用户名: 密码: 验证码:
高性能钛氧化物负极材料制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛氧化物由于较高的充放电平台、高化学稳定性、充放电过程体积“零”应变,且具备开放的嵌脱锂通道等优势,成为潜在应用于新兴动力锂离子电池的负极材料之一。但其固有电导率低限制了快速充放电能力发挥。本文针对几种钛氧化物存在的上述突出问题,采用基于溶胶凝胶及水解合成策略构筑不同结构特点的纳米结构电极材料,借助于TG(热重分析法)、XRD(X射线衍射分析)、SEM(扫描电子显微镜)、TEM(透射电子显微镜)、CV (循环伏安)、充放电测试、EIS (电化学阻抗谱)等测试手段,深入研究了纳米结构的形成机制、制备材料的物理化学特征和电化学脱嵌锂行为。
     采用溶胶凝胶路线,以嵌段共聚物F127作为配位体制备了纳米晶钛酸锂,在强酸环境下,F127的环氧乙烯(EO)链段和Ti~(4+)、Li~+通过氢键作用形成冠醚状配位体,形成有效络合,使参与反应的原料物质以分子级别混合,在较低的温度下(700℃)获得单相尖晶石钛酸锂纳米晶。SEM和TEM测试表明,钛酸锂的晶粒为规整多面体结构,结晶度好,分布均匀,晶粒尺寸约为100nm。作为锂离子电池负极材料展现了较好的电化学性能,在5C、10C、20C和40C测试倍率下容量分别为165mAhg~(-1)、150mAhg~(-1)、131mAhg~(-1)和108mAhg~(-1)。
     在采用嵌段共聚物F127作为配位体的基础上,将前驱体在氩气气氛下煅烧,F127在煅烧过程中碳化形成的碳原位锚定在颗粒表面,有效的抑制了晶粒生长。最终在750℃下合成了颗粒尺寸在20nm左右的高结晶度钛酸锂。同时,表面形成的均匀碳网络大幅度改善了钛酸锂的电导率,为8.2103S m1。作为锂离子电池负极材料,钛酸锂/碳复合材料展现了优越的倍率性能和循环性能,在5C、10C、20C和40C的放电容量分别为160mAhg~(-1),155mAhg~(-1),139mAhg~(-1)和123mAhg~(-1)。
     采用基于离子液体辅助的溶胶-凝胶路线合成了具有孔径分布均匀、高热稳定性的锐钛矿TiO_2纳米晶。考察了煅烧温度和咪唑离子液体阳离子碳链长度等因素对合成TiO_2的影响,发现长碳链离子液体表现出了更显著的模板剂和稳定剂的作用,并且离子液体在合成过程具有稳定TiO_2晶体结构的作用,所获得介孔纳米晶TiO_2具有较大的比表面积(112m2g1)。作为锂离子电池负极材料表现出优越的倍率性能和循环性能,介孔TiO_2纳米晶在5C、10C倍率下的容量为140mAhg~(-1)和118mAhg~(-1),同时在不同倍率下均表现出较好的容量保持率和接近于100%的库伦效率。
     采用TiCl4做为钛源,离子液体C_(16)mimBr作为结构导向剂,经一步水解获得了纳米花状金红石二氧化钛微结构。纳米花的平均颗粒尺寸为400nm,是由6nm的TiO_2纳米晶颗粒沿着[001]方向定向生长的纳米线呈放射状构成。花状结构外表面暴露的都是垂直于C轴利于锂离子高速输运的端面,同时纳米线能够提供锂离子和电子的连续扩散通道。制备的金红石型TiO_2表现出了突出的放电容量、良好的倍率性能和循环稳定性。充放电测试表明约有0.72mol的锂离子能够可逆的脱嵌入TiO_2晶格中,可逆容量达到242mAhg~(-1),在5C,10C和20C的容量分别为170mAhg~(-1)、144mAhg~(-1)和116mAhg~(-1)。进一步采用原位复合技术,成功获得了金红石TiO_2/Graphene复合材料。复合电极体系表现出了优良的倍率性能和循环稳定性,TiO_2/Graphene复合材料在5C、10C和20C的容量分别为186mAhg~(-1)、171mAhg~(-1)和140mAhg~(-1),充放电效率接近100%。
Titanium oxides have been regarded as potential candidates for anode materialsof lithium ion batteries, owing to their advantages including high charge-dischargevoltage, good chemical stability, zero volume strain during the charge and dischargeprocess, and open channel for lithium-ion insertion and extraction. However, the lowelectron conductivity of lithium titanium oxide adversely has restricted its ability offast charge and discharge. With regards to the disadvantages of several titaniumoxides, we prepared nanostructure electrode materials with different structure byemploying strategies of sol-gel and hydrolysis methods. In this thesis, TG(Thermogravimetry analysis), XRD (X-ray diffraction), SEM (Scanning ElectronMicroscopy), TEM (Transmission Electron Microscopy), CV (Cyclic Voltammetry)、DC(Discharge and Charge test)、EIS (Electrochemical impedance spectroscopy)measurements are performed to characterize the morphologies, structures andelectrochemical performance of the as-derived samples.
     Firstly, we report a facile approach for synthesizing nanocrystalline Li_4Ti_5O_(12)via sol-gel process by employing a nonionic surfactant tri-block copolymer (pluronicF127) as the chelating agent. In the strong acid condition of our experiment, thealkylene oxide segments of F127could form crown-ether-type complexes with Ti~(4+)and Li+through coordination bonds, bringing the reaction partners sufficiently closetogether. Therefore, a pure-phase Li_4Ti_5O_(12)could be obtained at a relative lowtemperature of700oC. SEM and TEM measurements indicate that the as-derivedLi_4Ti_5O_(12)has a cubic morphology, high crystallinity and a uniform particle sizedistribution of around100nm. Nanocrystal Li_4Ti_5O_(12)is tested as an anode materialfor lithium ion batteries, exhibiting excellent electrochemical performance. Thespecific charge capacities of the cell are165mAhg~(-1)、150mAhg~(-1)、131mAhg~(-1)and108mAhg~(-1)at5C,10C,20C and40C, respectively.
     The titanium gel precursor is further calcined under Ar atmosphere on the basisof employing a nonionic surfactant tri-block copolymer (pluronic F127) as thechelating agent. The grain growth of Li_4Ti_5O_(12)is effectively restrained by the carbongenerated from the carbonization of F127in the caclination process, and a smallparticle size of Li_4Ti_5O_(12)(~20nm) is successfully obtained at the calcinationtemperature of750oC. The electrical conductivity is further enhanced to be8.2103S m1due to the formed carbon-network on the surface of the sample. The as-derivednanocrystalline Li_4Ti_5O_(12)is tested as anode material for lithium ion battery, exhibiting excellent rate capability and cycle performance. The specific chargecapacities of the cell are160mAhg~(-1)、155mAhg~(-1)、139mAhg~(-1)and123mAhg~(-1)at5C,10C,20C and40C, respectively.
