span wing[A]. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C],2007.
    [34]Niksch, A.,Valasek, J.,Strganac, T. W., etc. Six degree of freedom dynamical model of a morphing aircraft[A]. In AIAA Atmospheric Flight Mechanics Conference[C],2009.
    [35]Niksch, A.,Valasek, J.,Strganac, T. W., etc. Morphing aircraft dynamical model:Longitudinal shape changes[A]. In AIAA Atmospheric Flight Mechanics Conference and Exhibit[C],2008.
    [36]Seigler, M.,Neal, D.,Inman, D. Dynamic modeling of large-scale morphing aircraft[A]. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C],2006.
    [37]Yue, T.,Wang, L.,Ai, J. Multibody Dynamic Modeling and Simulation of a Tailless Folding Wing Morphing Aircraft[A]. In AIAA Atmospheric Flight Mechanics Conference[C],2009.
    [38]Bryan, G. H. Stability in aviation[M]. MACMILLAN AND CO., LIMITED,1911.
    [39]Bisplinghoff, R. L.,Ashley, H. Principles of aeroelasticity[M]. Dover Publications,2002.
    [40]Garrick, I. A survey of aerothermoelasticity.1963.
    [41]Meirovitch, L. A unified theory for the flight dynamics and aeroelasticity of whole aircraft[A]. In The Eleventh Symposium on Structural Dynamics and Control[C],1997; 12-14.
    [42]Meirovitch, L.,Tuzcu, I. Multidisciplinary approach to the modeling of flexible aircraft[A]. In CEAS/AIAA/AIAE International Forum on Aeroelasticity and Structural Dynamics[C], 2001.
    [43]Meirovitch, L.,Tuzcu, I. Time simulations of the response of maneuvering flexible aircraft[J]. Journal of Guidance, Control, and Dynamics,2004,27 (5):814-828.
    [44]Mukhopadhyay, V. Historical perspective on analysis and control of aeroelastic responses[J]. Journal of Guidance, Control, and Dynamics,2003,26 (5):673-684.
    [45]Schmidt, D. K.,Raney, D. L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance, Control, and Dynamics,2001,24 (3):539-546.
    [46]Taylor, A. The present status of aircraft stability problems in the aeroelastic domain[J]. Journal of the Royal Aeronautical Society,1959,63:580.
    [47]WASZAK, M.,SCHMIDT, D. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988,25 (6):563-571.
    [48]Huston, R. Multibody dynamics---modeling and analysis methods[J]. Applied Mechanics Reviews,1991,44:109.
    [49]Schiehlen, W. Multibody system dynamics:Roots and perspectives[J]. Multibody system dynamics,1997,1 (2):149-188.
    [50]Shabana, A. A. Flexible multibody dynamics:review of past and recent developments[J]. Multibody system dynamics,1997,1 (2):189-222.
    [51]Kane, T.,Wang, C. On the derivation of equations of motion[J]. Journal of the Society for Industrial & Applied Mathematics,1965,13 (2):487-492.
    [52]Gibbs, J. W. On the fundamental formulas of dynamics[J]. American Journal of Mathematics,,1879,2:49-64.
    [53]Appell, P. Sur les mouvements de roulment; equations du mouvement analougues a celles de Lagrange[J]. Comptes Rendus,1899,129:317-320.
    [54]Kane, T. R.,Levinson, D. A. Dynamics, theory and applications[M]. McGraw Hill Book Co, 1985.
    [55]Kane, T. R.,Likins, P. W.,Levinson, D. A. Spacecraft dynamics[M]. McGraw-Hill Book Co, 1983.
    [56]Kane, T. R.,Levinson, D. A. Formulation of equations of motion for complex spacecraft[J]. Journal of Guidance, Control, and Dynamics,1980,3 (2):99-112.
    [57]Kane, T. R.,Levinson, D. A. The use of Kane's dynamical equations in robotics[J]. The International Journal of Robotics Research,1983,2 (3):3-21.
