用户名: 密码: 验证码:
激光微切割技术在常见深部真菌病分子病理诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着骨髓移植,造血干细胞移植以及实质性器官移植等手术的增多,糖皮质激素、免疫抑制剂等药物在临床上的广泛应用,导致深部真菌病发病率呈逐步上升趋势,并且有极高的病死率。烟曲霉和白念珠菌是侵袭性真菌病(invasive fungal disease, IFD)最常见的病原菌。而在国内,孢子丝菌侵袭至皮下导致的孢子丝菌病是我国最常见的皮肤深部真菌病之一。及早诊断和干预是改善深部真菌病预后的前提,但是目前常规诊断方法有一定局限性,造成深部真菌病诊断困难,仅有5.9%-25%的患者在死亡前被确诊为深部真菌病。激光微切割(Laser Cutting Microdissection, LCM)技术的出现和发展,为解决这一临床难题带来契机。本次研究中,我们利用烟曲霉、白念珠菌和申克孢子丝菌感染动物模型,探讨LCM技术联合PCR和巢式PCR (nested PCR, n-PCR)在深部真菌病分子病理诊断中的应用。全文共分三章,各章主要内容简述如下:
     第一章激光微切割在烟曲霉感染小鼠肺模型分子病理诊断中的应用研究
     在本章节中,我们通过鼻吸入法构建了烟曲霉感染小鼠肺部模型。然后将小鼠左肺分成三份,一份培养,并将菌落提取DNA作为阳性对照,一份常规HE,PAS染色,最后一份用1:10000稀释Blankphor荧光染色,分别微切割10-20μm长的菌丝单根和3根各20份,然后提取DNA,联合巢式PCR特异性扩增烟曲霉的18S rRNA区,结果发现单根菌丝敏感度为90%,而3根菌丝敏感度为100%,二者无显著性差异(χ2=0.489,P>0.05);总的敏感度为95%,特异度为95%。较之前的一项LCM联合PCR诊断白鹳侵袭性肺曲霉病(invasive pulmonary aspergillosis, IPA)的研究敏感度高。LCM联合巢式PCR方法在诊断IPA方面敏感度高,特异性好。
     第二章激光微切割在白念珠菌感染小鼠模型分子病理诊断中的应用
     在本章节中,我们通过小鼠尾静脉注射白念珠菌混悬液的方法构建了念珠菌系统感染小鼠肾脏模型。然后取小鼠右肾分成三份,一份培养,提取菌落DNA,做阳性对照,一份常规HE,PAS染色,最后一份用1:10000稀释B1ankphor荧光染色,分别微切割1和5个孢子各30份,然后提取DNA,联合n-PCR特异性扩增白念珠菌的5.8SrRNA及其附近的ITS区,单个孢子标本敏感度83.3%(25/30),5个孢子标本敏感度90%(27/30),二者无显著性统计学差异(χ2=0.71,P)0.05);总敏感度为87.7%,特异度为95%。我们的研究结果表明,通过收集单个孢子即可确诊大部分侵及实质性脏器的侵袭性念珠菌病(invasive Candidiasis, IC)病例。因此LCM联合n-PCR在IC诊断方面快速,灵敏,准确,高效。
     第三章激光微切割在孢子丝菌感染小鼠睾丸模型分子病理诊断中的应用
     在本章节中,我们通过对小鼠左侧睾丸注射孢子丝菌混悬液的方法构建了孢子丝菌感染小鼠睾丸模型。取小鼠左侧睾丸分成2份,一份培养,一份常规HE,PAS染色,分别微切割1和5个孢子各60份,然后提取DNA,分别PCR扩增孢子菌的几丁质合成酶基因和n-PCR扩增ITS2区。在PCR组,单个孢子标本敏感度66.67%(20/30),5个孢子标本敏感度77.67%(23/30),二者之间敏感度无显著性差异(χ2=0.567,P>0.05)。在n-PCR组,单个孢子标本敏感度70.00%(21/30),5个孢子标本敏感度83.33%(25/30)二者之间敏感度无显著性差异(χ2=0.360,P>0.05)。同时,分别比较单个孢子PCR和n-PCR敏感度,以及5个孢子的PCR和n-PCR敏感度,发现均无显著性差异(χ2=1.000,P>0.05,χ2=0.748,P>0.05),特异度为100%。结果说明孢子数量和不同的核酸扩增方法可能会影响到检测敏感度,虽然结果无显著性统计学差异。其后,LCM收集8例孢子丝菌病临床标本中的单个孢子,分别n-PCR和PCR技术检测。其中3例PCR, n-PCR均阳性,而1例仅n-PCR阳性,因此,PCR和n-PCR I临床标本诊断方面的敏感度分别为37.5%和50%。我们认为这可能与甲醛固定以及PAS染色等标本处理方法影响后续DNA扩增有关。因此,LCM联合PCR或n-PCR诊断石蜡包埋,PAS染色的标本,尤其是回顾性分析的病理组织标本,需要进一步优化条件,提高灵敏度。
     综上所述,在基于LCM技术检测IFD的过程中,样本的预处理对检测结果影响较大,而不同的菌丝/孢子数量以及不同的核酸扩增方式,可在一定程度上影响检测结果。因此,通过进一步优化标本处理方法,完善分子分析技术,该技术在深部真菌病的分子病理诊断,尤其是疑难病例诊断方面具有较好的临床应用前景和实用价值。