     Moreover, mesoporous anatase TiO_2nanocrystalline with uniform pore sizedistribution, large surface area and high thermal stability was prepared via sol-gelapproach by employing room temperature ionic liquids (RTILs). We studied theinfluence of the calcination temperature and the carbon-chain length of RTILs on theperformance of the as-derived TiO_2. The result indicates that the long carbon-chainionic liquids showed superior function of template and stabilizing agent. Meanwhile,RTILs play a critical role in stabilizing the crystal structure of anatase TiO_2in oursynthesis. The mesoporous anatase TiO_2shows a large surface area of112m2g1.The as-derived mesoporous anatase TiO_2nanocrystalline is tested as an anodematerial for lithium ion batteries, exhibiting excellent rate capability and cycleperformance. The cell exhibits a reversible capacity of140mAhg~(-1)and118mAhg1at the current density of5C and10C. Meanwhile, the cell demonstrates goodcapacity retentions and high coulombic efficiencies (~100%) at all current rates.
     Finally, we report the synthesis of “flower” rutile TiO_2through a facile one-pothydrolysis route by employing titanium tetrachloride as the titanium source and1-hexadecyl-3-methyl imidazolium bromine (C_(16)mimBr) as the structure-directingagent. The rutile TiO_2particle features flower-like nanostructure with the averagesize of400nm comprised with numerous well-defined and straight nanorods. Thenanorods with a diameter of around6nm are oriented radially from the central regiontoward edges of the particle. The dandelions-like nanostructure exposes plenty ofvertical cross-section of c-axis, which could enlarge the effective contact area for thetransport of Li+. Meanwhile, the well-connected nanorod-crystals provide acontinuous pathway for the diffusion of lithium ions and electrons in the titaniascaffold. The as-derived “flower” rutile TiO_2is tested as anode material for lithiumion batteries, exhibiting excellent rate capability and cycle performance. The chargeand discharge measurement indicates that about0.72Li+could be reversibly insertedand extracted into the TiO_2structure, corresponding to the capacity of242mAhg~(-1).Meanwhile, the cell exhibits a reversible capacity of170mAhg~(-1)、144mAhg~(-1)and116mAhg~(-1)at the current density of5C,10C and20C respectively. Furthermore,we successfully obtain rutile TiO_2/graphene composite by in-situ synthesis route. Theas-derived composite is tested as an anode material for lithium ion batteries,exhibiting excellent rate capability and cycle stability. The cell exhibits a reversiblecapacity of186mAhg~(-1)、171mAhg~(-1)and140mAhg~(-1)at the current density of5C, 10C and20C respectively. Meanwhile, the cell demonstrates high coulombicefficiency of~100%at all current rates.
引文
[1] Armand M, Tarascon J M. Building Better Batteries[J]. Nature,2008,451(12):652657.
    [2] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable LithiumBatteries[J]. Angewandte Chemie International Edition,2008,47(16):29302946.
    [3] Jeong G, Kin Y U, Kim H. Prospective Materials and Applications for LiSecondary Batteries[J]. Energy Environmental Science,2011,4(6):19852002.
    [4] Zhou H S, Zhu S M, Hibino M, et al. Lithium Storage in Ordered MesoporousCarbon (CMK-3) with High Revesible Specific Energy and Good CyclingPerformance[J]. Advanced Materials,2003,15(24):21072111.
    [5] Holzapfel M, Buqa H, Scheifele W, et al. A New Type of Nano-Size Silicon/CarbonComposite Electrode for Reversible Lithium Insertion[J]. ChemicalCommunications,2005,12(11):15661568.
    [6] Kumar T P, Ramesh R, Lin Y Y, et al. Tin-Filled Carbon Nanotubes as InsertionAnode Materials for Lithium-Ion Batteries[J]. Electrochemistry Communications,2004,6(6):520525.
    [7] Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors[J].Chemical Review,2004,104(10):42454270.
    [8] Whitingham M S. Lithium Batteries and Cathode Materials[J]. Chemical Reviews,2004,104(10),42714301.
    [9] Peng Z S, Wan C R, Jiang C Y. Synthesis by Sol-gel Process and Characterizationof LiCoO2Cathode Materials[J]. Journal of Power Sources,1998,72(2):215220.
    [10]廖文明,戴永年,姚耀春等.4种正极材料对锂离子电池性能的影响及其发展趋势[J].材料导报,2008,22(10):4552.
    [11] Zaghib K, Mauger A, Julien C M. Overview of Olivines in Lithium Batteries forGreen Transportation and Energy Storage[J]. Journal of Solid StateElectrochemistry,2012,16(3):835845.
    [12] Etacheri V, Marom R, Elazari R, et al. Challenges in the Development of AdvancedLi-ion Batteries: a Review[J]. Energy Environmental Science,2011,4(9):32433262.
    [13] Wang Y, He P, Zhou H, et al. Olivine LiFePO4: Development and Future[J]. EnergyEnvironmental Science,2011,4(3):805817.
    [14] Yuan L, Wang Z, Zhang W, et, al. Development and Challenges of LiFePO4Cathode Material for Lithium-ion Batteries[J]. Energy Environmental Science,2011,4(2):269284.
    [15] Belharouak I, Sun Y K, Liu J, et al. LiCo1/3Ni1/3Mn1/3O2as a Suitable Cathode forHigh Power Application[J]. Journal of Power Sources,2003,123(2):247252.
    [16] Patoux S, Doeff M M. Direct Synthesis of LiNi1/3Mn1/3Co1/3O2from NitratePrecursors[J]. Electrochemistry Communications,2004,6(8):767772.
    [17] Jin E M, Jin B, Jun D K, et al. A Study on the Electrochemical Characteristics ofLiFePO4Cathode for Lithium Polymer Batteries by Hydrothermal Method[J].Journal of Power Sources,2008,178(2):801806.
    [18] Morgan D, Ceder G, Saidi M Y, et al. Experimental and Computational Study ofthe Structure and Electrochemical Properties of LixM2(PO4)3Compounds with theMonoclinic and Rhombo-hedral Structure[J]. Chemistry of Materials,2002,14(1):46844693.
    [19] Zhu X J, Liu Y X, Geng L M, et al. Synthesis and Characteristics of Li3V2(PO4)3as Cathode Materials for Lithium-ion Batteries[J]. Solid State Ionics,2008,179(2732):16791682.
    [20] Zhang X F, Zheng H H, Battaglia V, et al. Electrochemical Performance of SpinelLiMn2O4Cathode Materials Made by Flame-assisted Spray Technology[J].Journal of Power Sources,2011,196(7):36403645.
    [21]范未峰,刘兴泉.锂离子二次电池5V正极材料的研究进展[J].化工科技,2007,15(6):5257.
