用户名: 密码: 验证码:
基于联合不确定度的多波束测深估计及海底地形成图技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底地形作为海洋环境的主要组成部分,在海洋开发领域具有重要价值。多波束测深技术是当代海底地形勘测的一项高新技术,目前已成为海洋监测与海底资源调查的最主要手段之一,被广泛应用于海道测量、海底资源勘测、海底目标探测、水上安全航行等众多领域。随着科技的不断发展与进步,目前多波束测深系统已实现超宽覆盖、高分辨测量,其采集的高密度测深数据已达到百万级、千万级乃至海量的数据量。作为多波束测深数据后处理技术的重要组成部分,大数据量测深数据的自动处理方法与海底成图技术是多波束测深数据可靠应用的重要途径,并且是长期以来多波束测深数据后处理研究中的热点与难点之一。本文结合当前国内外多波束测深数据后处理技术发展趋势和国产浅水宽覆盖多波束测深声呐研制实际需求,围绕测深数据后处理中的异常值自动检测与剔除方法、基于联合不确定度的多波束测深估计方法、大数据量海底数字地形建模与可视化技术以及海底地形等深线快速生成技术等四个方面展开研究,主要研究内容如下:
     首先,研究多波束测深异常值自动检测与剔除方法。在分析比较目前存在的三种主要测深异常值自动检测方法各自优缺点的基础上,提出一种基于截断最小二乘估计趋势面滤波的稳健异常值检测与剔除方法,并通过计算机仿真验证该方法对离散存在和簇群存在的异常值的检测性能。根据多波束测深数据点的分布特性,提出采用联合全局与局部方差的动态门限作为多波束测深数据的异常值检测门限,并通过计算机仿真验证该动态门限的有效性与适用性。对实际多波束测深数据进行异常值检测与剔除处理,验证了基于截断最小二乘估计趋势面滤波的异常值自动检测与剔除方法的有效性与实用性。
     其次,研究基于联合不确定度的多波束测深估计方法。深入分析影响多波束测深结果不确定度的各项因素,建立多波束测深的不确定度传播模型,获取实际多波束测深数据的水平不确定度与垂直不确定度。在获得每个测深点水平与垂直不确定度的基础上,进行基于联合不确定度的多波束测深估计研究,提出一种基于局部曲面拟合的节点深度预测方法以获得斜坡地形上测深点对节点深度估计的正确预测。对节点多重估计追踪与最优估计选取准则进行研究,提出一种基于局部最优均深度的最优估计选取准则。通过对海试数据的处理验证基于联合不确定度的多波束测深估计方法的高效性与稳健性。
     再次,研究大数据量海底地形快速建模与可视化技术。研究分析大数据量多波束测深数据的快速海底地形建模方法基础上,提出一种基于不完全二叉树的动态分块与合并机制,采用对测区数据点先进行分块构网再逆向合并的方法快速建立海底地形模型。针对子网合并过程中由离散点分布不确定性和合并算法复杂性引起的浮点计算误差错误发生机率增大而导致整个构网程序的稳健性降低的问题,提出一种联合矢积测试的双向缝合算法。通过实际多波束测深数据的处理验证联合矢积测试的双向缝合算法的高效性与稳健性。
     最后,研究等海底地形深线快速生成算法。根据大数据量多波束海底地形等深线快速生成与显示需求,提出一种基于等深值索引序列的等深线快速生成算法。通过将浮点型深度属性三角网转化为整型索引属性三角网,进一步提出一种基于0/1异或的等深线走向快速判定方法进行等深线跟踪,实现了等深线的快速生成。在分析比较三次Bezier函数法和三次B样条函数法这两种等深线平滑方法的基础上,采用三次B样条函数法实现等深线平滑。通过对实际多波束测深数据的处理,验证基于等深值索引序列的海底地形等深线快速生成算法的高效性与稳健性以及三次B样条函数等深线平滑方法的实用性。
As a major component of marine environment, the seafloor terrain is important in theocean exploration. The Multi-beam bathymetric technique has become an up-to-datetechnology in contemporary seafloor topography survey and also plays a major part in oceanmonitoring and the investigation of seabed resources. It has been widely applied in manyfields, such as the hydrographic survey, the seabed resources investigation, the underwatertarget detection and the navigation, etc. With the development of science and technology, themultibeam bathymetry system has achieved super wide coverage measurement and highresolution measurement. Moreover, the amount of high-density bathymetric data collected hasreached the magnitude of one million, ten millions and even more. The automatic signalprocessing and the seafloor mapping on large amount of bathymetric data are importanttechniques in multibeam bathymetric data post-processing, which is an important and reliableapplication of the data and has been a hot yet a difficult research issue for a long time. Tomeet the demand of developing the wide-coverage multibeam bathymetry sonar in shallowwater in the country and also to follow the recent development of the techniques world widelyin multibeam bathymetric data post-processing, this thesis is devoted to four research aspects,namely the algorithm to automatically detect and eliminate the outliers in multibeambathymetric data, the multibeam bathymetry estimation based on the combined uncertainty,the modeling and visualization techniques in the seafloor digital terrain with large amount ofdata and the fast generation of the iso-depth contours. More specific contents are as follows.
