用户名: 密码: 验证码:
幂律流体在内管做行星运动的环空中流动的稳定性参数H’
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
所谓内管做行星运动,即构成环空的内管在围绕自身轴线旋转(自转)的同时,也围绕外管的轴线旋转(公转)。内外管之间的环空中非Newton流体由于内管的公转和自转以及外加压力梯度引起的流动即为非Newton流体在内管做行星运动的环空中的流动。研究非Newton流体在内管做行星运动的环空中流动的稳定性参数具有学术理论和工程实际意义。
    由非惯性运动坐标系的引入,使得流体在内管做行星运动的环空中流动的分析变得大大简化;由流动的连续性引进流函数,使流体动力学基本方程未知量的个数减少一个;由Descartes直角坐标系向双极坐标系的变换,使流体动力学基本方程的求解域由偏心环域变为矩形域,使对边界条件的处理大大简化,从而在非惯性运动双极坐标系中建立了幂律流体在内管做行星运动的环空中流动的动力学基本方程组。从运动双极坐标系下幂律流体在内管做行星运动的环空中流动的运动方程出发,引入Hanks流动稳定性理论,建立了判断幂律流体在内管做行星运动的环空中由层流向紊流转变的稳定性参数H′的数学表达式。
    利用上述幂律流体在内管做行星运动的环空中流动的基本方程和稳定性参数H′的数学表达式,采用有限差分方法,对可视为幂律流体的CMC水溶液在内管做行星运动的环空中流动时在环空宽间隙和窄间隙处稳定性参数H′的分布进行了数值计算,并分析了稳定性参数H′与环空内管公转和自转速度、环空偏心距及压力梯度之间的关系。
    以Newton流体在内管做行星运动的环空中的流动为例,把利用本文数值计算方法算得的稳定性参数H′的分布与利用解析解算得的稳定性参数H′的分布做了对比,结果吻合较好。说明了本文建立的幂律流体在内管做行星运动的环空中流动的稳定性参数H′的数学表达式及数值计算方法的正确性。
    以CMC水溶液在内管自转和公转的环空中流动的实验数据为例,用本文建立的幂律流体在内管做行星运动的环空中流动的稳定性参数H′的数学表达式和数值计算方法算得了CMC水溶液稳定性参数H′的临界最大值H′_(max,c)。结果表明,本文建立的幂律流体在内管做行星运动的环空中流动的稳定性参数H′的临界最大值H′_(max,c),可以取为404。
The inner cylinder executing a planetary motion means the inner cylinder not onlyrotates around its own axis (the Rotation), but revolves around the axis of the outercylinder as well (the Revolution). The flow of non-Newtonian fluid in the annulus betweenthe inner cylinder and the outer cylinder, caused by the rotation and the revolution of theinner cylinder with the addition of the pressure gradient, is namely the flow ofnon-Newtonian fluid in annulus with the inner cylinder executing a planetary motion.Research on the stability parameter of the flow of the non-Newtonian fluid in annulus withthe inner cylinder executing a planetary motion is of certain academic value and practicalengineering significance.
    The introduction of the non-inertia motive coordinate system makes the analysis ofthe flow of a power-law fluid in annulus with the inner cylinder executing a planetarymotion greatly simplified;the introduction of the stream function owing to the flowcontinuity makes the total number of the variables of the basic equations of fluid dynamicsless by one;with the transformation from the Descartes coordinate system to the bipolarcoordinate system, the changing of solving domain from the eccentric annular one to therectangle one makes the boundary conditions greatly simplified;therefore, the basicequations of fluid dynamics of the flow of a power-law fluid in annulus with the innercylinder executing a planetary motion are established under the non-inertia motive bipolarcoordinate system. Based on the equation of motion of the flow of a power-law fluid inannulus with the inner cylinder executing a planetary motion under the motive bipolarcoordinate system, the Hanks?ˉs theory of the flow stability is introduced, and themathematical expression of the stability parameter H?? is established, by which thetransition from the laminar flow to the turbulent flow of a power-law fluid in annulus withthe inner cylinder executing a planetary motion can be discriminated.