    [58]ROSENTHAL, D.,SHERMAN, M. High performance multibody simulations via symbolic equation manipulation and Kane's method[J]. Journal of the Astronautical Sciences,1986,34 (3):223-239.
    [59]ROSENTHAL, D. An order n formulation for robotic systems[J]. Journal of the Astronautical Sciences,1990,38:511-529.
    [60]Anderson, K. S. An efficient formulation for the modeling of general multi-flexible-body constrained systems[J]. International journal of solids and structures,1993,30 (7):921-945.
    [61]Anderson, K. An order-n formulation for the motion simulation of general multi-rigid-body constrained systems[J]. Computers & structures,1992,43 (3):565-579.
    [62]徐世钰Kane方程在机械臂动力学中的应用[J].西安电子科技大学学报,1988,2: 100-108.
    [63]孙占庚,金国光,常志,etc.基于Kane法的柔性机械臂系统动力学建模及其模态截取研究[J].天津工业大学学报,2009,28(004):61-63.
    [64]赵海峰,蹇开林.基于KANE方法的并联六自由度机构的动力学计算[J].计算力学学报,2011,28(B04):165-170.
    [65]夏丹,陈维山,刘军考,etc.基于Kane方法的仿鱼机器人波状游动的动力学建模[J].机械工程学报,2009,45(6):41-49.
    [66]王英波,黄其涛,郑书涛,etc. Simulink和SimMechanics环境下并联机器人动力学建模与分析[J].哈尔滨工程大学学报,2012,33(1):100-105.
    [67]郑一力,孙汉旭.球形机器人动力学建模及运动特性分析[J].机械设计,2012,29(002):25-29.
    [68]刘敏杰,田涌涛.并联机器人动力学的子结构Kane方法[J].上海交通大学学报,2001,35(7):1032-1035.
    [69]Dorato, P. A historical review of robust control[J]. Control Systems Magazine, IEEE,1987,7 (2); 44-47.
    [70]Bellman, R. Dynamic Programming[J]. Princeton University Press, New Jersey,1957.
    [71]Pontryagin, L.,Boltyanskii, V.,Gamkrelidze, R., etc. The mathematical theory of optimal processes. In CRC Press:1962.
    [72]Calise, A. J.,Rysdyk, R. T. Nonlinear adaptive flight control using neural networks[J]. Control Systems, IEEE,1998,18 (6):14-25.
    [73]Kim, B. S.,Calise, A.,Kam, M. Nonlinear flight control using neural networks and feedback linearization[J]. Journal of Guidance, Control, and Dynamics,1997,20 (1):26-33.
    [74]McFarland, M. B.,Calise, A. J. Adaptive nonlinear control of agile antiair missiles using neural networks[J]. Control Systems Technology, IEEE Transactions on,2000,8 (5):749-756.
    [75]Nardi, F.,Rysdyk, R. T.,Calise, A. J. Neural network based adaptive control of a thrust vectored ducted fan[A]. In AIAA Guidance, Navigation, and control Conference[C],1999; 374-383.
    [76]Talebi, H.,Khorasani, K.,Tafazoli, S. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem[J]. Neural Networks, IEEE Transactions on,2009,20 (1):45-60.
    [77]Lyapunov, A. M. The general problem of the stability of motion[D].莫斯科国立大学1892.
    [78]DeCarlo, R.A.,Zak, S. H.,Matthews, G. P. Variable structure control of nonlinear multivariable systems:atutorial[J]. Proceedings of the IEEE,1988,76 (3):212-232.
    [79]Hung, J. Y.,Gao, W.,Hung, J. C. Variable structure control:a survey[J]. Industrial Electronics, IEEE Transactions on,1993,40 (1):2-22.
    [80]Shuwen, P.,Hongye, S.,Xiehe, H., etc. Variable structure control theory and application:A survey[A]. In Intelligent Control and Automation,2000. Proceedings of the 3rd World Congress[C],2000; 2977-2981.
    [81]高为炳.变结构控制研究的发展与现状[J].控制与决策,1993,8(4):241-248.