     The first part of the thesis is devoted to developing the algorithm in automaticallydetecting and eliminating outlier in bathymetric data. After analyzing and the existing threemethods and comparing their advantages and disadvantages respectively, a robust automaticoutlier detection and elimination algorithm based on the trimmed least squares estimation isproposed. The detection performance of the algorithm for discrete outliers and the clusters hasbeen proved by computer simulation. According to the distribution characteristics ofmultibeam bathymetric data points, a dynamic threshold associated with the global and thelocal variance is proposed as the threshold for outlier detection, the applicability andefficiency of this dynamic threshold have been verified by computer simulations. After that,the outlier detection and elimination have been carried out using real multibeam bathymetricdata in the thesis and the results have confirmed this newly proposed method is effective andapplicable.
     The second part of this thesis has been devoted to the multibeam bathymetry estimationbased on the combined uncertainty. Various factors affecting the uncertainty of multibeambathymetric data are analyzed. Then, in order to obtain the horizontal and vertical uncertaintyof actual multibeam bathymetric data, the propagation models for multibeam bathymetricuncertainty are established. After that, the multibeam bathymetry estimation based on thecombined uncertainty is discussed using the horizontal and vertical uncertainty of each ofsounding. Following that, a node depth prediction method based on the local surface fitting isproposed to give the correct depth estimations for the nodes on the slopes. Moreover, in theend of this part of the thesis, the multiple estimation tracking are discussed and a robustoptimal estimation selecting rule is proposed based on the local average depth optimum. Theprocessing results using the data from sea trials have confirmed the robustness andeffectiveness of multibeam bathymetry estimation based on the combined uncertainty.
     The third part of the thesis is devoted to the fast modeling and visualization of theseafloor terrain. A dynamic block dividing and merging mechanism is proposed based on theincomplete binary tree after studying the fast modeling of the seafloor terrain using largeamount of multibeam bathymetric data. By firstly dividing the large amount of data in thesurvey area into several blocks and then constructing Delaunay triangulations in eachsub-block individually, the subtriangulations are merged in a regressive order to form aintegrated triangulation mesh. To deal with the low efficiency and low robustness oftriangulation procedure caused by both the uncertain distribution of sounding points and thecomplexity of the merging algorithm during the subtriangulation merging, towards the end ofthis part of the thesis, a bidirectional sew algorithm is proposed associated with the crossvector product test. The processing results of actual bathymetric data has confirmed that thebidirectional sew algorithm is effective and robust.
     The final part of the thesis is devoted to the fast algorithm in generating the iso-depthcontours in the seafloor. To efficiently generate the contours from large amount of seafloorterrain data, a fast algorithm of contours generation is proposed based on the indexingsequence of iso-depth values. The algorithm transforms the original triangulation net of floatdepth values to integer indexes. Following that, a fast decision-making method based on0/1exclusive-OR is proposed for telling the contour alignment, which finally accomplishescontours tracing and their fast generation. Moreover, the cubic B-spline function method isadopted for contour smoothing after the comparison with the cubic Bezier function method.By processing actual multibeam bathymetric data, the contours generation based on theindexing sequence of iso-depth values is proved to be effective and robust and the Cubic B-spline function method to be applicable.
引文
[1]唐秋华,陈义兰,周兴华,等.多波束海底声像图的形成及应用研究.海洋测绘.2004,24(5):9-12页.