    Based on the basic equations and the mathematical expression of the stabilityparameter H?? of the flow of a power-law fluid in annulus with the inner cylinder executinga planetary motion mentioned above, using the finite difference method, the distribution of
    the stability parameter H?? of the carboxymethyl cellulose (CMC) aqueous solution,which can be regarded as a power-law fluid, in the wide clearance and the thin clearance ofannulus is numerically calculated and the relations among the stability parameter H?? andthe revolution and rotation velocity of the inner cylinder, the eccentric distance and thepressure gradient are analyzed.Taking the flow of a Newtonian fluid in annulus with the inner cylinder executing aplanetary motion for an example, the distribution of the stability parameter H?? which isobtained by using the method of numerical calculation mentioned in this paper is comparedwith that which is obtained by using the method of analytical solution, and both of the twodistributions coincide with each other very well. It shows that the mathematical expressionof the stability parameter H?? of the flow of a power-law fluid in annulus with the innercylinder executing a planetary motion established in this paper, as well as the method ofnumerical calculation, is correct.Taking the experiment data of the flow of the CMC aqueous solution in annulus withthe inner cylinder executing the motion of rotation and revolution for examples, using themathematical expression of stability parameter H?? of the flow of a power-law fluid inannulus with the inner cylinder executing a planetary motion and the method of numericalcalculation, which is established in this paper, the critical maximum value Hm?? ax,c of thestability parameter H?? of the CMC aqueous solution is obtained. The results show thatthe critical maximum value Hm?? ax,c of the stability parameter H?? of the flow of apower-law fluid in annulus with the inner cylinder executing a planetary motion, which isestablished in this paper, can be regarded as 404.
引文
[1]Bird R B,Armstrong R C,Hassager O.Dynamics of Polymeric Liquids [M].JohnWiley & Sons.1977,1:90~97
    [2]Schowalter W R.Mechanics of Non-Newtonian Fluids [M].Pergamon Press,1978:78~80
    [3]郑应人.非牛顿流体环空流、库特流及螺旋流.流变学进展论文集[C].北京:化工出版社,1996.
    [4]陈文方.非牛顿流体的一些本构方程[J].力学学报,1983,15(1):16~26
    [5]陈文芳,袁龙蔚,许元泽.流变学进展[M].北京:学术期刊出版社,1986.12~24
    [6]韩式方.非牛顿流体力学本构方程和计算解析理论[M].北京:科学出版社,2000.5~15
    [7]江体乾.工业流变学[M].北京:化学工业出版社,1995.20~30
    [8]江体乾.流变学在我国发展的回顾与展望[J].力学与实践.1999,21(5):5 ~10
    [9]Oldroyd J G.Rectilinear plastic flow of a bingham solid [J].Proc. Cambridge phil.Soc.1947,43(6):396~405
    [10]Kiprima R C,Stuart J T.Flow between eccentric rotating cylinders [J].ASMEJournal of lubrication Technology.1972,94(2):266~274
    [11]Beris A,Armstrong R C,Brown R A.Perturbation theory for viscoelastic fluidsbetween eccentric cylinders [J].Non-newtonian F.M..1983,13(4):109~148
    [12]赵学端,廖其奠.粘性流体力学[M].北京:机械工业出版社,1983.
    [13]Andres A S,Szeri A Z.Flow between eccentric rotating cylinders [J].Journal ofApplied Mechanics.1984,15(3):869~878
    [14]Christie I,Rajagopal K A ,Szeri A Z.Flow of a non-newtonian fluid betweeneccentric rotating cylinders [J]. Int.J. Engng Sci..1987,25(28): 1029~1047
    [15]张也影.水力学与水力机械[M].北京:人民教育出版社,1961:172~185
    [16]Vaugh R D.Axial laminar flow of non-Newtonian fluids in narrow eccentric annuli[J].SPEJ.1965,5(4):277~280
    [17]Chorin A J.A numerical method for solving incompressible viscous flow problems[J].Jou of comprtational physics.1967,2:12~26
    [18]Sood D R,Elrod H E.On the flow between two long eccentric cylinders[J].Am.Inst.astro.1974,12:636
    [19]White F M.Viscous Fluid Flow [M].McGraw-Hill Book Company,1974.