    [22] Ndom E, Imc K, Ishimurak N, et al. Recent Development of Carbon Materials forLi Ion Batteries[J]. Carbon,2000,38(2):183197.
    [23] Smart M C, Ratnakumar B V, Surampudi S, et al. Irreversible Capacities ofGraphite in Low Temperature Electrolytes for Lithium-Ion Batteries[J]. Journal ofthe Electrochemical Society,1999,146(11):39633969.
    [24]时志强,樊丽萍,王成扬.商业化的锂离子电池石墨负极材料的研究进展[J].碳素,2006,1:36.
    [25]郭炳琨,徐徽,王先友等.锂离子电池[M].长沙:中南大学出版社,2002:93.
    [26] Lewandowski A, Swiderska-Mocek A. Ionic Liquids as Electrolytes for Li-IonBatteries-an Overview of Electrochemical Studies. Journal of Power Sources,194(2):601609.
    [27] Hassoun J, Panero S, Reale P, et al. A New, Safe, High-rate and High-energyPolymer Lithium-ion Battery[J]. Advanced Materials,2009,21(47):48074810.
    [28] Rotem M, Francis S, Nicole L et al. A Review of Advanced and Practical LithiumBattery Materials[J]. Journal of Materials Chemistry,2011,27(21):99389954.
    [29]梁英.锡基负极材料的制备及吸脱锂性质[D].武汉:华中师范大学,2008:5.
    [30] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chemistry ofMaterials.2010,22(3):587603.
    [31] Zaghib K, Julien C M. Structure and Electrochemistry of FePO4·2H2O Hydrate[J].Journal of Power Sources,2005,142(1):279284.
    [32] Heng S Y, Quan L X. Synthesis and Electrochemical Properties of Phospho-OlivineType LiFexM(1-x)PO4(1≥x≥0) Compounds[J]. Chinese Journal of SyntheticChemistry,2004,12(3):146148.
    [33] Andersson A, Kalska B, Haggstrom L. Lithium Extraction/Insertion in LiFePO4: AnX-ray Diffraction and Mossbauer Spectroscopy Study[J]. Solid State Ionics,2000,130(2):4152.
    [34]陈继涛,周恒辉,常文保,等.粒度对石墨负极材料的嵌锂性能影响[J].物理化学学报,2003,19(3):278282.
    [35] Vijay A S, Laurence J H, Venkat S, et al. Surface Structural Disordering inGraphite upon Intercalation/DeinterCalation Lithium[J]. Journal of Power Sources,2010,195:36553660.
    [36] Shi L H, Wang Q, Li H, et al. Electrochemical Performance of Ni-DepositedGraphite for Lithium Secondary Batteries[J]. Journal of Power Sources,2001,102:6067.
    [37] Jung H, Park C M, Sohn H J. Bismuth Sulfide and Its Carbon Composite forRechargeable Lithium-Ion Batteries[J]. Electrochemica Acta,2011,6:21352139.
    [38] Fey G T K, Lee D C, Lin Y Y. High-Capacity Carbons Prepared from Acry LonItrilebutadiene-styrene Terpolymer for Use as An Anode Material in Lithium-ionbatteries[J]. Journal of Power Sources,2003,119121:944.
    [39]余丹梅,杨祖洪,赵家雄,等.碳纳米管用作电极材料的研究进展[J].电池,2008,38(1):5759.
    [40] Gao B, Kleinhammes A, Tang X P, et al. Electrochemical Inter-Calation ofSingle-Walled Carbon Nanotubes with Lithium[J]. Chemical Physics Letters,1999,3079(3-4):153157.
    [41] Murugan A V, Muraliganth T, Manthiram A, et al. Comparison of MicrowaveAssisted and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes forLithium Ion Batteries[J]. Journal of Physical Chemistry,2008,112(37):1466514671.
    [42] Yoo E, Kim J, Hosono E, et al. Large Reversible Li Storage of Graphene NanosheetFamilies for Use in Rechargeable Lithium Ion Batteries[J]. Nano Letters,2008,8(8):22772282.
    [43] Yoo M, Frank C W, Mori S, et al. Interaction of Poly(Vinylidene Fluoride) withGraphite Partical Es.2. Effect of Solvent Evaporation Kinetics and ChemicalProperties of PVDF on the Surface Morphology of a Composite Film and itsRelation to Electrochemical Performance[J]. Chemistry of Materials,2004,16(10):19451953.
    [44] Ji F, Li Y L, Feng J M, et al. Electrochemical Performance of GraphemeNanosheets and Ceramic Composites as Anodes for Lithium Batteries[J]. Journal ofMaterials Chemistry,2009,19(47):90639067.
    [45] Liang M H, Zhi L J, Mater J. Graphene-Based Electrode Materials for RechargeableLithium Batteries[J]. Journal of Materials Chemistry,2009,19(33):58715878.
    [46] Chen D, Tang L H, Li J H. Graphene-Based Materials in Electrochemistry[J].Chemical Society Reviews,2010,39(8):31573180.
    [47] Bhardwaj T, Antic A, Pavan B, et al. Enhanced Electrochemical Lithium Storage byGrapheme Nanoribbons[J]. Journal of the American Chemical Society,2010,132(36):1255612558.
    [48] Pan Y, Wang S, Zhao B, et al. Li Storage Properties of Disordered GrapheneNanosheets[J]. Chemistry of Materials,2009,21(14):31363142.
    [49] Wang C Y, Li D, Too C O, et al. Electrochemical Properties of Grephene PaperElectrodes Used in Lithium Batteries[J]. Chemistry of Materials,2009,21(13):26042606.
    [50] Wang G X, Shen X P, Yao J, et al. Graphene Nanosheets for Enhanced LithiumStorage in Lithium Ion Batteries[J]. Carbon,2009,47(8):20492053.
    [51] Wang G X, Wang B, Wang X L, et al. Sn/Graphene Nanocomposite with3DArchitecture for Enhanced Reversible Lithium Storage in Lithium Ion Batteries[J].Journal of Materials Chemistry,2009,19(44):83788384.
    [52] Chen S Q, Chen P, Wu M H, et al. Graphene Supported Sn-Sb@Carbon Core-ShellParticles as Superior Anode for Lithium Ion Batteries[J]. ElectrochemistryCommunications,2010,12(10):13021306.
    [53] Chou S L, Wang J Z, Choucair M, et al. High–Surface-Area Alpha-Fe2O3/CarbonNano Composite: One-Step Synthesis and its Highly Reversible and EnhancedHigh-Rate Lithium Storage Properties[J]. Journal of Materials Chemistry,2010,20(11):20922098.
    [54] Yang S B, Cui G L, Pang S P, et al. Fabrication of Cobalt Oxide/GrapheneCompositions: Towards High-Performance Anode Materials for Lithium IonBatteries[J]. ChemSusChem,2010,3(2):236239.
