用户名: 密码: 验证码:
二冲程煤油发动机性能数值模拟与喷油控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油的闪点低,挥发性高,易着火,给运输和使用造成许多不便。由于一些军事背景的特种车辆需要采用具有低挥发性的单一燃料覆盖所有的车辆和设备,提高安全性,减小后勤供应压力,尽量使多种燃料的不同设备的数量减至最低,当今世界上某些以活塞式汽油发动机为动力装置的特种车辆,部分已经使用以煤油为燃料的替代燃料。然而与国外同类技术相比,国内煤油发动机技术还比较落后,自主研发煤油发动机、逐步实现国产化,具有重要的研究价值和意义。
     本文根据某国防预研项目要求,主要进行了原型机试验数据的获取、煤油发动机工作循环数值模拟的研究、喷油控制模型及喷油控制策略的研究,以及燃油喷射电控系统及喷油标定系统的研制等,主要完成的工作和创新如下:
     (1)为了获取发动机数值建模、平均值建模和模型验证所需要的主要试验数据,基于LabVIEW软件平台开发了发动机数据采集系统,进行了台架测试试验,获取了发动机缸压等重要实验数据,并对原型发动机的平均机械损失压力进行了计算;
     (2)建立了煤油发动机工作循环数值模型,利用GT-Power软件进行了数值仿真计算;通过改变模型中的压缩比、空燃比、点火提前角、进气压力、进气温度等主要工作参数对发动机进行数值计算,分析主要结构参数和调整参数对煤油发动机性能及爆震特性的影响,研究煤油发动机性能参数的变化规律,为煤油发动机的参数优化匹配打下理论基础;根据各工况的标定策略,利用数值计算模型计算出煤油发动机不同工况的空燃比和初始喷油MAP图,减少了空燃比及喷油MAP图标定的工作量,缩短了研制电控喷油系统的时间,大大提高了工作效率;
     (3)采用机理建模和试验建模相结合的方法建立了二冲程煤油发动机平均值模型,进一步建立了煤油二冲程发动机喷油控制模型,提出了瞬态工况采用油膜补偿控制策略,便于对稳态工况和瞬态工况的喷油进行精确控制;建立了线性变参数状态空间模型以及稳态工况和瞬态工况的喷油脉宽控制模型,对稳态工况和瞬态工况喷油控制进行了仿真验证。仿真结果表明,基于线性变参数状态空间模型的喷油控制策略能够满足控制精度的需要,为煤油发动机控制系统的设计提供了理论依据;
     (4)为了实现对煤油发动机的精确喷油控制,基于Freescale 16位嵌入式芯片研制了具有一定抗电磁干扰能力、自保护能力、稳定可靠的煤油发动机喷油电控单元,包括硬件设计和控制软件的研发;为了实时监控喷油电控单元的内部数据信息,基于Visual C++6.0平台开发了上位机监控软件和发动机标定软件,实现在线读取、显示、修改喷油电控单元中的MAP图以及MAP图的保存和离线分析等功能;
     (5)完成了发动机喷油控制及标定半物理仿真试验。仿真试验表明,所研究的喷油电控单元性能满足控制要求,电控单元的抗干扰能力较强,能在一定的干扰环境下正常可靠工作,喷油标定系统功能强大、工作可靠;
     (6)完成了原型机喷油电控单元发动机台架试验。试验表明,喷油电控单元能够满足发动机起动工况、怠速工况、急加减速工况和稳定工况等各种控制要求,所研制的喷油电控单元运行良好,电控单元软、硬件稳定可靠,抗干扰能力较强;
     对升级后的煤油发动机喷油电控单元进行了实车台架试验。试验表明,利用数值优化计算出的煤油初始MAP图数据能满足发动机稳定运行要求;基于喷油模型的控制策略能满足煤油发动机的稳态及瞬态工况的控制要求,控制效果良好;
     同时台架试验结果表明,替换煤油燃料后,由于混合气热值减小、雾化效果变差等原因,煤油发动机动力性有所下降。
Due to the low viscosity, low flash point, high volatility and easily firing, the inconvenience of gasoline appears in its transportation and usage. With the martial background, more and more vehicles and instruments are required for low volatile fuel as a single source in order to improve the safety, reduce the pressure of logistics support and minimize the number of instruments which use more than one kind of fuel. Nowadays, some gasoline engines installed on special vehicles partially use kerosene as a substitute fuel. Compared with the high technology in foreign countries, the Chinese kerosene engine technology gets behind in the international competition. So it needs far more researches and studies to apply the kerosene engines on vehicles, to keep engine running smoothly and gradually make the engine by ourselves in China.
     According to the requirements of some national deference pre-research project, the paper mainly included the data procurement from prototype engine, the simulation of kerosene engine working cycle numerical model, the research of modeling and controlling of fuel-injection system and the design of fuel-injection control system and fuel calibration system. And the mainly accomplished work and innovations are as follows:
     (1) In order to get the important testing data needed by the validation of engine numeric model and the mean value model, the engine data-acquisition system was built up based on the LabVIEW. Through the engine bench-test, many key data such as the pressure data within the combustion chamber were obtained. And then the mean mechanical-loss pressure of the prototype engine was figured out.
     (2) The numeric model of kerosene engine was built in the paper. The numeric simulation calculation was done based on the GT-Power Software. Through changing the compression ratio, air-fuel ratio, advance angle of ignition, intake pressure and temperature, a series of numeric simulations were accomplished. The paper analyzed the kerosene engine performances and knock characteristics in the different configurations and parameters. The variable law of the performance of kerosene engine was studied and theoretical basis for the kerosene was proposed in the parameters optimizing match.