Invasive fungal disease (IFD) are a growing problem in severely immunocompromised patients suffered from hematologic malignancy, solid organ transplant, hematopoietic stem cell transplant and other critical illness receiving corticosteroids, cyclosporine, and other immunosuppressive treatment. Aspergillus.fumigatus and Candida. albicans is the most common species isolated from patients with IFD. Sporothrix globosa is pathogenic agent of sporotrichosis which is a common subcutaneous infection in China. As fungal species vary in their susceptibility to antimycotic agents, accurate species diagnosis is essential in IA to guide antifungal therapy and improve the prognosis. However, conventional approaches, including microscope, culture and histology, lack efficiency and, sometime inaccuracy in diagnosis. In order to overcome the drawbacks of traditional fungal examination, Laser capture microdissection (LCM) technology has been developed to facilitate diagnosis of IFD. To validate the assays and understand the potential diagnostic utility of LCM in diagnosis of IFD, here, we microdissected and collected hyphal strands or spores directly from tissue of three murine model of IFD, challenged by A.fumigatus, C.albicans and S. globosa respectively, using LCM, and subsequently processed for DNA extraction and PCR/nested PCR-sequencing. The current research was divided into three parts as follows:
     Chapter one:the Application of Laser Microdissection in Molecular Detection and Identification of Aspergillus fumigatus from Murine Model of Acute Invasive Pulmonary Aspergillosis
     Balb/c mice were infected intranasally with1×108CFU/ml of A. fumigatus. After mice were sacrificed, lungs were harvested and divided into three parts. The first part of the specimens was fixed in90%ethanol, subsequently stained with HE and PAS. The second part was cultured on SDA at30℃to morphological identification and extraction of DNA of the A. fumigatus strain for nested PCR (n-PCR) amplification as positive control. The third part was frozen and sectioned. We microdissected and collected Blankophor-stained20-30μm(25.7±3.0μm) length single or three hyphal strands from tissue crysections of murine model of IPA by LCM, subsequently processed for DNA extraction, and amplify the18S rRNA region of A.fumigatus by n-PCR; subsequently, sequencing, and species molecular identification. In single hypha group,18of20microdissected hyphal strands were identified as A. fumigatus.In three hyphae groups, 20of20microdissected hyphal strands were identified as A. fumigatus. The sensitivity of LCM-n-PCR-sequencing in these two group was90%and100%respectively, there was no significant difference between them (χ2=0.489, P)0.05).And totally sensitivity and specificity was95%and95%.The result of our research was more sensitive than the previous report.