    [55] Wu Z S, Ren W C, Wen L B, et al. Graphene Anchored with Co3O4Nanoparticlesas Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and CyclicPerformance[J]. ACS Nano,2010,4(6):31873194.
    [56] Wang D H, Choi D W, Li J, et al. Self-Assembled TiO2-Granphene HybridNanostructures for Enhanced Li-Ion Insertion[J]. ACS Nano,2009,3(4):907914.
    [57] Zhang M, Lei D N, Yin X M, et al. Magnetite/Graphene Composites: MicrowaveIrradiation Synthesis Cycling and Rate Performances for Lithium Ion Batteries[J].Journal of Materials Chemistry,2010,20(26):55385543.
    [58] Zhou G M, Wang D W, Li F, et al. Magnetite/Graphene Composite Irra DiationSynthesis and Enhanced Cycling and Rate Performances for Lithium IonBatteries[J]. Journal of Materials Chemistry,2010,20(26):55385543.
    [59] Wang H L, Cui L F, Yang Y A, et al. Mn3O4-Graphene Hybrid as a High-CapacityAnode Material for Lithium Ion Batteries[J]. Journal of the American ChemicalSociety,2010,132(40):1397813980.
    [60] Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/Graphene Nanocomposite as aHigh-Performance Anode Material for Lithium-Ion Batteries[J]. Journal ofMaterials Chemistry,2010,20(47),1066110664.
    [61] Yao J, Shen X P,Wang B, et al. In Situ Chemical Synthesis of SnO2-GrapheneNanocomposite as Anode Materials for Lithium-Ion Batteries[J]. ElectrochemistryCommunications,2009,11(10):18491852.
    [62] Woo S W, Dokko K, Nakano H, et al. Bimodal Porous Carbon as a NegativeElectrode Material for Lithium-Ion Capacitors[J]. Electrochemistry,2007,75(8):635640.
    [63]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].北京:北京化学工业出版社,2002:112.
    [64]任建国,王科,何向明等.锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):597603.
    [65]尹鸽平,王庆,程新群.锂离子电池新型负极材料的研究进展[J].电池,1999,29(6):270274.
    [66] Kobayashi H, Uebou Y, Ishida T, et al. Electrochemical Property of Tin Oxide ThinFilm by Photo-CVD Process[J]. Journal of Power Sources,2001,9798:229231.
    [67] Zhang Y, Liu Y, Liu M. Nanostructured Columnar Tin Oxid Thin Film Electrodefor Lithium Ion Batteries[J]. Chemistry Materials,2006,18:46434646.
    [68] Egashira M, Takatsuji H, Okada S, et al. Properties of Containing Sn NanoparticlesActivated Fiber for A Negative Electrode in Lithium Batteries[J]. Journal of PowerSources,2002,107(1):5660.
    [69] Li N C, Martin C R, Scrosati B. Nanomaterial-Based Li-Ion Battery Electrodes[J].Journal of Power Sources,2002,108(2):240243.
    [70] Deng D, Lee J Y. Hollow Core-Shell Mesospheres of Crystalline SnO2NanoparticleAggregates for High Capacity Li+Ion Storage. Chemistry of Materials,2008,20(5):18411846.
    [71] Kang Y M, Go J Y, Lee S M, et al. Impedance Study on the Correlation betweenPhase Transition and Electrochemical Degradation of Si-Based Materials[J].Electrochemistry Communications,2007,9(6):12761281.
    [72] Wang G, Yao J, Liu H, et al. Characterization of Nanocrystalline Si-MCMBComposite Anode Materials[J]. Electrochemical and Solid-State Letters,2004,7(8):A250A253.
    [73] Poizot P, Laruelle S, Grugeon S, et al. Nano-Sized Transition-Metal oxides asNegative Electrode Materials for Lithium-Ion Batteries. Nature,2000,407(11):496499.
    [74] Lu Y, Wang Y, Zou Y. Macroporous Co3O4Platelets with Excellent Rate Capabilityas Anodes for Lithium Ion Batteries[J]. Electrochemistry Communications,2010,12(1):101–105.
    [75] Liu H-C, Yen S-K. Characterization of Electrolytic Co3O4Thin Films as Anodes forLithium-Ion Batteries[J]. Journal of Power Sources,2007,166(2):478484.
    [76] Lou X W, Deng D, Lee J Y, et al. Self-supported Formatnion of Needlelike Co3O4Nanotubes and Their Application as Lithium-Ion Battery Electrodes. AdvancedMaterials,20(2):258161.
    [77] Lu H W, Li D, Sun K, Li Y S, Fu Z W. Carbon Nanotube Reinforced NiO Fibers forRechargeable Lithium Batteries[J]. Solid State Sciences,2009,11(5):982987.
    [78] Nam S C, Yoon Y S, Chow I. Enhancement of Thin Film Tin Oxide NegativeElectrodes for Lithium Batteries[J]. Electrochemistry Communications,2001,3(1):610.
    [79] Ohzuku T, Yamamoto A. Zero-Strain Insertion Material of Li4Ti5O12forRechargeable Lithium Cell[J]. Journal of the Electrochemical Society,1995,142(5):14311435.
    [80] Colbow K K, Dahn J R, Haering R R. Polymerizable Aromatic Additives forOvercharge Protection in Non-aqueous Rechargeable Lithium Batteries[J]. Journalof Power Sources,1989,26(34):97103.
    [81] Wilkening M, Amade R, Iwaniak W, et al. Ultraslow Li Diffusion in Spinel-TypeStructured Li4Ti5O12-A Comparison of Results from Solid State NMR andImpedance Spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9(10):12391246.
    [82] Kubiak P, Garcia A, Womes M. Phase Transition in the Spinel Li4Ti5O12Inducedby Lithium Insertion Influence of the Substitutions Ti/V, Ti/Mn, Ti/Fe[J]. Journalof Power Sources,2003,119121:626630.
    [83] Ronci F, Reale P, Scrosati B et al. High-Resolution in-Situ Structural Measurementsof The Li4/3Ti5/3O4Zero-Strain Insertion Material[J]. The Journal of PhysicalChemistry B,2002,5(106):30823086.
    [84] Esaka T, Hayashi M, Sakaguchi H, et al. Analysis of Lithium Ion Distribution inElectrolyzed Li1.33Ti1.67O4by Neutron Computed Tomography[J]. Solid State Ionics,2002,147(12):107114.
    [85] Wei J, Jun C, Dahn J R. Comparison of the Reactions between Li7Ti5O12or LiC6and Nonaqueous Solvents or Electrolytes Using Accelerating Rate Calorimetry[J].Journal of the Electrochemical Society,2004,11(151121): A2082A2087.
    [86] Bach S, Pereira R J P, Baffier N. Electrochemical Properties of Sol-GelLi4/3Ti5/3O4[J]. Journal of Power Sources,1999,8182(2):273276.