     Due to the calibration strategy within the different working situations, the numeric simulation was applied, the air-fuel ratios within the different working situations were got and the kerosene engine initial fuel-injection MAP was figured out. So the period of the design of electric fuel-injection controller was reduced and thereby the work efficiency was highly improved.
     (3) Based on the mechanism modeling and testing modeling methods, the mean value model of two-stroke kerosene engine was suggested. Meanwhile the fuel-injection control model of two-stroke kerosene engine was also built up. In order to accurately control of the fuel-injection in both the stable state and transient state, the oil membrane compensation control strategy was introduced. In the paper, the linear variable parameter state-space model and the fuel-injection impulse width model in both the stable state and transient state were proposed. And the simulation validation was applied on the control of fuel injection in these states. The simulation results show that the fuel-injection control based on the linear variable parameter state-space model is able to meet the accurate controlling requirements, so the strong theoretical basis is supplied in the design of kerosene engine control system.
     (4) In order to achieve the accurate fuel injection in kerosene engine, the kerosene engine fuel-injection controller was designed based on the Freescale 16 embed microcontroller including the design of hardware circuit and control software. The designed controller has many advantages such as the ability of anti-electromagnetic interference, self-protection and running stably. In order to monitor the controller data in-time, the computer monitor software and engine calibration software were designed based on the Visual C++6.0. This software could read, display and amend the data of fuel-injection in the MAP and also save the data and analyze after tests.
     (5) The engine half-physical simulation test was accomplished. The simulation results show that the designed fuel-injection electric control unit can cover the requirements of engine performance. The electric control unit has high ability to resist the electromagnetic interference. Also the electric control unit is able to work stably in certain electromagnetic interference environment. And the fuel-injection calibration system also has strong functions and works stably.
     (6) The prototype fuel-injection electric control unit was tested on the engine testing board. And the test shows that this electric control unit could satisfy many work states such as start, idle, rapid speed up and stable working conditions. The designed electric control unit could work stably and the hardware and software of electric control unit are also well performed with high ability of anti-electromagnetic interference.
     The updated fuel-injection electric control unit was tested on the real engine testing board. And the testing results shows that the initial kerosene MAP from numeric optimizing calculation could be well performed in the stable-state running of the kerosene engine. The control strategy of fuel-injection model could satisfy the engine testing controlling requirements in both the stable state and transient state with good control performance.
     Meanwhile, the testing results shows that when the kerosene was applied in the test the performance of power was declined a bit due to the heat value of the mixture decreases, the atomization effects of the fuel become worse, and so on.
引文
[1] Geoffrey CATHCART, Gavin DICKSON, John TUBB and Bob SCHMIDT. Development of Lightweight 2-Stroke & 4-Stroke Heavy Fuel UAV Engines. Orbital Corporation, Australia. 2006.
    [2] Geoffrey CATHCART, Gavin DICKSON, Steven AHERN. The Application of Air-Assist Direct Injection for Spark-ignited Heavy Fuel 2-Stroke and 4-Stroke Engines. Orbital Corporation, Australia. SAE Paper 2005-32-0065.
    [3] H.φ.杜博夫金[苏]等.喷气燃料性能手册[M].北京:航空工业出版社, 1990.
    [4]高孝洪.内燃机工作过程数值计算[M].北京:国防工业出版社, 1986.
    [5]林杰伦.内燃机工作过程数值计算[M].西安:西安交通大学出版社, 1986.
    [6]刘永长.内燃机工作过程模拟[M].武汉:华中理工大学出版社, 1996.
    [7]朱访君,吴坚.内燃机工作过程数值计算及其优化[M].北京:国防工业出版社, 1997.
    [8] R.S. Benson, Clarendon Press, Oxford. The Thermodynamics and Gas Dynamics of Combustion Engines. ISBN 0-198562101, 1982: 53-58.
    [9]杨光升等.柴油机测试技术[M].北京:国防工业出版社, 1988, 1-259.
    [10]八田桂三等.内燃机测试手册[M].北京:机械工业出版社, 1987, 1-178.
    [11]杨超.内燃机车测试技术[M].北京:中国铁道出版社, 1989, 1-235.
    [12]严兆大.内燃机测试技术[M].浙江大学出版社, 1993.
    [13]倪计民.汽车内燃机试验技术[M].同济大学出版社, 1998.
    [14] Mpbell, T. Ren, Z. Data Acquisition and Control of a Medium Speed diesel Engine Using LabVIEW. 4th ASPACON Conf.Singapore, Aug 1993, 26-28.
    [15]高观,刘急编译.内燃机测量技术(续集)[M].北京:机械工业出版社, 1982, 11-56.
    [16]内燃机台架性能试验方法GB 1105.02-87.中华人民共和国国家标准.
    [17] A.C.奥尔林.发动机工作过程计算[M].北京:中国工业出版社, 1957: 2-5.
    [18]沈颖刚,王宇琳,郑伟等.内燃机燃烧过程数值模拟技术发展概况[J].拖拉机与农用运输车, 2004(01): 7-9.
    [19]王灵敏,宋希庚,薛东新.汽油机工作过程的数值模拟[J].小型内燃机与摩托车, 2001, 30(05): 14-17.
    [20]王锡斌,蒋德明,董学尧.内燃机工作过程数值模拟中的CFD[J].拖拉机与农用运输车, 2002 (04): 32-34.