     Chapter two:The Application of Laser Microdissection in Molecular Detection and Identification of Candida.albicans from Murine Model of Acute Invasive Candidiasis
     Balb/c mice were infected by inoculation of0.5ml of1×106CFU/ml of C. albicans in the tail vein. After mice were sacrificed, kidney were harvested and divided into three parts for HE/PAS stain, cultured on SDA as positive control, and crysectioned, respectively. We microdissected and collected Blankophor-stained single or five spores from tissue crysections of murine model of IC by LCM, subsequently processed for DNA extraction,and amplify the5.8SrRNA region of C. albicans by n-PCR; subsequently, sequencing, and species molecular identification. In single spore group,25of30microdissected spores were identified as C.albicans.In five spores group,27of30microdissected spores were identified as C. albicans.The sensitivity of LCM-PCR-sequencing in these two group was83.3%and90%respectively, there was no significant different between them (χ2=0.71, P)0.05).And totally sensitivity and specificity was87.7%and95%. The result point to a high sensitivity and specificity of the method in animal mode.
     Chapter three:the Application of Laser Microdissection in Molecular Detection and Identification of Sporothrix globosa from Murine Model of Acute Invasive Sporotrichosis and clinical specimens
     Balb/c mice were intratesticularly infected by inoculation of25μl of1×106CFU/ml of S.globosa in the tail vein. After mice were sacrificed, testicle were harvested and divided into two parts for HE/PAS stain, cultured on SDA as positive control, respectively. We microdissected and collected PAS-stained single or five spores from tissue sections by LCM, subsequently processed for DNA extraction, and amplify Chitin synthase gene I by PCR, and the ITS2region by n-PCR, respectively; subsequently, sequencing, and species molecular identification.In PCR group, single spores subgroup,66.67%(20/30)LCM samples was identified as S.globosa,in five spores subgroup,77.67%(23/30)LCM samples were identified as S.globosa,there was no significant difference between them(χ2=0.567, P)0.05). In n-PCR group, the sensitivity of single spore and five spores were70.00%(21/30)and83.33%(25/30)respectively, there was no significant different between them(x2=0.360, P>0.05).The specificity was100%. Meanwhile,we retrospectively detected the8archive skin specimens of patients with sporotrichosis by LCM.We microdissected1spore on PAS stained specimens and then amplification by PCR/n-PCR.Among the8archive specimens,3were positive by both PCR and n-PCR,1specimen was just positive by n-PCR. The result suggest that pretreatment of sample may play a key role in the diagnosis and detection of IFD by assay of LCM in conjunction with PCR/n-PCR.Otherwise, the amount of hyphae/spores and the different amplification method of DNA could influence the result in some degree.
     In conclusion, we assessed the value of validation of the LCM in conjunction with PCR/n-PCR sequencing method in molecular detection and identification of pathogenic fungi in murine model of IFD. The result pointed to a high sensitivity and specificity of the test in animal model, promising use in the clinically attempts to improve diagnosis of IFD, potentially decreasing the chances of samples contamination or colonization. Moreover, the result of the method concurrently identified the pathogenic fungus to species level which is imperative in association with the selection of sensitive antifungal drug. So, the use of LCM based method could be a powerful tool for development of new assays in diagnosis of IFD.
引文
[1]Pagano L, Caira M, Candoni A, et al. The epidemiology of fungal infections in patients with hematologic malignancies:the SEIFEM-2004 study. Haematologica.2006.91(8):1068-75.
    [2]Steinbach WJ, Marr KA, Anaissie EJ, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect.2012.65(5):453-64.
    [3]Mayr A, Lass-Florl C. Epidemiology and antifungal resistance in invasive Aspergillosis according to primary disease:review of the literature. Eur J Med Res.2011.16(4):153-7.
    [4]Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis.2004.39(3):309-17.
    [5]Montagna MT, Caggiano G, Lovero G, et al. Epidemiology of invasive fungal infections in the intensive care unit:results of a multicenter Italian survey (AURORA Project). Infection.2013
    [6]Neofytos D, Fishman JA, Horn D, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis.2010.12(3):220-9.
    [7]Lu S, Lu C, Zhang J, Hu Y, Li X, Xi L. Chromoblastomycosis in Mainland China:A Systematic Review on Clinical Characteristics. Mycopathologia.2012
    [8]Garnica M, Nucci M, Queiroz-Telles F. Difficult mycoses of the skin: advances in the epidemiology and management of eumycetoma, phaeohyphomycosis and chromoblastomycosis. Curr Opin Infect Dis.2009. 22(6):559-63.