    [82]高为炳,程勉,曾文陵.柔性空间飞行器的变结构控制[J].航空学报,1988,9(5):274-280.
    [83]Crassidis, J. L.,Markley, F. L. Sliding mode control using modified Rodrigues parameters[J]. Journal of Guidance, Control, and Dynamics,1996,19 (6):1381-1382.
    [84]HEDRICK, J.,Gopalswamy, S. Nonlinear flight control design via sliding methods[J]. Journal of Guidance, Control, and Dynamics,1990,13:850-858.
    [85]Huang, J.J.,Lin, C. Application of sliding mode control to bank-to-turn missile systems[A]. In Aerospace Control Systems,1993. Proceedings. The First IEEE Regional Conference.[C], 1993; 569-573.
    [86]Isidori, A. Nonlinear control systems[M]. Springer,1995.
    [87]Khalil, H. K.,Grizzle, J. Nonlinear systems[M]. Prentice hall New Jersey,1996.
    [88]Lee, S.,Cochran Jr, J. Orbital maneuvers via feedback linearization and bang-bang control[J]. Journal of Guidance, Control, and Dynamics,1997,20 (1):104-110.
    [89]Bharadwaj, S.,Rao, A. V.,Mease, K. D. Entry trajectory tracking law via feedback linearization[J]. Journal of Guidance, Control, and Dynamics,1998,21:726-732.
    [90]Georgie, J.,Valasek, J. Selection of longitudinal desired dynamics for dynamic inversion controlled re-entry vehicles[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],2001.
    [91]R. d, Q. C., and J. Mulder. Re-entry flight controller design using nonlinear dynamic inversion[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],2001.
    [92]Bijnens, B.,Chu, Q.,Voorsluijs, G., etc. Adaptive feedback linearization flight control for a helicopter UAV[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C], 2005; 1-10.
    [93]McFarland, M. B.,D'Souza, C. N. Missile flight control with dynamic inversion and structured singular value synthesis[A]. In AIAA Guidance, Navigation, and Control Conference[C],1994.
    [94]Snell, S. A.,ENNS, D.,GARRARD, W., etc. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics,1992,15 (4): 3315.
    [95]Gregory, I. M. Dynamic inversion to control large flexible transport aircraft[A]. In AIAA Guidance, Navigation and Control Conference[C],1998.
    [96]BALAS, G.,GARRARD, W.,Reiner, J. Robust dynamic inversion control laws for aircraft control[J]. AIAA Paper,1992,92-4329.
    [97]Leitner, J. Nonlinear control of rotorcraft using approximate feedback linearization and online neural networks[A]. In AIAA Guidance, Navigation and Control Conference[C],1994.
    [98]Schumacher, C. Adaptive flight control using dynamic inversion and neural networks[A]. In AIAA Guidance, Navigation, and Control Conference[C],1999.
    [99]Kanellakopoulos, I.,Kokotovic, P. V.,Morse, A. S. Systematic design of adaptive controllers for feedback linearizable systems[J]. Automatic Control, IEEE Transactions on,1991,36 (11): 1241-1253.
    [100]Krstic, M.,Modestino, J.,Deng, H., etc. Stabilization of nonlinear uncertain systems[M]. Springer-Verlag New York, Inc.,1998.
    [101]Steinberg, M. L.,Page, A. B. Nonlinear adaptive flight control with a backstepping design approach[R]. DTIC Document,1998.
    [102]Sonneveldt, L.,Chu, Q.,Mulder, J. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics,2007,30 (2):322-336.
    [103]Lee, S.,Lee, H.,Won, D., etc. Backstepping approach of trajectory tracking control for the mid-altitude unmanned airship[A]. In AIAA Guidance, Navigation, and Control Conference[C], 2007.
    [104]Ali, I.,Radice, G.,Kim, J., etc. Backstepping control design with actuator torque bound for spacecraft attitude maneuver[J]. Journal of Guidance, Control, and Dynamics,2010,33 (1): 254-259.