    [20]Ballal B Y,Rivlin R S.Flow of a viscoelastic fluid between eccentric cylinders[J].Rheol ogica Acta.1975,14(10):861~880
    [21]Ballal B Y , Rivlin R S , Flow of a viscoelastic fluid between eccentriccylinders[J].Rheol. Acta.1975,14:484~492
    [22]Wislon J T.Fully developed laminar incompressible flow in an eccentric annulus[J].AICHE.1978,24(4):733~735
    [23]Balmer R T,Florina M A.Unsteady flow of an inelastic power-law fluid in acircular tube [J].Journal of Non-Newtonian Fluid Mechanics.1980,7:189~198
    [24]Iyoho A W,Azar J J.An accurate slot-flow model for non-Newtonian fluid flowthrough eccentric annuli [J].SPEJ.1981,565~571
    [25]Rukmangadachari E.Unsteady flow of an elastico-viscous fluid between twocoaxial circular cylinders [J].Rheol.Acta.1982,21(3):223~227
    [26]Shenoy A V,Sania D R.A new velocity profile model for turbulent pipe-flow ofpower-law fluids. Canadian [J].chen .Eng..1982,26:694~696
    [27]吴疆.偏心环空中非牛顿流体轴向层流流动规律[J].石油钻采工艺.1983,2:1~14
    [28]周风石.偏心环隙流动的基本特征及其对钻井的影响[J].石油钻采工艺.1983,3:7~16
    [29]Tosun I.Axial laminar flow in an eccentric annulus:an appromximate solution[J].AICHEJ.1984,30(5):877~878
    [30]Zidan M,Hassan A.Flow of a viscoelastic fluid between eccentric cylinders[J]. Rheol.Acta.1985,24:127~133
    [31]Luo Y , Peden J M . Flow of drilling fluids through eccentric annuli[J].SPE16692.1987
    [32]岳湘安.幂律流体在偏心环空中轴向层流的解析解[J].流变学进展.1987
    [33]刘希圣,樊洪海,丁岗.幂律流体在定向井偏心环空内流动规律的研究[J].石油学报. 1988,4(5):36~45
    [34]岳湘安,陈家琅,黄匡道.幂律流体在偏心环形空间中轴向层流的速度分布[J].水动力学研究与进展.1988,3(3):1~4
    [35]Uner D,Ozgen C,Tosun.Flow of a power-law fluid in an eccentric annulus[J].SPEDE.1989,269~271
    [36]刘慈群,黄军旗.非牛顿流体管内不定常流的解析解[J].应用数学和力学.1989,10(11): 939~946
    [37]朱文辉,刘慈群.流体环管不定常流动解析解[J].力学学报.1992,24(1):116~121
    [38]朱文辉,刘慈群.非牛顿流体环管流动解析解[J].应用数学和力学.1993,14(3):195~201
    [39]汪海阁,刘希圣.屈服假塑性流体轴向层流流场分析[J].中国海上油气(工程).1994, 6 (5):36~41
    [40]杨树人,张景富,陈家琅,申家年.幂律流体在偏心环空中流动的数值计算方法[J].大庆石油学报.1996,20(2):11~14
    [41]杨树人,申家年,张景富.幂律流体偏心环空轴向层流流动的速度分布.大庆石油学院学报.1997,21(1):122~125
    [42]赵英海.研究流体在偏心环空内流动的新方法[J].应用力学学报.1997,14(3):105~109
    [43]王艳辉.偏心环空非牛顿流体紊动场特性的研究[J].水动力学研究与进展.1997,12(2):150 ~ 156
    [44]汪海阁,苏义脑.偏心环空压降的实用求解法[J].石油钻采工艺.1997,19(6):5~8
    [45]汪海阁,朱明亮.屈服假塑性流体偏心环空流动的基本规律[J].钻采工艺.1997,20(6):5~11
    [46]汪海阁, 苏义脑,刘希圣.幂律流体偏心环空波动压力数值解[J].石油学报.1998,19(3): 105~109
    [47]汪海阁,苏义脑.Roberts on-stiff 流体在偏心环空中的流动[J].应用数学和力学.1998, 19 (10):931~940
    [48]朱法银.环空中钻井液层流流动的简化解析解[J].胜利学刊.1998,12(4):1~4
    [49]祝世兴,高德,刘彩玲.剪切稠化流体(n=2)环管层流运动分析[J].中国民航学院学报.1999,12(6):11~15
    [50]Mearic O F,Wakeman R J.Numerical flow simulation of viscoplastic fluids inannuli [J].Canadian.chen.Eng.1998,2:27~40
    [51]徐建平,陈钦雷,霍子伦.非牛顿流体通过偏心环空的速度分布[J].油气井测试.2000,9(3):20~21