    [9]杜斌,陈德昌,侯百东,刘彤华.3447例尸检病例的深部真菌感染分析.中华医学杂志.1996.(05):33-35.
    [10]De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis.2008.46(12): 1813-21.
    [11]Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol.2011.49(4):1614-6.
    [12]Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay:a meta-analysis. Clin Infect Dis.2006. 42(10):1417-27.
    [13]Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science.1996.274(5289):998-1001.
    [14]Espina V, Heiby M, Pierobon M, Liotta LA. Laser capture microdissection technology. Expert Rev Mol Diagn.2007.7(5):647-57.
    [15]Murray GI. An overview of laser microdissection technologies. Acta Histochem.2007.109(3):171-6.
    [16]Xue J, Hung CY, Yu JJ, Cole GT. Immune response of vaccinated and non-vaccinated mice to Coccidioides posadasii infection. Vaccine. 2005.23(27):3535-44.
    [17]van Driel KG, Boekhout T, Wosten HA, Verkleij AJ, Muller WH. Laser microdissection of fungal septa as visualised by scanning electron microscopy. Fungal Genet Biol.2007.44(6):466-73.
    [18]Olias P, Jacobsen ID, Gruber AD. Fungal species identification from avian lung specimens by single hypha laser microdissection and PCR product sequencing. Med Mycol.2011.49(1):56-61.
    [19]Westwater C, Schofield DA. Laser capture microdissection of Candida albicans from host tissue. Methods Mol Biol.2012.845:397-409.
    [1]Steinbach WJ, Marr KA, Anaissie EJ, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect.2012.65(5):453-64.
    [2]Pagano L, Caira M, Candoni A, et al. The epidemiology of fungal infections in patients with hematologic malignancies:the SEIFEM-2004 study. Haematologica.2006.91(8):1068-75.
    [3]Pagano L, Caira M, Nosari A, et al. Fungal infections in recipients of hematopoietic stem cell transplants:results of the SEIFEM B-2004 study--Sorveglianza Epidemiologica Infezioni Fungine Nelle Emopatie Maligne. Clin Infect Dis.2007.45(9):1161-70.
    [4]Meersseman W, Vandecasteele SJ, Wilmer A, Verbeken E, Peetermans WE, Van Wijngaerden E. Invasive aspergillosis in critically ill patients without malignancy. Am J Respir Crit Care Med.2004.170(6):621-5.
    [5]Fourneret-Vivier A, Lebeau B, Mallaret MR, et al. Hospital-wide prospective mandatory surveillance of invasive aspergillosis in a French teaching hospital (2000-2002). J Hosp Infect.2006.62(1): 22-8.
    [6]Cornillet A, Camus C, Nimubona S, et al. Comparison of epidemiological, clinical, and biological features of invasive aspergillosis in neutropenic and nonneutropenic patients:a 6-year survey. Clin Infect Dis.2006.43(5):577-84.
    [7]Lass-Florl C. In vitro susceptibility testing in Aspergillus species: an update. Future Microbiol.2010.5(5):789-99.
    [8]Sutton DA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol.1999. 37(7):2343-5.
    [9]Kontoyiannis DP, Lewis RE, May GS, Osherov N, Rinaldi MG. Aspergillus nidulans is frequently resistant to amphotericin B. Mycoses.2002. 45(9-10):406-7.
    [10]von EM, Roos N, Schulten R, Hesse M, Zuhlsdorf M, van de Loo J. Pulmonary aspergillosis:early diagnosis improves survival. Respiration.1995.62(6):341-7.
    [11]Greene RE, Schlamm HT, Oestmann JW, et al. Imaging findings in acute invasive pulmonary aspergillosis:clinical significance of the halo sign. Clin Infect Dis.2007.44(3):373-9.
    [12]杜斌,陈德昌,侯百东,刘彤华.3447例尸检病例的深部真菌感染分析.中华医学杂志.1996.(05):33-35.
    [13]刘又宁,佘丹阳,孙铁英等.中国1998年至2007年临床确诊的肺真菌病患者的多中心回顾性调查.中华结核和呼吸杂志.2011.34(2):86-90.