    [21]王志程,黄荣华,王必等.基于CAD/CAM/CFD的发动机气道研究[J].内燃机工程,2002, (03): 26-29.
    [22]姚军.六缸增压发动机仿真程序的研究.硕士学位论文.北京理工大学, 1985. 1-27.
    [23]顾宏中.内燃机中的气体流动及其数值分析[M].国防工业出版社, 1985.
    [24]姚小刚.用于微型计算机的四缸机循环模拟程序研究.清华大学硕士学位论文, 1984. 1-20.
    [25]蒋炎坤,钟毅芳,罗马吉等.二冲程发动机换气过程数理模型研究的现状与发展[J].小型内燃机, 2000, (04): 9-13.
    [26]项里程,帅石金,王建昕.电喷汽油机瞬态加速工作过程的数值模拟[J].车用发动机. 2002(04): 30-33.
    [27]李应全.摩托车发动机数值模拟分析与研究. [硕士学位论文],重庆:重庆大学, 2004.
    [28]刘金玉.郑广勇,李康. GT-Power在发动机开发中的应用.第一汽车集团公司技术中心.
    [29]韩爱民,蔺鑫峰等.基于GT-Power的BN6V87QE汽油机性能优化仿真[J].北京工业大学学报. 2007, 33(06): 617-621.
    [30]王建昕,帅金石,许元默. EQ491电喷发动机进排气系统的匹配优化计算[J].车用发动机2000. 6.
    [31]张小燕.应用GT-Power进行发动机进气系统噪声仿真.长安汽车工程研究院. CDAJ-China中国用户论文集. 2007.
    [32]丁万龙,严清梅等. GT-Power在排气系统开发中的应用. CDAJ-China中国用户论文集. 2009.
    [33]王兴海,谢程宁,宁智.基于GT-Power的进气节流EGR系统对柴油机性能影响的分析[J].内燃机. 2007(04): 17-20.
    [34]么居标,吴斌,周大森.基于神经网络的LPG电喷发动机过渡工况空燃比仿真控制[J].北京工业大学学报. 2009, 35(3): 359-364.
    [35]胡亚楠.捷达ATK发动机燃烧乙醇汽油混合燃料工作过程数值模拟分析. [硕士学位论文],哈尔滨:东北林业大学, 2007.
    [36]韩小强. CA4102天然气发动机仿真优化设计. [硕士学位论文],吉林:吉林大学, 2007.
    [37]刘宇.基于GT_POWER的汽油机仿真及优化设计. [硕士学位论文],吉林:吉林大学, 2006.
    [38]刘艳.电控CNG发动机掺氢燃烧性能研究. [硕士学位论文],北京:北京交通大学, 2006.
    [39]温苗苗. CNG发动机工作过程数值模拟. [硕士学位论文],武汉:武汉理工大学, 2004.
    [40]王煜.低热值气体燃料发动机性能研究. [硕士学位论文],北京:北京交通大学, 2008.
    [41]曾春荣. DA465增压发动机模拟计算及性能预测. [硕士学位论文],哈尔滨:哈尔滨工程大学, 2005.
    [42]张宗杰.动力机械电子控制[M].武汉:华中科技大学出版社, 2004.
    [43]孟嗣宗,郭少平,张文海.发动机精确空燃比控制方法[J].内燃机工程, 1999, (2): 70-75.
    [44]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社, 1998: 73-84.
    [45]黎苏,黎晓鹰,黎志勤.汽车发动机动态过程及其控制[M].北京:人民交通出版社, 2008.8.
    [46]魏胜锋,王绍銧,张云龙等.发动机实时模拟系统中的发动机模型及其应用.内燃机工程, 2002, 24(6): 23-27.
    [47]孙建波.船舶柴油主推进装置及其控制系统的建模与仿真研究. [博士学位论文],大连海事大学, 2007.
    [48] Krieger R. B., Booy R. R., Myers P. S., et al. Simulation of a crankcase scavenged, two-stroke, SI engine and comparisons with experimental data. SAE 690135.
    [49] Streit E. E., Borman G. L. Mathematical simulation of a large turbocharged two-stroke diesel engine. SAE 710176.
    [50]钱耀义,罗滇生,寿伟义.二冲程汽油机气体流动及扫气品质的数值计算.内燃机学报2000, 18(1): 44-47.
    [51]张伟,陈辉.基于Matlab/Simulink的二冲程船用主机数值仿真.交通与计算机, 2002, 20(6): 63-66.
    [52] Aquino C. F. Transient A/F control characteristics of the 5 liter central fuel injection engine. SAE Paper 810494.
    [53] Woermann R J. Hardware in the loop simulator for test and development of automotive control units. SAE, 961019, 1996.
    [54] Geiger I. Real-time simulation of gasoline engines-a development tool for a new exhaust emission concept. SAE, 901537, 1990.
    [55] Ivan Arsie, Cesare Pianese. A computer code for SI engine control and powertrain simulation. SAE Paper 2000-01-0938, 2000.
    [56] E. Hendricks, S. C. Sorenson. Mean value modeling of spark ignition engines, SAE Paper, 900616, 1990: 1359-1373.
    [57] Elbert Hendricks, Thomas Vesterholm. The analysis of mean value SI engine models. SAE Paper, 920682, 1396-1414.
    [58] E. Hendricks, S. C. Sorenson. SI engine controls and mean value engine modeling. SAE Technical Paper Number 910258, 1991.