    [105]Kim, K.,Kim, Y. Backstepping control of rigid spacecraft slew maneuver[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],2001.
    [106]Lian, B.,Bang, H.,Hurtado, J. E. Adaptive backstepping control based autopilot design for reentry vehicle[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C], 2004.
    [107]Steinicke, A.,Michalka, G. Improving transient performance of dynamic inversion missile autopilot by use of backstepping[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],2002.
    [108]Sharma, M.,Ward, D. G. Flight-path angle control via neuro-adaptive backstepping[A]. In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],2002.
    [109]Hu, Y. A. NN-based backstepping control for strict-feedback block nonlinear system[A]. In The 5'World Congress on Intelligent Control and Automation[C],2004; 2630-2633.
    [110]Chang, Y. Block Backstepping Control of MIMO Systems[J]. Automatic Control, IEEE Transactions on,2011,56 (5):1191-1197.
    [111]Seigler, T. M. Dynamics and control of morphing aircraft[D]. Virginia Polytechnic Institute and State University 2005.
    [112]Seigler, T. M.,Neal, D. A.,Bae, J. S., etc. Modeling and flight control of large-scale morphing aircraft[J]. Journal of Aircraft,2007,44 (4):1077-1087.
    [113]Robinett, R. D.,Sturgis, B. R.,Kerr, S. A. Moving mass trim control for aerospace vehicles[J]. Journal of Guidance, Control, and Dynamics,1996,19 (5):1064-1070.
    [114]Petsopoulos, T.,Regan, F. J.,Barlow, J. Moving-mass roll control system for fixed-trim re-entry vehicle[J]. Journal of Spacecraft and Rockets, Jan-Feb,1996,33(1):54-60.
    [115]Menon, P.,Sweriduk, G.,Ohlmeyer, E., etc. Integrated guidance and control of moving mass actuated kinetic warheads[R]. DTIC Document,2002.
    [116]Hurst, A. C.,Wickenheiser, A. M.,Garcia, E. Control of an Adaptive Aircraft with a Morphing Input[A]. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C],2009.
    [117]Stepanyan, V.,Kurdila, A. Nonlinear flight control in the presence of structural changes and external disturbances[A]. In 2008 American Control Conference[C],2008;1794-1799.
    [118]Valasek, J.,Tandale, M.,Rong, J. A reinforcement learning-adaptive control architecture for morphing[J]. Journal of Aerospace Computing, Information, and Communication,2005,2 (4): 174-195.
    [119]Valasek, J.,Lampton, A.,Marwaha, M. Morphing Unmanned Air Vehicle Intelligent Shape and Flight Control[A], In AIAA Infotech@Aerospace Conference[C],2009.
    [120]Lampton, A.,Niksch, A.,Valasek, J. Reinforcement learning of morphing airfoils with aerodynamic and structural effects[J]. Journal of Aerospace Computing, Information, and Communication,2009,6 (1):30-50.
    [121]吴森堂,费玉华.飞行控制系统[M].北京航空航天大学出版社,2005.
    [122]Brockhaus, R. Flugregelung[M]. Springer,1994.
    [123]Brian L. Stevens, F. L. L. Aircraft Control and Simulation,2 Editon[M].Wiley-Interscience, 2003.
    [124]Teichmann, B. E. a. T. Dynamics of Flight:Stability and Control[M]. Physics Today, vol.12, p.54,1959.
    [125]袁士杰,吕.多刚体系统动力学[M].北京理工大学出版社,1992.
    [126]J·维滕伯格.多刚体系统动力学[M].北京航空学院出版社,1986.
    [127]Kane, T. R. Dynamics of Nonholonomic Systems[J]. Journal of Applied Mechanics,1961, Vol.28 575-578.
    [128]Kane, T. R. Dynamics[R]. Holt, Rinehart, and Winston, New York:1968.
    [129]Huston, R. L. a. P., C. E. On Lagrange's Form of D'Alembert's Principle[J]. Matrix and Tensor Quarterly, March 1973, Vol.23, No.3 pp.109-112.