    [14]Mayr A, Lass-Florl C. Epidemiology and antifungal resistance in invasive Aspergillosis according to primary disease:review of the literature. Eur J Med Res.2011.16(4):153-7.
    [15]Bretagne S, Costa JM, Marmorat-Khuong A, et al. Detection of Aspergillus species DNA in bronchoalveolar lavage samples by competitive PCR. J Clin Microbiol.1995.33(5):1164-8.
    [16]Wheat LJ, Walsh TJ. Diagnosis of invasive aspergillosis by galactomannan antigenemia detection using an enzyme immunoassay. Eur J Clin Microbiol Infect Dis.2008.27(4):245-51.
    [17]Aubry A, Porcher R, Bottero J, et al. Occurrence and kinetics of false-positive Aspergillus galactomannan test results following treatment with beta-lactam antibiotics in patients with hematological disorders. J Clin Microbiol.2006.44(2):389-94.
    [18]Surmont I, Stockman W. Gluconate-containing intravenous solutions: another cause of false-positive galactomannan assay reactivity. J Clin Microbiol.2007.45(4):1373.
    [19]Marr KA, Laverdiere M, Gugel A, Leisenring W. Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis.2005.40(12):1762-9.
    [20]Hachem RY, Kontoyiannis DP, Chemaly RF, Jiang Y, Reitzel R, Raad I. Utility of galactomannan enzyme immunoassay and (1,3) beta-D-glucan in diagnosis of invasive fungal infections:low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J Clin Microbiol.2009.47(1):129-33.
    [21]Chamilos G, Luna M, Lewis RE, et al. Invasive fungal infections in patients with hematologic malignancies in a tertiary care cancer center:an autopsy study over a 15-year period (1989-2003). Haematologica.2006.91(7):986-9.
    [22]De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis.2008.46(12): 1813-21.
    [23]Gupta S, Sultenfuss M, Romaguera JE, et al. CT-guided percutaneous lung biopsies in patients with haematologic malignancies and undiagnosed pulmonary lesions. Hematol Oncol.2010.28(2):75-81.
    [24]Tarrand JJ, Lichterfeld M, Warraich I, et al. Diagnosis of invasive septate mold infections. A correlation of microbiological culture and histologic or cytologic examination. Am J Clin Pathol.2003.119(6): 854-8.
    [25]Shah AA, Hazen KC. Diagnostic accuracy of histopathologic and cytopathologic examination of Aspergillus species. Am J Clin Pathol. 2013.139(1):55-61.
    [26]Olias P, Jacobsen ID, Gruber AD. Fungal species identification from avian lung specimens by single hypha laser microdissection and PCR product sequencing. Med Mycol.2011.49(1):56-61.
    [27]Skladny H, Buchheidt D, Baust C, et al. Specific detection of Aspergillus species in blood and bronchoalveolar lavage samples of immunocompromised patients by two-step PCR. J Clin Microbiol.1999. 37(12):3865-71.
    [28]Reinwald M, Spiess B, Heinz WJ, et al. Aspergillus PCR-based investigation of fresh tissue and effusion samples in patients with suspected invasive Aspergillosis enhances diagnostic capabilities. J Clin Microbiol.2013.51(12):4178-85.
    [29]Skladny H, Buchheidt D, Baust C, et al. Specific detection of Aspergillus species in blood and bronchoalveolar lavage samples of immunocompromised patients by two-step PCR. J Clin Microbiol.1999. 37(12):3865-71.
    [30]Lass-Florl C, Griff K, Mayr A, et al. Epidemiology and outcome of infections due to Aspergillus terreus:10-year single centre experience. Br J Haematol.2005.131 (2):201-7.
    [31]Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis.2002.34(7):909-17.
    [32]Singh N, Husain S. Aspergillus infections after lung transplantation: clinical differences in type of transplant and implications, for management. J Heart Lung Transplant.2003.22(3):258-66.