    [59] D. Cho and J. K. Hedrick. Automotive powertrain modeling for control. Journal of Dynamic Systems, Measurement, and Control, 1989, 111:568-576.
    [60] Moskwa J. J., Hedrick J. K. Automotive engine modeling for real time control application. Proc. 1987 Amer. Contr. Conf., 1987, 1:341-346.
    [61]郭春梅.点燃式发动机建模与空燃比控制策略的研究. [硕士学位论文],天津:天津大学, 2003.
    [62] E. Hendricks. The analysis of mean value SI engine mode. SAE Paper 920682.
    [63]鹿笑冬,欧阳明高,白露.用于发动机控制模型的基于循环的平均值离散建模方法[J].内燃机学报, 2001, 19(1):80-83.
    [64] Laimbock F.J. The potential of small loop-scavenged spark-ignition single cylinder two-stroke engine. SAE, 910675.
    [65] R. Addoms. Correlation of two stroke“two volume”scavenging models with test data. SAE, 2000-01-3071.
    [66] Callahan B.J., Kee R.J., Mccartan C.D., et al. 13 simulation of dynamic operation of a single-cylinder two-stroke engine. SAE, 2002-32-1782.
    [67] Blair G. P., Hill B. W., Miller A.J., et al. Reduction of fuel consumption of a spark-ignition two-stroke cycle engine. SAE: 830093.
    [68] Van Leersum J., Jan Williams Tuning. A numerical model of a high performance two-stroke engine. Applied Numerical Mathematics, 1998, 27(1):83-108.
    [69] Merker G.P., Gerstle M. Evaluation on two stroke engines scavenging models. SAE: 970358.
    [70] E. Hendricks. Mean value modeling of large turbocharged two-stroke diesel engines. SAE Paper 890564, 986-998.
    [71]孙建波,郭晨.大型低速二冲程柴油机动力装置的准稳态仿真.内燃机学报, 2006, 24(4):351-356.
    [72] E.Hendricks, A.Chevalier, M.Jensen.Modeling of the intake manifold filling dynamics, SAE Paper, 960037, 122-146.
    [73] M Muller, etc. Mean Value Modelling of a Turbocharged SI Engine, SAE 980784.
    [74] Michael Fons, etc. Mean Value Engine Modelling of an SI Engine with EGR. SAE 1999-01-0909.
    [75] J D Russell. On Automotive Engine Intake Mainifold Dynamic Modeling, Estimation, and Control. Doctor Dissertation, Ohio State University, USA, 2000.
    [76] Paljoo Yoon, Myoungho Sunwoo. A nonlinear dynamic modeling of SI engine for controller design. Int. J. of Vehicle Design, 2001, 26(2/3): 277297.
    [77]王海燕,任光,张均东.船用大型低速二冲程柴油机的动态模型.内燃机学报, 2006,24(5):452-458.
    [78]王海燕,张均东.大型低速柴油机线性变参数状态空间模型.内燃机学报, 2006, 24(6):543-547.
    [79] Bacon A, Shayer P J. Potential for Engine Control Using Fuel Injection System. SAE Paper 810494, 1981
    [80]刘军山,帅石金.电控汽油喷射发动机瞬态过程空燃比控制.内燃机学报, 2002, 6.
    [81]黎苏,董正身,张旭等.汽油机非稳定加速工况燃烧放热率计算模型的修正[J].内燃机学报, 2008, 18(3): 275-278.
    [82] Aquino C. F. Transient A/F control characteristics of the 5 liter central fuel injection engine. SAE Paper 810494.
    [83]钟祥麟.基于油膜模型的多点喷射汽油机瞬态工况控制研究[D]. [博士学位论文],长春:吉林大学, 2007.
    [84]邹博文.基于模型的汽油机空燃比控制技术研究. [博士学位论文],浙江大学, 2006.
    [85]卓斌,刘启华.车用汽油机燃料喷射与电子控制[M].北京:机械工业出版社, 2001, 7.
    [86]钱耀义.汽车发动机电子控制系统[M].北京:北京理工大学出版社, 2002.
    [87] S. Ouenou-Gamo A. Rachid, M. Ouladsine. A Nonlinear Controller of a Turbocharged Diesel Engine Using Sliding Mode. The 1997 IEEE International Conference on Control Applications, Hartford, CT, 1997: 803-805.
    [88] Mrdjan Jankovic, Miroslava Jankovic, Ilya Kolmanovsky. Robust nonlinear controller for turbocharged diesel engines. The American Control Conference, Philadelphia, Pennsylvania USA, 1998: 1389-1394.
    [89] Mrdjan Jankovic, Miroslava Jankovic, Ilya Kolmanovsky. Constructive lyapunov control design for turbocharged diesel engines. IEEE Transactions on Control System Technology. 2000, 8(2): 288-299.
    [90] Ove F. Storset, Anna G. Stefanopoulou, Roy Smith. Adaptive air estimation for turbocharged diesel engines without exhaust gas recirculation. Journal of Dynamic System, Measurement, and Control. 2004, 126(2004): 633-643.
    [91] Merten Jung, Keith Glover. Control-Oriented Linear Parameter-Varying Modeling of a Turbocharged Diesel Engine. The 2003 IEEE International Conference on Control Applications, 2003: 155-160.
    [92] Merten Jung. Mean-value modeling and robust control of the airpath of a turbocharged diesel engine: (Thesis for Ph.D). UK: University of Cambridge, 2003.