    [2] Cutter, George Randall. Seafloor habitat characterization, classification, and maps forthe lower Piscataqua River estuary. University of New Hampshire.2005.
    [3]来向华,马建林,潘国富,等.多波束测深技术在海底管道检测中的应用.海洋工程.2006,24(3):68-73页.
    [4] Pratt, Jamie C. Cape Henlopen Spit Complex and Recent Evolution of BreakwaterHarbor, Lewes, Delaware[M.S]. University of Delaware.2007.
    [5]严怀志.多波束扫海应用研究.第五届长三角科技论坛(测绘分论坛).2008.10:125-127页.
    [6] Vicki Lynn Ferrini. Dynamics of Nearshore Sedimentary Environments Revealedthrough the Analysis of Multibeam Sonar Data. State University of New York at StonyBrook.2004.
    [7] De Moustier, C. State of the art in swath bathymetry survey system. IntenationalHydrographic Review.1988,49(2):25-54P.
    [8] John H Satriano, Authony Geneva. Signal processing for wide swath bathymetricsonars[J]. IEEE OCEANS'91.1991,10:558-561P.
    [9] Thomas Weber. A New Generation of Multibeam Sweeping Echosounder for Surveying-ATLAS FANSWEEP20. IEEE OCEANS'96.1996:111-123P.
    [10]翟国君,黄谟涛,欧阳永忠,等.海洋测绘的现状与发展.测绘通报.2001(6):7-9页.
    [11]刘经南,赵建虎.多波束测深系统的现状和发展趋势.海洋测绘.2002.9,22(5):3-6页.
    [12]刘雁春,暴景阳,李明叁.我国海洋测绘技术的新进展.测绘通报.2007,(3):1-7页.
    [13]赵建虎,李娟娟,李萌.海洋测量的进展及发展趋势.测绘信息与工程.2009,34(4):25-27页.
    [14]么彬,李海森,周天,等.多子阵超宽覆盖海底地形探测方法试验研究.哈尔滨工程大学学报.2008,29(10):1077-1081页.
    [15]周天,李海森,么彬,等.高分辨多波束海底地形探测的MSB-RMU算法研究.电子与信息学报.2011,32(7):1645-1648页
    [16]周天.超宽覆盖海底地形地貌高分辨探测技术研究.哈尔滨工程大学博士学位论文.2005:1-16页
    [17]么彬.多子阵波束域高分辨水声成像技术研究.哈尔滨工程大学博士学位论文.2009:3-10页.
    [18]李海森.多波束条带海底地形测绘系统研究.哈尔滨工程大学博士学位论文.1999:2-5页.
    [19]李海森,陈宝伟,么彬,等.多子阵高分辨海底地形探测算法及其FPGA和DSP阵列实现.仪器仪表学报.2010,31(2):281-286页
    [20]魏玉阔,翁宁宁,李海森,等.利用RLS_Laguerre格型算法消除多波束测深声呐的隧道效应.哈尔滨工程大学学报.2010,31(5):547-552页
    [21]魏玉阔,陈宝伟,李海森.利用MVDR算法削弱多波束测深声呐的隧道效应.海洋测绘.2011,31(1):28-31页
    [22]张毅乐,李海森,么彬,等.基于相干原理的多波束测深新算法.海洋测绘.2010,30(6):8-11页
    [23]李海森,黎子盛,周天. MSB-CAATI算法在多波束测深系统中的应用.声学技术,2007,26(2):286-290页.
    [24]周天,李海森,么彬,等.高分辨海底地形探测的MSB-RMU方法研究.电子与信息学报.2010,32(7):1644-1648页
    [25]周天,杨程,李海森,等.基于AccelDSP的MM-MUSIC算法实现及其在多波束测深声呐中的应用.系统工程与电子技术.2011,33(12):2613-2617页.
    [26]魏玉阔.多波束测深假象消除与动态空间归位技术.哈尔滨工程大学博士学位论文.2011:44-55页.
    [27] IHO Standards for Hydrographic Surveys5thEdition. International HydrographicBureau.2008.
    [28]吴超,殷晓冬,张立华,等.基于不确定度的多波束测深数据质量评估方法.海洋测绘.2009,29(5):11-14页.