    [87] Yuan T, Wang K, Cai R, et al. Cellulose-Assisted Combustion Synthesis ofLi4Ti5O12Adopting Anatase TiO2Solid as Raw Material with High ElectrochemicalPerformance[J]. Journal of Alloys and Compounds,2009,7(12):665672.
    [88]杨建文,钟晖.无定型TiO2合成尖晶石Li4Ti5O12的性能[J].过程工程学报,2005,5(2):170174.
    [89] Wilkening M, Amade R, Iwaniak W, et al. Ultraslow Li Diffusion in Spinel-TypeStructured Li4Ti5O12-A Comparison of Results from Solid State NMR andImpedance Spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9(10):12391246.
    [90] Kiyoshi K, Takeshi C, Kaoru D. Preparation of Li4Ti5O12Spherical Particles forRechargeable Lithium Batteries[J]. Journal of the European Ceramic Society,2006,26(45):577581.
    [91] Fu J, Bai Y, Liu C, Et al. Physical Characteristic Study of Li4Ti5O12Prepared byMolten Salt Synthesis Method[J]. Materials Chemistry and Physics,2009,115(1):105109.
    [92] Bai Y, Wang F, Wu F. Influence of Composite LiCl-KCl Molten Salt onMicrostructure and Electrochemical Performance of Spinel Li4Ti5O12[J].Electrochimica Acta,2008,54(2):322327.
    [93] Li D, Xia N. Fabrication of Titania Nanofibers by Electrospinning[J]. Nano Letters,2003,3(4):555560.
    [94] Li D, Gong Y O, McCann J T. Collecting Electrospun Nanofibers with PatternedElectrodes[J]. Nano Letters,2005,5(5):913916.
    [95] Li D, Wang Y L, Xia Y N. Electrospinning of Polymeric and Ceramic Nanofibers asUniaxially Aligned Arrays[J]. Nano Letters,2003,3(8):11671171.
    [96]陆海纬,周永宁,曾华.三维尖晶石Li4Ti5O12纳米丝网状电极的构置与电化学性能[J].无机化学学报,2006,22(5):18021806.
    [97] Guo B, Li Y, Yao Y, et al. Electrospun Li4Ti5O12/C Composites for Lithium-IonBatteries with High Rate Performance[J]. Solid State Ionics,2011,204205(2):6165.
    [98] Lee D K, Shim H W, An J S, et al. Synthesis of Heterogeneous Li4Ti5O12Nanostructured Anodes with Long-Term Cycle Stability[J]. Nanoscale ResearchLetters,2010,5(10):15851589.
    [99] Tang Y F, Yang L, Qiu Z, et al. Template-free Synthesis of Mesoporous SpinelLithium Titanate Microspheres and Their Aapplication in High-rate Lithium IonBatteries[J]. Journal of Materials Chemistry,2009,19(33):59805984.
    [100] Shen L F, Yuan C Z, Luo H J, et al. Facile Synthesis of Hierarchically PorousLi4Ti5O12Microspheres for High Rate Lithium Ion Batteries[J]. Journal of MaterialsChemistry,2010,20(33):69987004.
    [101] Hao Y J, Lai Q Y, Lu J Z. Synthesis and Characterization of Spinel Li4Ti5O12Anode Material by Oxalic Acid-Assisted Sol-gel Method[J]. Journal of PowerSources,2006,158(2):13581364.
    [102] Hao Y-J, Lai Q-Y, Lu J-Z, et al. Influence of Various Complex Agents onElectrochemical Property of Li4Ti5O12anode material[J], Journal of Alloys andCompounds,2007,439(12),330336.
    [103] Hao Y-J, Lai Q-Y, Lu J-Z, et al. Synthesis by TEA Sol-Gel Method andElectrochemical Properties of Li4Ti5O12Anode Material for Lithium-Ion Battery[J].Solid State Ionics,2005,176(3),1201–1206.
    [104] Hao Y-J, Lai Q-Y, Liu D, et al. Synthesis by Citric Acid Sol-Gel Method andElectrochemical Properties of Li4Ti5O12Anode Material for Lithium-ion Battery[J],Materials Chemistry and Physics,2005,94(23):382387.
    [105] Shen C-M, Zhang X-G, Zhou Y-K, et al. Preparation and Characterization ofNanocrystalline Li4Ti5O12by Sol-gel Method[J]. Materials Chemistry and Physics,2003,78(2):437444.
    [106] Jung K-N, Pyun S, Kim S-W, et al. Thermodynamic and Kinetic Approaches toLithium Intercalation into Li[Ti5/3Li1/3]O4Film Electrode[J]. Journal of PowerSources,2003,119121(1):637643.
    [107] Kiyoshi K, Takeshi C, Kaoru D. Preparation of Li4Ti5O12Spherical Particles forRechargeable Lithium Batteries[J]. Journal of the European Ceramic Society,2006,26(45):577581.
    [108]赵海雷,林久.钒掺杂对Li4Ti5O12性能的影响[J].电池,2006,36(2):124126.
    [109] Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg SubstitutedLi4-xMgxTi5O12Spinel Electrodes(0≤x≤1)for Lithium Batteries[J]. Journal of theElectrochemical Society,2001,148(1): A102A104.
    [110] Liu H, Feng Y, Wang K, et al. Synthesis and Electrochemical Properties ofLi4Ti5O12/C Composite by The PVB Rheological Phase Method[J]. Journal ofPhysics and Chemistry of Solids,2008,69(8):20372040.
    [111] Sun Y K, Jung D J, Lee Y S, et al. Synthesis and Electrochemical Characterizationof Spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4Anode Materials[J]. Journal of Power Sources,2004,125(2):242245.
    [112] Sha H H, Zhao Y W, Zhong H G. Preparation and Cycling Performance of Al3+andF Co-Substituted Compounds Li4AlxTi5-xFyO12-y[J]. Electrochimica Acta,2005,50(20):40574062.
    [113] Sha H H, Zhao Y W, Zhong H G. Effects of Dopant on the ElectrochemicalPerformance of Li4Ti5O12as Electrode Material for Lithium Ion Batteries[J].Journal of Power Sources,2007,165(1):408412.
    [114] Tabuchi M, Nakashima A, Shigemura H, et al. Nanostructured Electrodes for NextGeneration Rechargeable Electrochemical Devices[J]. Journal of MaterialsChemistry,2003,13(2):17471757.
    [115] Hung S H, Wen Z Y, Zhang J C, et al. Preparation and ElectrochemicalPerformance of Ag doped Li4Ti5O12[J]. Electrochemistry Communications,2004,6(11):10931097.
    [116] Huang S, Zhao Y W, Jing C Z. Improving the Electrochemical Performance ofLi4Ti5O12/Ag Composite by An Electroless Deposition Method[J]. ElectrochimicaActa,2006,52(11):37043708.