    [93] Shamma J. S. Analysis and design of gain-scheduled control systems [PhD dissertation], Massachusetts Institute of Technology, 1988.
    [94] Shamma J. S., Athans M. Analysis of gain scheduled control for nonlinear plants. IEEE Transactions on Automatic Control, 1990, 35(8): 898-907
    [95] Shamma J. S., Athans M. Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica, 1991, 27(3): 559-564.
    [96] Shamma J.S. Robust stability with time-varying structured uncertainty. IEEE Transaction on Automatic Control, 1994, 39: 714-723.
    [97] J. F. Shamma, J. R. Cloutier. A Linear Parameter-Varying Approach to Gain Scheduled Missile Autopilot Design. In Proc. Amer. Contr. Conf., 1992:1317-1321.
    [98]李春明.汽车发动机燃油喷射技术[M].北京:北京理工大学出版社, 2002.
    [99]曹治碗.汽油机电控燃油喷射系统及其发展趋势(上)(下)[J].汽车电器, 2001(l): 47-50, 2001(2): 51-53.
    [100]于振洲.汽车电子燃油喷射装置[M].人民交通出版社, 1992.
    [101]周云山,于秀敏.汽车电控系统理论与设计[M].北京理工大学出版社, 1999.
    [102]姜卓.汽油机新型ECU的硬件设计与喷油控制策略研究. [博士学位论文],上海交通大学.
    [103]姜卓等,卓斌,段晖辉.汽油机新型电控系统ECU的硬件设计[J].车用发动机, 1999(4): 10-14.
    [104]马成杰. 495汽油机电控系统设计及喷油控制策略研究. [硕士学位论文],浙江大学, 2005.
    [105]李盛成.车用发动机电控单元的开发. [硕士学位论文],吉林:吉林大学, 2005.
    [106]李云鹏.发动机燃油喷射电子控制单元硬件设计. [硕士学位论文],电子科技大学, 2005.
    [107] CodeWarrior? Development Studio 8/16-Bit IDE User’s Guide. Freescale Semiconductor, Inc.
    [108]葛林.电控柴油机标定技术的研究[M].浙江:浙江大学, 2001, 01.
    [109]嵇翠华.电控柴油机标定系统的研制[D].江苏:江苏大学, 2006, 06.
    [110]郭源.电控发动机标定系统软件核心开发及仿真[D].吉林:吉林大学, 2007, 4.
    [111]任明.电控发动机自动标定系统研究与实现[D].湖北:武汉理工大学, 2005, 3.
    [112]孙俊. 495电喷汽油机标定系统设计及试验研究[D].浙江:浙江大学, 2005,01.
    [113] A.L.Cederquist, etal. The Microcomputer Based Engine Control System or the IIEC-2 Concept car. SAE Paper 790508.
    [114] Kazuhiro Higashiyama. Nissan’Present and Future Electronic Concentrated Engine Control system. SAE Paper 860596.
    [115] Mark Guerrier, Paul Cawsey. The Development of Model Based Methodologies for Gasoline ICEngine Calibration. SAE TECHNICAL PAPER SERIES, 2004-01-1466.
    [116]任亮,李进,杨福源等.电控柴油机在线标定系统设计[J].内燃机工程, 2005, 26(2).
    [117]刘娜,胡春明,戴海涛.新型电控发动机开发标定系统的设计与实现[J].小型内燃机与摩托车, 2007 36(1).
    [118]颜伏伍,任明,邹斌等.电控发动机自动标定系统设计[J].武汉理工大学学报, 2004, 26(4).
    [119]李国岫.车用发动机电控系统优化标定方法的研究[J].柴油机设计与制造. 2005, 14(1).
    [120]姜述刚,黄海燕,朱辉等.电控车用汽油机的标定系统和标定实验[J].汽车技术, 1999(2), .
    [121]孙伟,张云龙,袁大宏.基于CAN总线的电控发动机标定系统的研制[J].汽车技术. 2004, (9): 11-14.
    [122]工俊席,冯静.电控发动机标定系统的研发[J].上海:柴汕机设计与制造, 2003(3): 12-16.
    [123]于秀敏,李学民.柴汕机分配泵电控系统的标定[J].吉林大学学报(工学版), 2004, 7(3): 342-347.
    [124]中成公司, EST2002内燃机操控系统使用说明书.
    [125]中成公司, CWF系列电涡流测功器使用说明书.
    [126]雷振山. LabVIEW7 Express实用技术教程[M].北京:中国铁道出版社, 2004.
    [127]马元骥,施润昌.内燃机测试技术[M].浙江大学出版社, 1986.
    [128]马明建,周长城.数据采集与处理技术[M].西安:西安交通大学出版社, 1998.
    [129]史绍熙,苏万华.内燃机示功图误差修正的热力学方法[J].工程热物理学报, 1989, 10(1): 104-108.
    [130]史绍熙,盛宏至.内燃机示功图处理用的三个数字滤波方法[J].内燃机学报, 1986, 4(4): 289-304.
    [131] Stas M J. An universally applicable thermodynamic method for TDC determination. SAE, 2000, (1): 561-563.
    [132] Tazerout M, Le Corre O, Rousseau S. TDC determination in IC engines based on the thermodynamic analysis of the temperature-entropy diagram. SAE, 1999, (1): 1489-1493.
    [133] Amann C A. Cylinder pressure measurement and its use in engine research. SAE, 1985, (2): 67-70.