    [29]黄贤源,翟国君,黄谟涛,等.利用水深不确定度探测测深异常值的方法.测绘科学技术学报.2011,28(1):70-74页.
    [30] Hare R., Eng.P. and C.L.S. Uncertainty Management in Hydrographic Surveys. USHydro.2007:14-17P.
    [31] Elmore Paul A. Uncertainty Estimation of Historical Bathymetric Data from BayesianNetworks.0-933957-38-12009MTS.
    [32] Eric Maillard. Visualization of Uncertainty in Bathymetric Measurements.2009.
    [33] Beaudoin J., Calder B.,Hiebert J.,et al. Estimation of sounding uncertainty frommeasurements of water mass variability.International Hydrographic Review.2009:20-38P.
    [34] The International Hydrographic Review No.5. International Hydrographic Bureau.2011.
    [35]邹永刚,贾俊涛,翟京生,等.多波束系统波束宽度对水深点不确定度影响分析.辽宁工程技术大学学报(自然科学版).2011,30(1):68-72页.
    [36]张立华,贾帅东,吴超,等.顾及不确定度的数字水深模型内插方法.测绘学报.2011,40(3):359-365页.
    [37] Calder B. Uncertainty Representation in Hydrographic Surveys and Products.5thInternational Shallow Water Survey Conference (SWS),2008. Conference Abstract.
    [38] Calder B. On the Uncertainty of Archive Hydrographic Data Sets. IEEE JOURNALOF OCEANIC ENGINEERING,2006.31(2):249-265P.
    [39] RESON Inc. SeaBat7128product leaflet.
    [40] L-3ELAC Nautik. Navigation and Detection Sonar Vanguard Brochure. VA.
    [41] Hare R. Procedures for Evaluating and Reporting Hydrographic Data Quality.International Report. Canadian Hydrographic Service.1997.
    [42]殷晓东.声学测深数据处理与海陆数据集成方法研究.大连理工大学博士学位论文.2009:76-86页.
    [43] Geng X, Zielinski A. Precise Multibeam Acoustic Bathymetry. Marine Geodesy.1999,22(3):157-167P.
    [44]吴英姿.多波束测深系统地形跟踪与数据处理技术研究.哈尔滨工程大学博士学位论文.2001:105-121页.
    [45]李宜龙,殷晓冬,张立华,等.交叉检查在多波束测深精度评估和误差分析中的应用.海洋技术.2006,25(1):119-123页.
    [46]吴英姿,徐新盛,乔力争.多波束测深系统的精度评估方法研究.海洋技术.2003,22(3):65-69页.
    [47] Lurton X. Acoustical Measurement Accuracy Modelling for Bathymetric Sonars, inCanadian Hydrographic Conference.2002.
    [48]殷晓冬,李宜龙,周君华,等.基于Ping的多波束测深精度评估方法研究.测绘通报.2007(3):8-11页.
    [49] IHO Standards for Hydrographic Surveys5thEdition. International HydrographicBureau.1998.
    [50] Hare R. Depth and Position Error Budgets for Multibeam Echosounding. InternationalHydrographic Review,1995, LXX II (2):37-69P.
    [51] Jakobsson M., Calder B., Mayer L. On the effect of random errors in griddedbathymetric compilations.JOURNAL OF GEOPHYSICAL RESEARCH.2002,107(B12): ETG14-1-14-11P.
    [52]朱维庆,魏建江,黎名炜,等.多波束测深声纳的随机误差模型.海洋技术.1986,2:98-104页.
    [53]朱庆,李德仁.多波束测深数据的误差分析与处理.武汉测绘科技大学学报.1998,23(1):1-4页.
    [54]陈非凡.多波束条带测深仪的动态测量误差评估.海洋技术.1999,18(1):42-45页.
    [55]李家彪,郑玉龙,王小波,等.多波束测深及影响精度的主要因素.海洋测绘.2001,(1):26-32页.
    [56]刘胜旋,关永贤.多波束系统的参数误差判断及校正.海洋测绘.2002,22(1):33-37页.
    [57]赵建虎,刘经南,阳凡林.多波束测深数据系统误差的削弱方法研究.武汉大学学报·信息科学版.2004,29(5):394-397页.
    [58]吴自银,金翔龙,郑玉龙,等.多波束测深边缘波束误差的综合校正.海洋学报.2005,27(4):88-94页.