    [117] Liu H, Feng Y, Wang K, et al. Synthesis and Electrochemical Properties ofLi4Ti5O12/C Composite by the PVB Rheological Phase Method[J]. Journal ofPhysics and Chemistry of Solids,2008,69(8):20372040.
    [118]阮艳莉,唐致远,彭庆文.尖晶石型Li4Ti5O12电极材料的合成与电化学性能研究[J].无机材料学报,2006,21(4):873879.
    [119] Guerfi A, Sevigny S, Lagace M, et al. Nano-Particle Li4Ti5O12Spinel as Electrodefor Electrochemical Generators[J]. Journal of Power Sources,2003,119(12):8894.
    [120] Zaghib K, Gauthier M, Brochu F, et al. Li4Ti5O12, Li(4-α)ZαTi5O12or Li4ZβTi(5-β)O12Particles, Processes for Obtaining Same and Use as Electrochemical Generators. US:20040202934.2004,10:141149.
    [121]何则强,刘文萍,熊利芝.锂离子电池用Li4Ti5O12-碳复合材料的制备与电化学性能[J].无机化学学报,2007,23(4):732737.
    [122] Shen L, Yuan C, Luo H, et al. In Situ Growth of Li4Ti5O12on Multi-walled CarbonNanotubes: Novel Coaxial Nanocables for High Rate Lithium Ion Batteries[J].Journal of Material Chemistry,2011,21(10),761–767.
    [123] Wagemaker M, Kentgens A P M, Mulder F M. Equilibrium Lithium TransportBetween Nanocrystalline Phases in Intercalated TiO2Anatase[J]. Nature,2002,418(6896):397399.
    [124] Henningsson A, Rensmo H, Sandell A, et al. Electronic Structure ofElectrochemically Li-inserted TiO2Studied with Synchrotron Radiation ElectronSpectroscopies[J]. Journal of Chemical Physics2003,118(12):56075612.
    [125]张玉玺,张晓丽,郑洪河.锂离子电池负极材料TiO2的研究进展.电池.2009,39(2):106109.
    [126] Yang Z G, Choi D W, Kerisit S, et al. Nanostructures and Lithium ElectrochemicalReactivity of Lithium Titanites and Titanium Oxides: A Review[J]. Journal ofPower Sources,2009,192(2):588598.
    [127] Sudant G, Baudrin E, Larcher D, et al. Electrochemical Lithium Reactivity withNanotextured Anatase-type TiO2[J]. Journal of Materials Chemistry,2005,15(12):12631269.
    [128] Panda S K, Yoon Y, Jung H S, et al. Nanoscale Size Effect of Titania (Anatase)Nanotubes with Uniform Wall Thickness as High Performance Anode forLithium-Ion Secondary Battery[J]. Journal of Power Sources,2012,204(2):162167.
    [129] WOh S, Park S H, Sun Y K. Hydrothermal Synthesis of Nano-Sized Anatase TiO2Powders for Lithium Secondary Anode Materials[J]. Journal of Power Sources,2006,161(2):13141318.
    [130] Gao X P, Lan Y, Zhu H Y, et al. Electrochemical Performance of AnataseNanotubes Converted from Protonated Titanate Hydrate Nanotubes[J].Electrochemcal and Solid State Letters,2005,8(1):2629.
    [131] Bao S J, Bao Q L, Li C M et al. Novel Porous Anatase TiO2Nanorods and TheirHigh Lithium Electroactivity[J]. Electrochemistry Communications.2007,9(5):12331238.
    [132] Pierre K, Thomas F, Nicola H, et al. TiO2Anatase Nanoparticle Networks:Synthesis, Structure, and Electrochemical Performance[J]. Small,2011,7(12):16901696.
    [133] Moriguchi I, Hidaka R, Yamada H, et al. A Mesoporous Nanocomposite of TiO2and Carbon Nanotubes as a High-Rate Li-Intercalation Electrode Material[J].Advanced Materials,2006,18(1):6973.
    [134] Yue W B, Randorn C, Attidekou P S, et al. Syntheses, Li Insertion, andPhotoactivity of Mesoporous Crystalline TiO2[J]. Advanced Functional Materials,2009,19(17):28262833.
    [135] Wagemaker M, Mulder F M, Van Der Ven A. The Role of Surface and InterfaceEnergy on Phase Stability of Nanosized Insertion Compounds[J]. AdvancedMaterials,2009,21(2526):27032709.
    [136] Stashans A, Lunell S, Bergstrom R, et al. Theoretical Study of Lithium Intercalationin Rutile and Anatase[J]. Physical Review B,1996,53(1):159170.
    [137] Koudriachova M V, Harrison N M, Leeuw S W. Effect of Diffusion on LithiumIntercalation in Titanium Dioxide[J]. Physical Review Letters,2001,86(7):12751278.
    [138] Baudrin E, Cassaignon S, Koelsch M, et al. Structural Evolution during theReaction of Li with Nano-Sized Rutile Type TiO2at Room Temperature[J].Electrochemistry Communications,2007,9(2):337342.
    [139] Kaper H, Endres F, Djerdj I, et al. Direct Low-Temperature Synthesis of RutileNanostructures in Ionic Liquids[J]. Small,2007,3(10):17531763.
    [140] Baudrin E, Cassaignon S, Koelsch M, et al. Structural Evolution during theReaction of Li with Nano-Sized Rutile Type TiO2at Room Temperature[J].Electrochemistry Communications,2007,9(2):337342.
    [141] Reddy M A, Kishore M S, Pralong V, et al. Room Temperature Synthesis and LiInsertion into Nanocrystalline Rutile TiO2[J]. Electrochemistry Communications,2006,8(8):12991303.
    [142] Jiang C H, Honma I, Kudo T, et al. Nanocrystalline Rutile TiO2Electrode forHigh-Capacity and High-Rate Lithium Storage[J]. Electrochemical and Solid-StateLetters,2007,10(5):127129.
    [143] Hu Y-S, Kienle L, Guo Y-G, et al. High Lithium Electroactivity ofNanometer-Sized Rutile TiO2[J]. Advanced Materials.2006,18(11):14211426.
    [144] Wang D, Choi D, Yang Z, et al. Synthesis and Li-Ion Insertion Properties of HighlyCrystalline Mesoporous Rutile TiO2[J]. Chemistry of Materials,2008,20(10):3435–3442.
    [145] Armstrong A R, Armstrong G, Canales J, et al. TiO2-B Nanowires as NegativeElectrodes for Rechargeable Lithium Batteries[J]. Journal of Power Sources,2005,146(12):501506.
    [146] Armstrong A R, Armstrong G, Canales J, et al. Lithium-Ion Intercalation intoTiO2(B) Nanowires[J]. Advanced Materials,2005,17(7):862865.
    [147] Armstrong G, Armstrong A R, Bruce P G. TiO2(B) Nanowires as An ImprovedAnode Material for Lithium-Ion Batteries Containing LiFePO4or LiNi0.5Mn1.5O4Cathodes and a Polymer Electrolyte[J]. Advanced Materials,2006,18(19):25972600.