    [134]刘维馨,李燕宾,史绍熙.柴油机气缸压力测量的一种新的压力信号滤波处理方法[J].内燃机学报, 1992, (1): 13-20.
    [135]侯玉春,黄震等.发动机缸内压力信号频谱分析及滤波方法的研究[J].振动与冲击, 2005, 24(4): 14-17.
    [136]罗福强.内燃机高低压示功图测量数据分析[J].江苏理工大学学报, 1997(5).
    [137]常汉宝,王艳武,安士杰.应用Matlab对柴油机示功图修正方法的研究[J].海军工程大学学报, 2003, 15(3): 27-30.
    [138]吴锋,黄琪等.高速汽油机示功图计算机测量系统研制[J].浙江大学学报(工学版),2002.11.
    [139]王吉华.内燃机数据采集和分析系统的研究[J].内燃机学报, 2009, 17(4): 391-396.
    [140]吴波.内燃机示功图测量与分析技术的发展[J].山东内燃机, 2008(1): 8-10.
    [141] Gamma Technologies. GT-POWER USER'S MANUAL. Version 6.2, 2006.
    [142] Gamma Technologies Inc. GT-Power Engine Simulation Software.Version 6.0.
    [143] GT-Power Tutorial Version 6.0.Gamma Teclmologies.2003.
    [144]蒋德明,夏来庆,袁大宏等.火花点火发动机的燃烧[M].西安:西安交通大学出版社, 1992.
    [145] Douaud A. M., Eyzat P. Four-Octane-Number Method for Predicting the Anti-Knock Behaviour of Fuels and Engines. SAE Paper, 780080, 1978.
    [146] Konig G, Sheppard GW. End-gas autoignition and knock in a spark ignition engine. SAE Paper, 902135, 1990.
    [147] By A, Kempinsky B, Rife JM. Knock in spark ignition engines. SAE Paper, 810147, 1981.
    [148]蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社, 2001.
    [149]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社, 2002.
    [150] MattaviJ N, et al. Engine Improvement through Combustion Modeling. Combustion Modeling in Reciprocating Engines, Plenum Press (New York), 1980.
    [151] Tabaczynski R J, et al. Further Refinement and Validation of a Turbulence Flame Propagation Model for Spark Ignition Engines. Combustion and Flame. 1980, 39: 111-212.
    [152] Mccuiston F D, et al. Validation of a Turbulent Flame Propagation Model for a Spark-Ignition Engine. SAE Paper 770045.
    [153] Hill P G and Daneshyar H. The Structure of Small-Scale Turbulence and its Effect on Combustion in Spark Ignition Engine. Progress in Energy and Combustion Science, 1987, l3: 47-73.
    [154] Lancaster D R. Effects of Engine Variables on Turbulence in a Spark-Ignition Egnine. SAE Paper 760159.
    [155] Hinze J O. Turbulence (Second edition). 1975.
    [156] Belli M, et al. Predicting the Performance and Emissions Characteristics of an Axisymmetril Spark Ignition Engine. SAE Paper 810152.
    [157] Wogn Victor W and Hoult David P. Rapid Distortion Theory Applied to Turbulent Combustion. SAE Paper 7910357.
    [158] Hires S D, et al. The Prediction of Ignition Delay and Combustion Intervals for a Homogeneous Charge, Spark Ignition Engine. SAE Paper 780232.
    [159] Tabaczynski R J. Turbulence and Turbulent Combustion in a Spark Ignition Engine. Progress in Energy and Combustion Science. 1976, 2.
    [160] Rhodes D R and Keck J C. Laminar Burning Speed Measurements of Indolene-Air-Diluent Mixtures at High Pressure and Temperature. SAE Paper 850047.
    [161]马凡华,刘传李,蒋德明.火花点火发动机准维湍流卷吸燃烧模型的适用性研究(1)[J].内燃机学报, 1994, 12(3): 200-213.
    [162]臧成,黄耀杰.高速小型汽油机的准维燃烧模型[J].华中理工大学学报, 1997, 25(10): 30-32.
    [163]李岳林.汽油机多区燃烧模型的建立及应用研究[D].长安大学博士学位论文, 2002.
    [164]臧成.二冲程汽油机工作循环模拟及其应用研究[D].武汉:华中理工大学, 1998.
    [165]刘启华,顾宏中,高宗英.二行程汽油机燃油预混合和喷射过程数值模拟[J].车用发动机, 1997, (1): 1-9.
    [166]水谷幸夫.燃烧がスの化学平衡.内燃机关, 1972, 11(125): 79-86.
    [167]李应全.摩托车发动机数值模拟分析与研究.重庆大学硕士学位论文, 2004.
    [168]宋龙甫,郑国世等. B231发动机性能优化及循环模拟计算[J].内燃机工程, 2006, 27(1): 76-80.
    [169]蒋炎坤,罗马吉,钟毅芳等.二行程发动机换气过程数值模拟的研究[J].车用发动机, 2000(06): 9-12.
    [170]顾宏中.涡轮增压柴油机热力过程模拟计算[M].上海:上海交通大学出版社, 1985.
    [171]周俊杰,邱东,解茂昭.柴油机工作过程数值计算[M].大连:大连理工大学出版社, 1988.
    [172] Sher E. Modeling the Scavenging Process in the Two-Stroke Engine—An Overview. SAE Transaction, 1989, 98(3):648-665.
    [173]毕小平.汽油机燃烧过程的数值计算和实验研究[D].西安交通大学博士学位论文, 1990.