    [59]叶德培编著.测量不确定度.第一版.北京:国防工业出版社,1996.
    [60]肖明耀,康金玉译.测量不确定度表达指南.第一版.北京:中国计量出版社,1994:3-4页.
    [61] Guenther G., Green J. Improved depth selection in bathymetric swath survey (BS3)combined offline processing (COP) algorithm. National Oceanic and AtmosphericAdministration, Technical Report OTES-10, Department of Commerce, Rockvill, MD.
    [62] Ware C., Knight W., Wells D. Memory intensive statistical algorithms for multibeambathymetric data. Computers and Geosciences.1991,17(7):985-993P.
    [63] Shaw S., Arnold J. Automated Error Detection in Multibeam Bathymetry Data.OCEAN,IEEE,1993:89-94P.
    [64] Eeg J. On the identification of spikes in soundings. International HydrographicReview.1995, LXXⅡ(1):33-41P.
    [65] Mitchell N.C. Processing and analysis of Simrad multibeam sonar data. MarineGeophysical Researches.1996,18:729-739P.
    [66] Du Z., Wells D.E., Mayer L.A. An approach to automatic detection of outliers inmultibeam echo sounding data. Hydrographic Journal,1996,79:19-25P.
    [67] Bourillet J F, Edy C, Rambert F, et al. Swath mapping system processing: bathymetryand cartography. Marine Geophysical Researches.1996,18:487-506P.
    [68] Bisquay H., Freulon X., De Fouquet C, et al. Multibeam data cleaning for hydrographyusing geostatistics. OCEANS '98Conference Proceedings.1998:1135-1143P.
    [69] Canepa G., Bergem O. Testing a new algorithm for automatic processing ofbathymetric data. Proc. MTS/IEEE OCEANS’98.1998:313–317P.
    [70] Hou T., Huff L.C., Mayer L. Automatic detection of outliers in multibeam echosounding data. Proceeding of the US Hydro2001Conference, The HydrographicSociety of America, Norfolk, VA.2001:1-12P.
    [71] Mann M., Agathoklis P., Antoniou A. Automatic outlier detection in multibeam datausing median filtering.2001IEEE Pacific Rim Conference on Communications,Computers and Signal Processing.2001,2:690-693P.
    [72] Calder B. Automatic statistical processing of multibeam echosounder data. Int. Hydro.Review.2003,4(Ⅰ).
    [73] Debese N. Multibeam echosounder data cleaning through an adaptive surface-basedapproach. U.S. Hydrographic Conference. Norfolk, Virginia.2007.
    [74] Bj rke J.T., Nilsen S. Fast trend extraction and identification of spikes in bathymetricdata. Computers&Geosciences.2009,35:1061–1071P.
    [75]阳凡林,刘经南,赵建虎.多波束测深数据的异常检测和滤波.武汉大学学报·信息科学版.2004,29(1):80-83页.
    [76]阳凡林.多波束和侧扫声纳数据融合及其在海底底质分类中的应用.武汉大学博士学位论文.2003:51-52页.
    [77]赵建虎,刘经南编著.多波束测深及图像数据处理.第一版.武汉:武汉大学出版社,2008:207-209页.
    [78]黄谟涛,翟国君,王瑞,等.海洋测量中异常数据的定位研究.海洋测绘.1999,(5):10-19页.
    [79]宋玲玲.多波束测量数据预处理研究.南京航空航天大学硕士学位论文.2007:36-42页.
    [80]黄贤源,翟国君,隋立芬,等. LS-SVM算法中优化训练样本对测深异常值剔除的影响.测绘学报.2011,40(1):22-27页.
    [81]董江,任立生.基于趋势面的多波束测深数据滤波方法.海洋测绘.2007,27(6):25-28页.
    [82]孙岚,王海栋,余成道,等.多波束测深数据异常值检测算法比较.海洋测绘.2009,29(5):57-60页.
    [83] Dan Lu, Haisen Li, Yukuo Wei, Tian Zhou. Automatic Outlier Detection in MultibeamBathymetric Data Using Robust LTS Estimation[C]. The3rd International Congress onImage and Signal Processing (CISP'10).2010,9:4032-4036P.