    [148] Armstrong G, Armstrong A R, Canales J, et al. Nanotubes with the TiO2-BStructure[J]. Chemical Communications,2005,19:24542456.
    [149] Dambournet D, Belharouak I, Amine K. Tailored Preparation Methods of TiO2Anatase, Rutile, Brookite: Mechanism of Formation and ElectrochemicalProperties[J]. Chemistry of Materials,2010,22(3):11731179.
    [150] Reddy M A, Pralong V, Varadaraju U V, et al. Crystallite Size Constraints onLithium Insertion into Brookite TiO2[J]. Electrochemical and Solid-State Letters,2008,11(8): A132A134.
    [151] Bao S J, Bao Q L, Li C M, et al. Novel Porous Anatase TiO2Nanorods and TheirHigh Lithium Electroactivity[J]. Electrochemistry Communications,2007,9(5):12331238.
    [152] Huang H, Zhang W K, Gan X P, et al. Electrochemical Investigation of TiO2/carbonNanotubes Nanocomposite as Anode Materials for Lithium-Ion Batteries[J].Materials Letters,2007,61(1):296299.
    [153] Guo Y G, Hu Y S, Sigle W, et al. Superior Electrode Performance ofNanostructured Mesoporous TiO2(Anatase) through Efficient Hierarchical MixedConducting Networks[J]. Advanced Materials,2007,19(16):20872091.
    [154] Zhou H S, Li D L, Hibino M, et al. A Self-Ordered, Crystalline–Glass, MesoporousNanocomposite for Use as a Lithium-Based Storage Device with Both High Powerand High Energy Densities[J]. Angewandte Chemie-International Edition,2005,44(5):797802.
    [155] Zhang S S. The Effect of The Charging Protocol on the Cycle Life of A Li-ionBattery[J]. Journal of Power Sources,2006,161(2):13851391.
    [156] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized Transition-metal Oxides asNegative-Electrode Materials for Lithium-ion Batteries[J]. Nature,2000,407(6803):496499.
    [157] Arico A S, Bruce P, Scrosati B, et al. Nanostructured Materials for AdvancedEnergy Conversion and Storage Devices[J]. Nature Materials,2005,4(5):366377.
    [158] Chan C K, Peng H L, Liu G, et al. High-performance Lithium Battery AnodesUsing Silicon Nanowires[J]. Nature Nanotechnology,2008,3(1):3135.
    [159] Tang Y F, Yang L, Qiu Z, et al. Preparation and Electrochemical Lithium Storageof Flower-like Spinel Li4Ti5O12Consisting of Nanosheets[J]. ElectrochemistryCommunications,2008,10(10):15131516.
    [160] Prakash A S, Manikandan P, Ramesha K, et al. Solution-Combustion SynthesizedNanocrystalline Li4Ti5O12As High-Rate Performance Li-Ion Battery Anode[J].Chemistry of Materials,2010,22(9):28572863.
    [161] Ge H, Li N, Li D, et al. Study on The Effect of Li Doping in Spinel Li4+xTi5-xO12(0≤x≤2) Materials for Lithium-ion Batteries[J]. Electrochemistry Communications,2008,10(7):10311034.
    [162] Capsoni D, Bini M, Massarotti V, et al. Cr and Ni Doping of Li4Ti5O12: CationDistribution and Functional Properties. The Journal of Physical Chemistry C,2009,113(45):1966419671.
    [163] Huang S, Wen Z, Zhu X, et al. Preparation and Electrochemical Performance of AgDoped Li4Ti5O12[J]. Electrochemistry Communications,2004,6(11):10931097.
    [164] Liu H, Feng Y, Wang K, et al. Synthesis and Electrochemical Properties ofLi4Ti5O12/C Composite by The PVB Rheological Phase Method[J]. Journal ofPhysics and Chemistry of Solids,2008,69(8):20372040.
    [165] Kim H K, Bak S M, Kim K B. Li4Ti5O12/reduced Graphite Oxide Nano-hybridMaterial for High Rate Lithium-ion Batteries[J]. Electrochemistry Communications,2010,12(12):17681771.
    [166] Bilecka I, Niederberger M. New Developments in the Nonaqueous and/orNon-hydrolytic Sol-gel Synthesis of Inorganic Nanoparticles[J]. ElectrochimicaActa,2010,55(26):77177725.
    [167] Yang P, Zhao D, Margolese D I, et al. Generalized Syntheses of Large-PoreMesoporous Metal Oxides with Semicrystalline Frameworks[J]. Nature,1998,396(6707):152155.
    [168] Wan Y, Shi Y, Zhao D. Designed Synthesis of Mesoporous Solids viaNonionic-Surfactant-Templating Approach[J]. Chemical Communications,2007,9(8):897926.
    [169] Yu S.-H, Pucci A, Herntrich T, Surfactant-Free Nonaqueous Synthesis of LithiumTitanium Oxide (LTO) Nanostructures for Lithium Ion Battery Applications[J].Journal of Material Chemistry,2011,21(3):806810.
    [170] Lu J, Nan C, Peng Q, et al. Single Crystalline Lithium Titanate Nanostructure withEnhanced Rate Performance for Lithium Ion Battery[J]. Journal of Power Sources,2012,202(15):246252.
    [171] Jayasankar M, Hannelore K, Salah H, et al. A Template-Free Synthesis AndStructural Characterization of Hierarchically Nano-Structured Lithium TitaniumOxide Films[J]. Journal of Material Chemistry,2012,22(14):66326638.
    [172] Liu J, Li X, Yang J, et al. Microwave-Assisted Hydrothermal Synthesis ofNanostructured Spinel Li4Ti5O12as Anode Materials for Lithium Ion Batteries[J].Electrochimica Acta,2012,63(15):100104.
    [173] Xu C, Sun J, Gao L. Direct Growth of Monodisperse SnO2Nanorods on Grapheneas High Capacity Anode Materials for Lithium Ion Batteries[J]. Journal of MaterialsChemistry,2012,22(3):975979.
    [174]许晶.聚阴离子型锂离子电池正极材料的制备及改性[D].哈尔滨:哈尔滨工业大学.2010:26.
    [175] Cheng L, Yan J, Zhu G N, et al. General Synthesis of Carbon-coated NanostructureLi4Ti5O12as A High Rate Electrode Material for Li-ion Intercalation[J]. Journal ofMaterials Chemistry,2010,20(3):595602.
    [176] Rho Y H, Kanamura K. Preparation of Li4/3Ti5/3O4Thin Film Electrodes by a PVPSol-gel Coating Method and Their Electrochemical Properties[J]. Journal of TheElectrochemical Society,2004,151(1): A106A110.
    [177]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006:7-8.