    [174]刘永长.内燃机热力过程模拟[M].北京:机械工业出版社, 2000.12.
    [175]刘济瀛等.中国喷气燃料[M].北京:中国石化出版社, 1991.
    [176]范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术, 2006, 27(2): 187-192.
    [177] Edwards T, Maurice L Q. Surrogate mixtures to represent complex aviation and rocket fuels. Journal of Propulsion and Power, 2001, 17: 461-466.
    [178]张志沛.汽车发动机原理[M].北京:人民交通出版社, 2002.
    [179] Perfonnan Gruden D. Exhaust ernissions and fue1 consurnption of a IC engine operation with lean mixtures[C]. Institution of Mechanical Engineers London Conference Publications, 1979, 177-184.
    [180]于吉超,刘德新,冯洪庆等.稀薄燃烧汽油机爆震爆震特性[J].燃烧科学与技术, 2007, 13(1): 72-75.
    [181]刘峥,王建听.汽车发动机原理教程[M].北京:清华大学出版社. 1998.
    [182]蒋德明.内燃机原理[M].北京:中国农业出版社, 1998.
    [183]王晓薇.点火提前角优化对汽油机工作的影响[J].移动电源与车辆, 2002(2): 35-38.
    [184] Minghui Kao, John J Moskwa. Turbocharged Diesel Engine Modeling for Nonlinear Engine Control and State Estimation [J]. ASME Journal of Dynamic Systerns, Measurement, and Control, 1995,117(1):20-30.
    [185] A Chevalier, M Muller E Hendricks. On the validity of mean value engine models during transient operation. SAE Paper, 2000-01-1261, 2000.
    [186] A. Chevalier, C.W. Vigild, E. Hendricks, Predicting the port air mass flow of SI engines in air/fuel ratio control applications. SAE Paper, 2000-01-0260, 2000.
    [187] Ingram G. A., Franchek M.A. Spark ignition engine torque management. Proceedings of the American Control Conference, Denver, Colorado, 2003, 767-772.
    [188] Manzie C., Watson H.C. A novel approach to disturbance rejection in idle speed control towards reduced idle fuel consumption. Proc. Inst. Mech. Eng., Part D: J. Automobile Engineering, 2003, 217(8):677-690.
    [189] Tohru Takahashi, Takashi Ueno, Akito Yamamoto, et al. A simple engine model for idle speed control. SAE Paper, 850291, 2769-2776.
    [190] Yurkovich S., Simpson M. Crank-angle domain modeling and control for idle speed. SAE Technical Paper Number 970027, 1997, 34-41.
    [191]万冬.小型电控汽油机进气道油膜动态特性的实验研究, [硕士学位论文],天津:天津大学2006.
    [192]吴锋,胡金龙,邹博文.电喷汽油机进气管空气动态模型的仿真与试验研究[J].内燃机工程, 2006, 27(3): 25-28.
    [193] Cook J.A., Powell B.K. Modeling of an internal combustion engine for control analysis. IEEE Control Systems Magazine, 1988, 8(4): 20-26.
    [194]王莉,准均质稀薄燃烧发动机的建模与控制[D], [博士学位论文],天津:天津大学, 2004.
    [195]史宗庄,刘元阁.小型二冲程汽油机的换气系统和换气过程[J].小型内燃机,1999, 28(4):1-9.
    [196]杨光兴,叶盛焱,称善斌.摩托车发动机原理与设计[M].武汉:武汉测绘科技大学出版社, 1993.
    [197] Eiichi Hashimoto, Takumi Tottori, Shukoh Terata.Scavenging performance measurement of high speed two-stroke engine. SAE Paper 850182.
    [198] Lenz U, Schroeder D. Transient Air-Fuel Ratio Control Using Artifitial Intelligence. SAE Paper, 970618.
    [199] Horie K et al. Emission Reduction during Warm - Wetting Fuel Model onthe Fuel Injection Strategy during Engine Starting. SAE Paper, 952478.
    [200] Fulcher S K et al. The Effects of Fuel Automization, Vaporization, and Mixing on the Cold-Start UHC Emission of a Contemporary SI Engine with Intake-Manifold Injection. SAE Paper, 952482.
    [201] Bielaoye P J et al. EuroⅢ/ EuroⅣEmission-A Study of Cold Start and Warm up Phase with a SI Engine. SAE Paper, 1999-01-1073.
    [202] P.J. Shayler and Y.C. Teo, A. Scarisbrick. Fuel Transport Characteristics of Spark Ignition Engines for Transient Fuel Compensation. SAE Paper, 950067.
    [203] Neyachenko I. Method of A/F Control during SI Engine Cold Start. SAE Paper, 981171.
    [204]侯媛彬,汪梅等.系统辨识及其MATLAB仿真[M] .北京:科学出版社,2004.
    [205] Powell B. K., Cook J. A., Grizzle J. W. Modeling and analysis of an inherently multi-rate sampling fuel injected engine idle speed control loop. ASME J. Dyn. Syst., Meas., Contr., 1987, 109: 405-410.
    [206] Cook J. A., Powell B. K. Discrete simplified external linearization and analytical comparison of IC engine families. Proc. 1987 Amer. Contr. Conf., 1987, 1: 326-330.
    [207] Abate M., Barmish B.R., Murillo-Sanchez C., et al. Application of some new tools to robust stability analysis of spark ignition engines: a case study. IEEE Transactions on Control Systems Technology, 1994, 2(1): 22-30.