    [84]陆丹,李海森,魏玉阔,等.基于截断最小二乘估计的多波束异常测深值剔除方法.大地测量与地球动力学.2012,32(1):89-93页.
    [85] Calder B., Mayer L.A. Robust automatic multi-beam bathymetric processing. Proc.U.S. Hydro. Conf.2001. Norfolk.2001.
    [86] Calder B., Smith S. A time comparison of computer-assisted and manual bathymetricprocessing. Int. Hydro. Review.2004,5:10-23P.
    [87] Calder B., Mayer L.A. Automatic processing of high-rate, high-density multibeamechosounder data. Geochemistry Geophysics Geosystems.2003,4(6):article1048.
    [88] Calder B. On the uncertainty of archive hydrographic data sets. IEEE Journal ofOceanic Engineering.2006,31(2):249-265P.
    [89] Calder B., Wells D. CUBE user’s manual. Version1.13. Technical report, Center forCoastal and Ocean Mapping and NOAA/UNH Joint Hydrographic Center, Universityof New Hampshire.2007.
    [90] Calder B., Rice G. Design and Implementation of an Extensible Variable ResolutionBathymetric Estimator. PROC. U.S. HYDRO. CONF.2011.
    [91] CARIS. HIPS and SIPS7.1User’s Guide. Fredericton, NB: Universal System Ltdp,2011.
    [92] LCDR Aluizio Maciel de Oliveira Junior, CDR Izabel King Jeck. MultibeamProcessing for Nautical Charts (Using CUBE and “Surface Filter” to enhancemultibeam processing). INTERNATIONAL HYDROGRAPHIC REVIEW.2009.
    [93] Duncan Mallace, Paul Robertson. Alternative use of CUBE; how to fit a square peg ina round hole.
    [94]王德刚,叶银灿. CUBE算法及其在多波束数据处理中的应用.海洋学研究.2008,26(2):82-88页.
    [95]黄辰虎,陆秀平,侯世喜,等.利用CUBE算法剔除多波束测深粗差研究.海洋测绘.2010,30(3):1-5页.
    [96]贾帅东,张立华,曹鸿博.基于CUBE算法的多波束水深异常值剔除.测绘科学.2010,35:57-59页.
    [97]王海栋,柴洪洲.基于CUBE算法的多波束测深数据自动处理研究.海洋通报.2011,30(3):246-251页.
    [98] Fritsch D. Three-dimensional geographic information system: status and prospects.International Archives of Photogrammetry and Remote Sensing. Vienna,1996,XXXI(B3):215-221P.
    [99]李四海.三维可视化技术在海底环境探测中的应用.海洋测绘.2003,23(4):29-32页.
    [100]军李,滕惠忠.海底三维可视化技术及应用.海洋测绘.2004,24(4):44-47页.
    [101]林勇,郭建忠,魏海平,等. OpenGL技术及地形三维可视化实现.海洋测绘.2006,26(3):68-74页.
    [102]马劲松,徐寿成,贾培宏,等.数字海洋虚拟水下数字地形实现的关键技术.海洋测绘.2007,27(3):48-51页.
    [103]贾俊涛,翟京生,孟婵媛,等.基于海量多波束数据的海底地形模型的构建与可视化.测绘科学技术学报.2008,25(4):255-259页.
    [104]陆丹,李海森,魏玉阔,等.多波束测深系统中的海底地形可视化技术研究.仪器仪表学报.2012,33(2):450-456页.
    [105] Dan Lu, Haisen Li, Yukuo Wei, et al. An improved merging algorithm for Delaunaymeshing on3D visualization multibeam bathymetric data. Proceeding of2010IEEEInternational Conference on Information and Automation.2010:1171-1176P.
    [106] Jerzy D., Marek M., Andrzej S.3D visualization of seabed from multibeam sonarrecords. Gdansk University of Technology.2001.
    [107] Dentzman R.C. Integrated ocean observing systems: the role of seafloor mappingtechnologies. OCEANS’02MTS/IEEE.2002,3:1695-1704P.
    [108] McCann M.P. Using GeoVRML for3D oceanographic data visualizations. Web3D’04Proceedings of the ninth international conference on3D Web technology.ISBN:1-58113-845-8.2004:15-21P.