    [178] Cabanel R. Determination of the Diffusion Coefficient of An Inserted Species byImpedance Spectroscopy: Application to the H/HxNb2O5System[J]. Journal ofApplied Electrochemistry,1993,23(2):9397.
    [179] Guo Y G, Hu J S and Wan L J. Nanostructured Materials for ElectrochemicalEnergy Conversion and Storage Devices[J]. Advanced Materials,2008,20(15):28782887.
    [180] Beninati S, Damen L, Mastragostino M. Fast Sol–gel Synthesis of LiFePO4/C forHigh Power Lithium-ion Batteries for Hybrid Electric Vehicle Application[J].Journal of Power Sources,2009,194(2):10941098.
    [181] Wang K, Wei M, Morris M A, et al. Mesoporous Titania Nanotubes: TheirPreparation and Application as Electrode Materials for Rechargeable LithiumBatteries[J]. Advance Materials,2007,19(19),30163020.
    [182] Liu H, Bi Z, Sun X-G, et al. Mesoporous TiO2–B Microspheres with Superior RatePerformance for Lithium Ion Batteries[J]. Advance Materials,2011,23(30),3450–3454.
    [183] Chen J S, Tan Y L, Li C M, et al. Constructing Hierarchical Spheres from LargeUltrathin Anatase TiO2Nanosheets with Nearly100%Exposed (001) Facets forFast Reversible Lithium Storage[J]. Journal of American Chemical Society,2010,132(17):61246130.
    [184] Szeifert J M, Feckl J M, Fattakhova-Rohlfing D, et al. Ultrasmall TitaniaNanocrystals and Their Direct Assembly into Mesoporous Structures Showing FastLithium Insertion[J]. Journal of American Chemical Society,2010,132(36):1260512611.
    [185] Ye J, Liu W, Cai J, et al. Nanoporous Anatase TiO2Mesocrystals: Additive-FreeSynthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium InsertionBehavior[J]. Journal of American Chemical Society,2011,133(4):933940.
    [186] Wang Y, Smarsly B M, Djerdj I. Niobium Doped TiO2with Mesoporosity and ItsApplication for Lithium Insertion[J]. Chemistry of Materials,2010,22(24),66246631.
    [187] Ma Z, Yu J H, Dai S. Preparation of Inorganic Materials Using Ionic Liquids[J].Advance Materials.2009,22(2):261285.
    [188] Zhou Y. Recent Advances in Ionic Liquids for Synthesis of InorganicNanomaterials[J]. Current Nanoscience.2005,1(1):3542.
    [189] Cooper E R, Andrews C D, Wheatley P S. Ionic Liquids and Eutectic Mixtures asSolvent and Template in Synthesis of Zeolite Analogues[J]. Nature.2004,430:10121016.
    [190] Zhou Y, Schattka J H, Antonietti M. Room-Temperature Ionic Liquids as Templateto Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel NanocastingTechnique[J]. Nano Letters.2004,4(3):477481.
    [191] Zhu H, Huang J, Pan Z, et al. Ionothermal Synthesis of Hierarchical ZnONanostructures from Ionic-Liquid Precursors[J]. Chemistry of Materials,2006,18(18):44734477.
    [192] Recham N, Dupont L, Courty M, et al. Ionothermal Synthesis of Tailor-MadeLiFePO4Powders for Li-Ion Battery Applications[J]. Chemistry of Materials,2009,21(6):10961107.
    [193] Li Y, Zhang S, Yu Q, et al. The Effects of Activated Carbon Supports on TheStructure and Properties of TiO2Nanoparticles Prepared by a Sol-Gel Method[J].Applied Surface Science,2007,253(23):92549258.
    [194] Mahyar A, Amani-Ghadim A R, Influence of Solvent Type on The Characteristicsand Photocatalytic Activity of TiO2Nanoparticles Prepared by the Sol-GelMethod[J]. Micro Nano Letters,2011,6(4):244248.
    [195] Chung S-L, Wang C-M. A Sol-Gel Combustion Synthesis Method for TiO2powderswith Enhanced Photocatalytic Activity[J]. Journal of Sol-Gel Science andTechnology,2011,57(1):7685.
    [196] Macklin W J, Neat R J. Performance of Titanium Dioxide-based Cathodes in ALithium Polymer Electrolyte Cell[J]. Solid State Ionics,1992,53:694700.
    [197] Hu Y S, Kienle L, Guo Y G et al. High Lithium Electroactivity of Nanometer-sizedRutile TiO2[J]. Advanced Materials,2006,18(11):14211426.
    [198] Deng D, Kim M G, Lee J Y, et al. Green Energy Storage Materials: NanostructuredTiO2and Sn-based Anodes for Lithium-ion Batteries[J]. Energy&EnvironmentalScience,2009,2(8):818837.
    [199] Baudrin E, Cassaignon S, Koesch M, et al. Structural Evolution During theReaction of Li with Nano-sized Rutile Type TiO2at Room Temperature[J].Electrochemistry communications,2007,9(2):337342.
    [200] Wang D, Choi D, Yang Z, et al. Self-assembled TiO2-Graphene HybridNanostructures for Enhanced Li-ion Insertion[J]. ACS nano,2009,3(4),907914.
    [201] Kubiak P, Pfanzelt M, Geserick J, et al. Electrochemical Evaluation of Rutile TiO2Nanoparticles as Negative Electrode for Li-ion Batteries[J]. Journal of PowerSources,2009,194(2):10991104.
    [202] Pfanzelt M, Kubiak P, Wohlfahrt-Mehrens M. Nanosized TiO2Rutile with HighCapacity and Excellent Rate Capability[J]. Electrochemical and Solid-State Letters,2010,13(7), A91A94.
    [203] Wagemaker M, Borghols W J H, Lafont U, et al. Impact of Nanosizing on LithiatedRutile TiO2[J]. Chemistry of Materials,2008,20(9),29492955.
    [204] Chang J-G, Wang J, Lin M C. Adsorption Configurations and Energetics of BClx(x=03) on TiO2Anatase (101) and Rutile (110) Surfaces[J]. The Journal of PhysicalChemistry A,2007,111(29):6746–6754.
    [205] Murugan A V, Muraliganth T, Manthiram A. Rapid, Facile MicrowaveSolvothermal Synthesis of Graphene Nanosheets and Their PolyanilineNanocomposites for Energy Strorage[J]. Chemistry of Materials2009,21(21):50045006.
    [206] Pan D Y, Wang S, Zhao B, et al. Li Storage Properties of Disordered GrapheneNanosheets[J]. Chem. Mater,2009,21(14):31363142.
    [207] Xu C, Wang X, Yang L C, et al. Fabrication of a Graphene-Cuprous OxideComposite[J]. Journal of Solid State Chemistry,2009,182(9):24862490.Ding Y, Jiang Y, Xu F, et al. Preparation of Nano-Structured LiFePO4/GrapheneComposites by Co-precipitation Method[J]. Electrochemistry Communications,2010,12(1):1013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700