    [208] Livshiz M., Sanvido D.J., Stiles S.D. Nonlinear engine model for idle speed control. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL, 1994, 2449-2451.
    [209] Powell B. K. A dynamic model for automotive engine control analysis. Proc.18th IEEE Conf. Decision and Control. 1979, 120-126.
    [210] Jingshun Fu, Nobuo Kurihara. Intake air control of SI engine using dead-time compensation.SAE Paper, 2003-01-3267.
    [211] Yuen-Kwok Chin, Francis E. Coata. Engine dynamics: time-based versus crank-angle based. SAE Paper, 860412, 2936-2956.
    [212] Luigi Glielmo, Stefania Santini, Immacolata Cascella. Idle speed control through output feedback stabilization for finite time delay systems. Proceedings of the American Control Conference Chicago, lllinois, 2000, 45-49.
    [213] D. Hrovat, D. Colvin, B. K. Powell. Comment on“application of some new tools to robust stability analysis of spark ignition engines: a case study”. IEEE Transactions on Control Systems Technology, 1998, 6(3):435-436.
    [214]薛定宇,陈阳泉,基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社, 2002.
    [215]陈超,王绍銧,康晓敦.基于Matlab/Simulink的汽油机电控系统仿真.内燃机工程, 2003, 24(5): 62-66.
    [216]朱航,王绍光.电控汽油机进气管道油膜特性参数的标定[J].汽车工程, 2004, 26(2): 127-130.
    [217] CH Onder, HP Geering. Model-based multivariable speed and air-to-fuel ratio control of an SI engine. SAE Paper, 930859.
    [218] MC9S12DP512 Device Guide V01.25. Freescale Semiconductor, Inc.
    [219] Steven F. Barrett, Daniel J. Pack. Embedded Systems—Design and Applicatjions with the 68HC12 and HC12 [M]. Bei jing: Publishing House of Electronics Industy.
    [220]孙同景,陈桂友. Freescale 9S12十六位单片机原理及嵌入式开发技术[M].北京:机械工业出版社, 2008, 7.
    [221] Jonathan W. Valvano.嵌入式微型计算机系统实时接口技术[M].北京:机械工业出版社, 2003.
    [222]马忠梅,籍顺心等.单片机的C语言应用程序设计[M].北京:北京航空航天大学出版社, 2003.
    [223]邵贝贝.单片机嵌入式应用的在线开发方法[M].北京:清华大学出版社, 2004. 10.
    [224]谭浩强. C++程序设计[M].北京:清华大学出版社, 2004.
    [225]秦明华.汽车电器与电子技术[M].北京:北京理工大学出版社, 2003.06.
    [226]王幸之,王雷等.单片机应用系统抗干扰技术[M].北京:北京航空航天大学出版社, 2000.
    [227]余志奇,沈琦. VC6.0环境下GPS差分定位中串口通信的实现[J].信息通信, 2007.No.1: 12-14.
    [228]王承君.自定义串口数据通信协议的分析与设计[J].计算机工程. 2004, 30(24): 192-194.
    [229]谢刚,于佐军,华陈权.多协议串口通讯在监控系统中的应用.工业控制计算机, 2004, No.2: 21-22.
    [230]黄军娜,张波,魏颖等.基于特定协议的串口通信与远程控制的实现[J].微计算机信息, 2006, 11(22): 8-10.
    [231]侯俊杰.深入浅出MFC(第二版)[M].武汉:华中科技大学出版社, 2001.
    [232]姚领田.精通MFC程序设计[M].北京:人民邮电出版社, 2006, 7.
    [233]龚健伟,熊光明. Visual C++/Turbo C串口通信编程实践[M].北京:电子工业出版社, 2004, 10.
    [234]希望图书创作室译. Visual C++ 6.0技术内幕第五版(修订版)[M].北京:北京希望电子出版社, 1999.
    [235]任亮,李进,杨福源等.电控柴油机在线标定系统设计[J].内燃机工程, 2005, 26(2): 5-8.
    [236]刘娜,胡春明,戴海涛.新型电控发动机开发标定系统的设计与实现[J].小型内燃机与摩托车, 2007. 36(1).
    [237]董敬,庄志,常思勤.汽车拖拉机发动机[M].北京:机械工业出版社, 2003. 6.
    [238]黄军娜,张波,魏颖等.基于特定协议的串口通信与远程控制的实现[J].微计算机信息, 2006. 22(11): 8-10.
    [239]伍华健. MATLAB/VC++混合编程方法及其应用[J].微计算机信息. 2007, 23(23): 219-220.
    [240]陈翔,李进文,吴小雅.基于VC与MATLAB的混合编程实现图像的三维显示[J].计算机与网络信息技术, 2006, (2).
    [241]叶文,曲涛,周磊.基于Visual C++和MATLAB的三维图形绘制[J].电脑开发与应用, 2006, 19(10): 41-43.
    [242]邹进贵.利用MFC GridCtrl控件实现对数据的综合维护[J].电脑编程技巧与维护, 2000, (1): 48-51.
    [243]花丽. EXCEL数据的常用访问方式与简单实现[J].电脑知识与技术, 2005: 113-114.
    [244]饶万成. VC++访问Excel的应用技巧[J].计算机现代化, 2007, (4): 64-65.
    [245]刘静华,王永生.最新VC++绘图程序设计技巧与实例教程[M].北京:科学出版社, 2001, 3.
    [246]余鑫,马娟,汪新庆. VC++实现属性数据写入Excel文件方法研究[J].软件导刊, 2007: 94-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700