    [109] Castellani U., Fusiello A., Murino V., et al. A complete system for on-line3Dmodelling from acoustic images. Signal Processing: Image Communication.2005,20:832–852P.
    [110] Miller C.L., Laflamme R.A. The digital terrain model--theory and application.Photogrammetric Engineering.1958,24:433-442P.
    [111] Fowler R.J., Little J.J. Automatic extraction of irregular network digital terrain models.Computer Graphics.1979,13(2):199-207P.
    [112] Freeman T.G. Calculating catchment area with divergent flow based on a regular grid.Computer&Geosciences.1991,17(3):413-422P.
    [113] Kumler M.P. An intensive comparison of triangulated irregular networks (TINs) anddigital elevation models (DEM). Cartographica.1994,31:1-9P.
    [114] Florinsky I.V., Kuryakova G.A. Determination of grid size for digital terrain modelingin landscape investigations-exemplified by soil moisture distribution at a mirco-scale.Int J Geographical Information Science.2000,14(8):815-832P.
    [115]贾俊涛,翟京生,谭冀川.海底地形数据的格网DEM内插方法.海洋测绘.2003,23(6):24-26页.
    [116]高金耀,金翔龙,吴自银.多波束数据的海底数字地形模型构建.海洋通报.2003,22(1):30-38页.
    [117]马建林,金菁,来向华.多波束测深海底数字地形模型的建立.海洋测绘.2005,25(5):15-17页.
    [118]孙岚,刘雁春,李明叁.基于多波束数据的海底地形建模技术.海洋测绘.2009,29(1):39-41页.
    [119]陈友元.便携式多波束测深仪实时测控与数据可视化技术研究.哈尔滨工程大学硕士论文.2005:21-22页.
    [120]沈彤茜.多波束系统交互式数据处理软件设计与实现.哈尔滨工程大学硕士论文.2010:25-27页.
    [121]朱瑞龙.小型化多波束测深系统综合显控软件.哈尔滨工程大学硕士论文.2011:52-56页.
    [122]高金耀,陶春辉,吴自银,等.多波束海底地形电子成图系统MBChart的技术实现.2000年中国地球物理学会年刊——中国地球物理学会第十六届年会论文集.2000:231页.
    [123]吴自银,高金耀,方银霞,等.海底地形成图子系统MBMap的设计及特点.海洋通报.2002,21(1):69-79页.
    [124] Rousseeuw P J.Least median of squares regression[J]. Journal of American StatisticalAssociaton,1984,79:871-880.
    [125] Rousseeuw P J, Driessen K V. Computing LTS regression for large data sets[J]. DataMining and Knowledge Discovery,2006,12(1):29-45.
    [126] Agullo J. New algorithms for computing the least trimmed squares regressionestimator[J]. Computational Statistics&Data Analysis,2001,36:425-439.
    [127] Willems G, Aelst S V. Fast and robust bootstrap for LTS[J]. Computational Statistics&Data Analysis,2005,48:703-715.
    [128]张孝令,刘福升.贝叶斯动态模型及其预测.济南:山东科学技术出版社,1992.
    [129]王海栋.多波束系统测深异常处理理论与方法研究.解放军信息工程大学硕士学位论文.2010:24-26页.
    [130]李志林,朱庆.数字高程模型.武汉:武汉测绘科技大学出版社,2000.
    [131]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法.北京:科学出版社,2005.
    [132] PIEGL L A, R.A.M. Algorithm and Data Structure for Triangulation MultiplyConnectted Ploygonal Domains. Computer&Graphics.1993,17(5):563-574P.
    [133]刘学军,符锌砂.三角网数字地面模型的理论、方法现状及发展.长沙交通学院学报.2001,17(2):24-31页.
    [134] Tsai V.J.D. Delaunay Triangulations in TIN Creation:an Overview and a Linear-timeAlgorithm. Int.J.of GIS.1993,7(6):501-524P.
    [135] Cormen, Thomas H, et al.算法导论.第二版.北京:机械工业出版社,2006:151-152P.
    [136]高飞,聂青,李蕙芳,等. C++与数据结构.第一版.北京:北京理工大学出版社,2006:273-274P.
    [137] Peter Su, Robert L. S D. A comparison of sequential Delaunay triangulation algorithms.Computaional Geometry.1997,(7):361-385P.