    [52]郑俊德等.聚合物产出液在抽油泵的缝隙中流动[J].石油学报.2000,21(1):71~75
    [53]郑俊德等.聚合物产出液在杆管环空中的流动[J].石油钻采工艺.2001,23(5):45~49
    [54]李兆敏,王渊,张琪.宾汉流体在环空中流动时的速度分布规律[J].石油学报.2002,23(2):87~91
    [55]杨自栋,顾国庆.偏心环空轴向流动的级数解及其流量计算[J].淄博学院学报.2002, 4(4):52~54
    [56]刘宏.泥浆模拟液在偏心环空中流动的实验研究[J].西部探矿工程.2003,21(3):52~53
    [57]马亮,聂建军.含运动杆及接箍的管流流动的数值模拟研究[J].水动力学研究与进展.2003,18(1):1~7
    [58]崔海清,孙智.非 Newton 流体在内管做轴向往复运动的偏心环空中非定常流的速度分布[J].水动力学研究与进展 A 辑.2003,18(6):711~715
    [59]Zidong Yang,Junying Liu.Numerical analysis of laminar viscous non-Newtonianliquids flows in an eccentric annuli[A].Proceedings of the Forth internationalconference on fluid mechanics [C].2004,452~456
    [60]刘光铮,陈金茂,孙涛.幂律流体环空管流平均剪切速率的计算[J].管道技术与设备.2004,(3):8~10
    [61]孙智,高涛,崔海清.流体在内管做轴向运动的偏心环空中的速度分布[J].大庆石油学报.2004,28(1):10~13
    [62]Hui jin,Ming Yuxu.Some notes to “on the axial flow of generalized second orderfluid in a pipe”[A].Proceedings of the fourth international conference on fluidmechanics [C].2004,435~438
    [63]杨元健,崔海清,高涛.幂律流体在内管做轴向往复运动的偏心环空中非定常流的流量分布[J].大庆石油学院学报.2004,28(6):17~19
    [64]杨树人,王春生,杨英.粘弹性流体在内管做轴向运动的偏心环空中的速度分布[J].大庆石油学院学报.2005,29(2):110~111
    [65]Ballal B Y,Rivlin R S.Flow of a viscoelastic fluid between eccentric rotatingcylinders [J].Transactions of the Society of Rheology.1976,20(1):65~101
    [66]Noriyasu M,Mitsuhiro Y.Pressure flow of Non-newtonian fluids between eccentricdouble cylinders with the inner cylinder rotating [J].Journal of the TextileMachinery society of Japan Transactions.1985,38(3):47~52
    [67]Zidan M,Hassan A.Flow of a viscoelastic fluid between eccentric cylinders[J].Rheol.Acta.1985,24(2):127~133
    [68]翟应虎,刘希圣.环形空间内幂律流体螺旋流层流流场性质分析[J].华东石油大学学报.1985,3:19
    [69]崔海清,王辛,张海桥.幂律流体圆管螺旋流的解析解[J].大庆石油学院学报.1987,11(3):132~137
    [70]郑应人.宾汉流体环空螺旋流场[J].江汉石油学院院报.1988,10(2): 38~45
    [71]Uner,Deniz,Ozgen,Canan,Tosum.Flow of a Power-law fluid in an eccentricannulus[J].SPE Drilling Engineering.1989,4(3):269~272
    [72]崔海清,张海桥.Herschel Buckley 流体环空螺旋流的压降方程[A].中国力学学会.第三届多相流体力学、非牛顿流体力学、物理化学流体力学学术会议论文集[C].杭州:浙江大学出版社,1990.179~180
    [73]张景富,李邦达.定向井偏心环空中 Bingham 流体螺旋流层流流动特性[J].大庆石油学院学报.1992,16(4):32~38
    [74]刘希圣,崔海清.幂律流体在倾斜旋转内管的偏心环空中层流流动的近似解法[J].石油大学学报.1992,6:29~34
    [75]赵仁宝,崔海清.Robter-stiff 流体环空螺旋流的解析解[J].大庆石油学院学报.1993,18 (1):25~28
    [76]崔海清.石油工程非 Newton 流体管流[M].北京:石油工业出版社,1994.95~100
    [77]刘永建,王天成.偏心环空中幂律流体层流螺旋流流动规律的研究[J].大庆石油学院学报.1995,19(3):1~4
    [78]崔海清,刘希圣.幂律流体偏心环空螺旋流中的二次流问题[J].水动力学研究与进展 A 辑.1995,10(6):610~620
    [79]蒋世全,施太和.偏心环空层流螺旋流动的近似解析解[J].水动力学研究与进展 A 辑.1995, 10(5):560~565
    [80]Cui Haiqing.Research on helical flow of Non-Newtonian fluid in eccentric annuli[J].SPE 29940.1995
    [81]崔海清等.幂律流体偏心环空螺旋流流量计算[A].《第二届全国现代数学和力学会议文集》[C].苏州:苏州大学出版社,1995