    [130]Huston, R. L., Passerello, C. E., and Harlow, M. W. Dynamics of Multi-Rigid Body Systems[J]. Journal of Applied Mechanics, Dec.1978,45 890-894.
    [131]Likins, P. W. Analytical Dynamics and Nonrigid Spacecraft Simulation[R]. Jet Propulsion Laboratory, Pasadena, CA, Tech. Rept, July 15,1974.
    [132]Desloge, E. A. Relationship between Kane's equations and the Gibbs-Appell equations[J]. Journal of Guidance, Control, and Dynamics,1987,10 (1).
    [133]Keat, J. Comment on" Relationship Between Kane's Equations and the Gibbs-Appell Equations"[J]. Journal of Guidance, Control, and Dynamics,1987,10 (6).
    [134]London, K. W. Derivation sf Dynamic Equations and Evaluation of the Kane Methodology[A]. In AIAA/AAS Astrodynamics Conference[C], Portland,OR,1990.
    [135]TOWNSEND, M. Equivalence of Kane's, Gibbs-Appell's, and Lagrange's equations[J]. Journal of Guidance, Control, and Dynamics,1992,15 (5):1289-1292.
    [136]戈正铭,程浥禾Kane方程研究[J].上海力学,1983,4(2):52-65.
    [137]陈滨.关于Kane方程[J].力学学报,1984,16(3):311-315.
    [138]梁天麟.对凯恩(Kane)方程的一些探讨[J].昆明理工大学学报(理工版),1985,1:68-74.
    [139]薛克宗Kane方程与离散系统动力学方程探讨[J].力学学报,1986,Vol.18.
    [140]梅凤翔.小议Kane方程[J].力学与实践,1996,18(6):59-60.
    [141]王保玉,李.,刘翠梅.两类拉格朗日方程的比较[J].大学物理,2006,25卷第2期.
    [142]Kane, T.,杨海兴,力学所.建立动力学方程的新方法[J].力学进展,1983,13(2):1000-0992.
    [143]Farrell, J.,Sharma, M.,Polycarpou, M. Backstepping-based flight control with adaptive function approximation[J]. Journal of Guidance, Control, and Dynamics,2005,28 (6): 1089-1102.
    [144]Sonneveldt, L.,Van Oort, E.,Chu, Q., etc. Nonlinear adaptive trajectory control applied to an F-16 model[J]. Journal of Guidance, Control, and Dynamics,2009,32 (1):25-39.
    [145]J. Farrell, M. P., and M. Sharma. Adaptive backstepping with magnitude, rate, and bandwidth constraints:Aircraft longitude control [A]. In American Control Conference[C], 2003;3898-3904.
    [146]周洪波,裴.,贺跃帮,赵运基.基于滤波反步法的无人直升机轨迹跟踪控制[J].控制与 决策,2012,27613-617.
    [147]Weisshaar, T. A.,Crittenden, J. Flutter of asymmetrically swept wings[J]. AIAA Journal, 1976,14 (8):993-994.
    [148]Weisshaar, T. A. Lateral equilibrium of asymmetrical swept wings-Aileron control vsgeometric twist[J]. Journal of Aircraft,1977,14(2):122-127.
    [149]https://zh.wikipedia.org/zh-hk/NASA_AD-1
    [150]Jeffery, J. A.,Hall, C. E. The design and control of an oblique winged remote piloted vehicle[A]. In AIAA, Aerospace Sciences Meeting and Exhibit[C],1995.
    [151]Li, P.,Seebass, R.,Sobieczky, H. Oblique flying wing aerodynamics[A]. In AIAA Theoretical Fluid Mechanics Meeting[C],1996.
    [152]McDaniel, M. A.,Wilks, B. L.,AVIATION, A., etc. Oblique Wing Aerodynamics [A]. In 22nd Applied Aerodynamics Conference and Exhibit[C],2004.