    [138]芮一康,王结臣. Delaunay三角形构网的分治扫描线算法.测绘学报.2007,36(3):358-362页.
    [139]胡金星.高效构建Delaunay三角网数字地形模型算法研究.北京大学学报(自然科学版).2003,39(5):736-741页.
    [140]吴宇晓,张登荣.生成Delaunay三角网的快速合成算法.浙江大学学报(理学版).2004,31(3):343-348页.
    [141] Zalik B. An efficient sweep-line Delaunay triangulation algorithm. Computer-AidedDesign.2005,37:1027–1038P.
    [142] Rineau L., M. Yvinec. A generic software design for Delaunay refinement meshing.Computational Geometry.2007,38:100-110P.
    [143] GRAHAM R.L. An efficient algorithm for determining the convex hull of a finiteplanar set. INFORMATION PROCESSING LETTERS.1972:132-133P.
    [144] CHAND D.R., KAPUR S.S. An Algorithm for Convex Polytopes. Journal of theAssociation for Computing Machinery.1970,17(1):78-86P.
    [145]李海森,陆丹,魏玉阔,等.多波束海底地形等深线快速生成新算法.哈尔滨工程大学学报.2012,33(5):1-6页
    [146] Jones N., Kennard M. Fast algorithm for generating sorted contour strings.Computers and Geosciences.2000,(26):831-837P.
    [147]王涛,刘纪平,毋河海.基于排序预处理的等高线提取算法.测绘学报.2006,35(11):390-394页.
    [148] M R., Y. J, S. H. Tracing boundary contours in a binary image. Image and VisionComputing.2002,(20):125-131P.
    [149]迟宝明.基于GIS的地下水水位等值线图自动生成算法研究.吉林大学学报(地球科学版).2007,37(2):261-265页.
    [150] Van Kreveld M. Efficient Methods for Isoline Extraction from a Digital ElevationModel based on Triangulated Irregular Networks.1994.
    [151]王涛,毋河海,刘纪平.基于区间树索引的等高线提取算法.武汉大学学报·信息科学版.2007,32(2):131-134页.
    [152]谢顺平,田德森.完善等值线追踪的路径栅格法.测绘学报.1995,24(1):52-56页.
    [153]张立华.港口工程水深测量中的不规则区域、任意方向、不等尺度网格法追踪等深线研究.水运工程.2005,(4):9-13页.
    [154]王鹃,洪志全.基于Delaunay三角网的地应力等值线生成算法.计算机应用.2008,28:187-189页.
    [155]吴自银,高金耀,金翔龙.面向海底成图基于DTM边界的等值线充填算法.海洋学报.2002,24(1):65-72页.
    [156]余明辉,万远扬,飞余.一种绘制等值线图的新方法.武汉大学学报(工学版).2006,39(3):52-54页.
    [157]顾滨兵,杨兆海,高宇,等.基于网格序列法和端点量化的等值线生成算法.吉林大学学报(信息科学版).2010,28(1):89-94页.
    [158]周培德.计算几何——算法分析与设计.北京:清华大学出版社,1999.
    [159]韩丽娜,耿国华.使用多段Bezie曲线模型的地质等值线光滑算法.计算机工程与科学.2010,32(11):63-65页.
    [160] Watt A.3D计算机图形学.北京:机械工业出版社,2005.
    [161]苗润忠.光滑的等值线生成算法.长春理工大学学报.2004,27(1):16-18页.
    [162]侯凤贞,庄建军,宁新宝.基于构型表的等值线绘制算法及程序实现.南京大学学报(自然科学).2008,44(4):371-378页.
    [163]潘日晶.满足数据点切向约束的二次B样条插值曲线.计算机学报.2007,30(12):2132-2141页.
    [164]潘日晶,姚志强.基于动态参数化的二次B样条插值曲线.计算机学报.2005,28(3):334-342页.
    [165]唐艳红.海洋环境信息等值线自动绘制方法研究.哈尔滨工程大学硕士学位论文,2007:36-39页.
    [166]王锋堂,宫辉力,赵文吉.地下水水位等值线数值的计算方法及其机助制图.首都师范大学学报(自然科学版).2004,25(1):85-89页.
    [167]卢迪,李大辉,吴海涛.计算机图形学原理及应用.第一版.北京:国防工业出版社.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700