    [82]雒贵明,李邦达,侯福秋,刘敏.卡森流体偏心环空层流螺旋流速度分布及压降计算[J].大庆石油学院学报.1996,20(1):14~18
    [83]郑应人.非牛顿流体环空螺旋流的精确解[J].石油学报.1998,19(2):91~96
    [84]Hussain Q E,Sharif M A R.Analysis of yield-power-law fluid flow in irregulareccentric annuli[J].Journal of Energy Resources Technology.1998,120(3):201~207
    [85]Wan S,Morrison D,Bryden I G.The flow of Newtonian and inelasticnon-Newtonian fluids in eccentric annuli with inner cylinder rotation[J].Theoretical and Computational Fluid Dynamics.2000,13(5):349~359
    [86]Hussain Q E,Sharif M A R.Numerical modeling of helical flow of pseudo-plasticfluids [J].Numerical Heat Transfer: Part A-Applications.2000,38(3):225~241
    [87]刘文红,张宁生.小井眼钻井环空压耗计算与分析[J].西安石油学院学报.2000,15(1):6~9
    [88]张金锁,章本照.环形截面螺旋管道内二次流动特性的研究[J].力学学报.2001, 33 (2): 183~194
    [89]贺成才.幂律流体在偏心环空中流动的数值模拟[J].石油学报.2002,23(6):85~88
    [90]崔海清,季海军.流体在内管做行星运动的环形空间流动的解析解[A].第二届全国海事技术研讨会文集(下册)[C].北京:海洋出版社,1996.1110~1115
    [91]崔海清,季海军.流体在内管做行星运动的环空中流动的二次流问题[J].大庆石油学院学报.2005,29(2):16~18
    [92]季海军.幂律流体在内管做行星运动的环空中的流动.博士研究生学位论文.大庆:大庆石油学院.2005,29~75
    [93]Ritchie G S.On the stability of viscous flow between eccentric rotating cylinders[J].Fluid Mech.1968,32 (1):131~144
    [94]Ryan N W,Johnson M M.Transition form Laminar to Turbulent Flow inPipes[J].AIChE.1959,5(4):433~435
    [95]Hanks R W.A theory of laminar flow stability[J].AIchE.1969,15(1):25~29
    [96]HanksRW . Thelaminar-turbulenttransitionforflowinpipes[J].AIChE.1963.9(1):45~48
    [97]陈家琅,刘永建.判别纯粘性非牛顿流体流动状态的新准则——广义稳定性参数Z [A].第三届全国流变学学术会议论文集[C].东营:华东化工学院出版社,1990.53~55
    [98]岳湘安,陈家琅.非牛顿流体流动的稳定性参数 Y 及其应用[J].水动力学研究与进展 A 辑.1987,2(3):114
    [99]韩洪升,魏兆胜,崔海清,李昌连.石油工程非牛顿流体力学[M].哈尔滨:哈尔滨工业大学出版社,1993.16~140
    [100] 郝江平,岳湘安,陈家琅.判别非牛顿流体在偏心环空中流动状态的区域临界雷诺数[J].大庆石油学院学报.1995,19(2):15~18
    [101] 吴文祥,孙智,康万利,侯吉瑞,胡靖邦.Bingham 液体在圆管中流动的稳定性[J].水动力学研究与进展 A 辑.1996,4(2):119~126
    [102] Misha P , Tripathi G . Transition from Laminar Flow ofParely ViscousNon-Newtonian[J].C.E.S..1971,26:915~921
    [103] Froishteter G B,Vinogradov G V.The Loss of Laminar Flow of Plastic DisperseSystems Through Circular Pipes[J].Rheol Acta.1977,16(6) :620~627
    [104] 何世明,刘崇建等.判别液体流态的层流稳定性理论[J].天然气工业.2000,20(5):67~69
    [105] 刘崇建,刘孝良,柳世杰.非牛顿流体流态判别方法研究[J].天然气工业.2001, 21(4):50~52
    [106] 雷鸣等译.预测管线中非牛顿流体紊流的新方法[J].国外油田工程.2003,19(1):47~49
    [107] 刘乃震等.非牛顿流体的稳定性及其流态判别[J].天然气工业.2003,23(1):53~57
    [108] 贺成才.钻井液流动稳定性判别新方法[J].钻井液与完井液.2003,20(2):6~8
    [109] 张海桥,崔海清.幂律液体圆管螺旋流的稳定性参数[J].大庆石油学院学报.1989,13(2):93~100
    [110] 张海桥,吴继周.非 Newton 流体偏心环空螺旋流的解析解[J].应用数学和力学.1994,15 (7):627~638
    [111] 杨树人,申家年,张景富.Bingham 流体在圆管中螺旋结构流的稳定性参数[J].大庆石油学院学报.1997,21(3):130~133
    [112] 崔海清,季海军.流体在内外管同时旋转的偏心环空中螺旋流的稳定性参数[J].大庆石油学院学报.2005,29(4):29~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700