    [153]Grant, D. T.,Abdulrahim, M.,Lind, R. Flight dynamics of a morphing aircraft utilizing independent multiple-joint wing sweep[A]. In AIAA Atmospheric Flight Mechanics Conference and Exhibit[C],2006; 1111-1125.
    [154]Grant, D. T.,Lind, R. Effects of time-varying inertias on flight dynamics of an asymmetric variable-sweep morphing aircraft[A]. In AIAA Atmospheric Flight Mechanics Conference and Exhibit[C],2007.
    [155]Greenwell, D.,Wood, N. Roll moment characteristics of asymmetric tangential leading-edge blowing on a delta wing[J]. Journal of Aircraft,1994,31 (1):161-168.
    [156]Ahmad, H.,Young, T. M.,Toal, D., etc. Control allocation with actuator dynamics for aircraft flight controls[A]. In The 7th AIAA Aviation Technology, Integration and Operations Conference[C],2007; 1-14.
    [157]Ahmad, H.,Young, T. M.,Toal, D., etc. Centre of gravity movement as redundant pitch attitude control in control allocation[A]. In AIAA Guidance, Navigation and Control Conference and Exhibit[C],2008.
    [158]Ma, C.,Wang, L. Flying-wing aircraft control allocation[A]. In 47th AIAA Aerospace Sciences Meeting[C],2009; 1-22.
    [159]Wang, L.-X. A supervisory controller for fuzzy control systems that guarantees stability[A]. In Fuzzy Systems,1994. IEEE World Congress on Computational Intelligence., Proceedings of the Third IEEE Conference on[C],1994; 1035-1039.
    [160]Dash, P.,Elangovan, S.,Liew, A. Design of nonlinear expert supervisory controllers for power system stabilization[J]. Electric power systems research,1995,33(1):25-32.
    [161]Palm, R.,John, R. Supervisory fuzzy control of an exhaust measuring system[A].In Fuzzy Systems,1996., Proceedings of the Fifth IEEE International Conference on[C],1996; 479-485.
    [162]Kim, S, Hamel, W. R. Design of supervisory control scheme for fault tolerant control of telerobotic system in operational space[A]. In Intelligent Robots and Systems,2003.(IROS 2003). Proceedings.2003 IEEE/RSJ International Conference on[C],2003; 2803-2808.
    [163]Nobahari, H.,Alasty, A.,Pourtakdoust, S. H. Design of a supervisory controller for CLOS guidance with lead angle[J]. Aircraft Engineering and Aerospace Technology,2006,78 (5): 395-406.
    [164]Pachter, M.,D'Azzo, J.,Dargan, J. Automatic formation flight control[J]. Journal of Guidance, Control, and Dynamics,1994,17(6):1380-1383.
    [165]Pachter, M.,D', J. J.,Azzo, etc. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics,2001,24 (2):246-254.
    [166]Ren, W.,Beard, R. W. Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints[J]. Control Systems Technology, IEEE Transactions on,2004,12 (5): 706-716.
    [167]Papoulias, F. A. Stability considerations of guidance and control laws for autonomous underwater vehicles in the horizontal plane[A]. In The 7th International Symposium on Unmanned Underwater Submersible Technology[C],1991.
    [168]Kaminer, I.,Pascoal, A.,Hallberg, E., etc. Trajectory tracking for autonomous vehicles:An integrated approach to guidance and control[J]. Journal of Guidance, Control, and Dynamics, 1998,21(1):29-38.
    [169]Singh, S. N.,Steinberg, M. L.,Page, A. Nonlinear adaptive and sliding mode flight path control of F/A-18 model[J]. Aerospace and Electronic Systems, IEEE Transactions on,2003, 39 (4):1250-1262.
    [170]Sheng Bi, H. J. a. S. C. Robust Attitude Control of Aircraft Based on Partitioned Backstepping[A]. In the 2009 IEEE International Conference on Control and Automation[C], 2009; 1757-1760.
    [171]http://paparazzi.enac.fr/wiki/Main_Page.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700