    [33]Orzechowski XM, Pasqualotto AC, Uchoa SMP, Bittencourt SC, Peixoto CJJ, Severo LC. Invasive pulmonary aspergillosis due to a mixed infection caused by Aspergillus flavus and Aspergillus fumigatus. Rev Iberoam Micol.2008.25(3):176-8.
    [1]Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals:analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis.2004.39(3):309-17.
    [2]Montagna MT, Caggiano G, Lovero G, et al. Epidemiology of invasive fungal infections in the intensive care unit:results of a multicenter Italian survey (AURORA Project). Infection.2013
    [3]Lehrnbecher T, Frank C, Engels K, Kriener S, Groll AH, Schwabe D. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect.2010.61(3):259-65.
    [4]Shao PL, Huang LM, Hsueh PR. Recent advances and challenges in the treatment of invasive fungal infections. Int J Antimicrob Agents.2007. 30(6):487-95.
    [5]Neofytos D, Fishman JA, Horn D, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis.2010.12(3):220-9.
    [6]Pittet D, Li N, Woolson RF, Wenzel RP. Microbiological factors influencing the outcome of nosocomial bloodstream infections:a 6-year validated, population-based model. Clin Infect Dis.1997. 24(6):1068-78.
    [7]Groll AH, Shah PM, Mentzel C, Schneider M, Just-Nuebling G, Huebner K. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect.1996.33(1):23-32.
    [8]刘又宁.肺念珠菌感染真的很少见吗?中华结核和呼吸杂志.2011. 34(2):81-82.
    [9]杜斌,陈德昌,侯百东,刘彤华.3447例尸检病例的深部真菌感染分析.中华医学杂志.1996.(05):33-35.
    [10]Wang L, Tong Z, Wang Z, et al. Single-center retrospective study of the incidence of, and risk factors for, non-C. albicans invasive candidiasis in hospitalized patients in China. Med Mycol.2014.52(2): 115-22.
    [11]Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis.1993.17(2):103-9.
    [12]Reiss E, Morrison CJ. Nonculture methods for diagnosis of disseminated candidiasis. Clin Microbiol Rev.1993.6(4):311-23.
    [13]Burgener-Kairuz P, Zuber JP, Jaunin P, Buchman TG, Bille J, Rossier M. Rapid detection and identification of Candida albicans and Torulopsis (Candida) glabrata in clinical specimens by species-specific nested PCR amplification of a cytochrome P-450 lanosterol-alpha-demethylase (L1A1) gene fragment. J Clin Microbiol. 1994.32(8):1902-7.
    [14]De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis.2008.46(12): 1813-21.
    [15]Cuenca-Estrella M, Verweij PE, Arendrup MC, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012:diagnostic procedures. Clin Microbiol Infect.2012.18 Suppl 7:9-18.
    [16]Olias P, Jacobsen ID, Gruber AD. Fungal species identification from avian lung specimens by single hypha laser microdissection and PCR product sequencing. Med Mycol.2011.49(1):56-61.
    [17]van Deventer AJ, Goessens WH, van Belkum A, van Vliet HJ, van Etten EW, Verbrugh HA. Improved detection of Candida albicans by PCR in blood of neutropenic mice with systemic candidiasis. J Clin Microbiol.1995. 33(3):625-8.
    [18]Khan ZU, Mustafa AS. Detection of Candida species by polymerase chain reaction (PCR) in blood samples of experimentally infected mice and patients with suspected candidemia. Microbiol Res.2001.156(1): 95-102.
    [19]Polanco A, Mellado E, Castilla C, Rodriguez-Tudela JL. Detection of Candida albicans in blood by PCR in a rabbit animal model of disseminated candidiasis. Diagn Microbiol Infect Dis.1999.34(3): 177-83.
    [20]Wildfeuer A, Schlenk R, Friedrich W. Detection of Candida albicans DNA with a yeast-specific primer system by polymerase chain reaction. Mycoses.1996.39(9-10):341-6.
    [21]Jaeger EE, Carroll NM, Choudhury S, et al. Rapid detection and identification of Candida,. Aspergillus, and Fusarium species in ocular samples using nested PCR. J Clin Microbiol.2000.38(8): 2902-8.
    [22]Bougnoux M, Dupont C, Mateo J, et al. Serum is more suitable than whole blood for diagnosis of systemic candidiasis by nested PCR. J Clin Microbiol.1999.37(4):925-30.
    [23]Hachem R, Hanna H, Kontoyiannis D, Jiang Y, Raad I. The changing epidemiology of invasive candidiasis:Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer.2008.112(11):2493-9.
    [24]Pfaller MA, Messer SA, Hollis RJ, Jones RN, Diekema DJ. In vitro activities of ravuconazole and voriconazole compared with those of four approved systemic antifungal agents against 6,970 clinical isolates of Candida spp. Antimicrob Agents Chemother.2002.46(6): 1723-7.
    [25]Pfaller MA, Diekema DJ. Rare and emerging opportunistic fungal pathogens:concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol.2004.42(10):4419-31.
    [26]Carvalho A, Costa-De-Oliveira S, Martins ML, et al. Multiplex PCR identification of eight clinically relevant Candida species. Med Mycol.2007.45(7):619-27.
    [27]Foongladda S, Mongkol N, Petlum P, Chayakulkeeree M. Multi-probe Real-Time PCR Identification of Four Common Candida Species in Blood Culture Broth. Mycopathologia.2014.177(5-6):251-61.
    [28]Li YL, Leaw SN, Chen JH, Chang HC, Chang TC. Rapid identification of yeasts commonly found in positive blood cultures by amplification of the internal transcribed spacer regions 1 and 2. Eur J Clin Microbiol Infect Dis.2003.22(11):693-6.
    [29]Foongladda S, Mongkol N, Petlum P, Chayakulkeeree M. Multi-probe Real-Time PCR Identification of Four Common Candida Species in Blood Culture Broth. Mycopathologia.2014
    [1]Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol.2007.45(10): 3198-206.
    [2]Marimon R, Gene J, Cano J, Trilles L, Dos SLM, Guarro J. Molecular phylogeny of Sporothrix schenckii. J Clin Microbiol.2006.44(9): 3251-6.
    [3]谭静文,刘伟,万喆,李若瑜.来自中国北方部分地区33株孢子丝菌菌株的表型和基因型鉴定.菌物学报.2013.(02):161-167.
    [4]施辛,张兴楠.孢子丝菌病41例误诊分析.临床误诊误治.1999.12(6):446-446.
    [5]Rodrigues AM, de Hoog GS, de Camargo ZP. Genotyping species of the Sporothrix schenckii complex by PCR-RFLP of calmodulin. Diagn Microbiol Infect Dis.2014.78(4):383-7.
    [6]da RAC, Scroferneker ML, Vettorato R, Gervini RL, Vettorato G, Weber A. Epidemiology of sporotrichosis:a study of 304 cases in Brazil. J Am Acad Dermatol.2005.52(3 Pt 1):451-9.
    [7]Feeney KT, Arthur IH, Whittle AJ, Altman SA, Speers DJ. Outbreak of sporotrichosis, Western Australia. Emerg Infect Dis.2007.13(8): 1228-31.
    [8]Coles FB, Schuchat A, Hibbs JR, et al. A multistate outbreak of sporotrichosis associated with sphagnum moss. Am J Epidemiol.1992. 136(4):475-87.
    [9]Multistate outbreak of sporotrichosis in seedling handlers,1988. MMWR Morb Mortal Wkly Rep.1988.37 (42):652-3.
    [10]Gezuele E, Da RD. [Importance of the sporotrichosis asteroid body for the rapid diagnosis of sporotrichosis]. Rev Iberoam Micol.2005.22(3): 147-50.
    [11]Chua SS, Momany M, Mendoza L, Szaniszlo PJ. Identification of three chitin synthase genes in the dimorphic fungal pathogen Sporothrix schenckii. Curr Microbiol.1994.29(3):151-6.
    [12]Kano R, Nakamura Y, Watanabe S, Tsujimoto H, Hasegawa A. Identification of Sporothrix schenckii based on sequences of the chitin synthase 1 gene. Mycoses.2001.44(7-8):261-5.
    [13]Kano R, Matsuoka A, Kashima M, et al. Detection of Sporothrix schenckii chitin synthase 1 (CHS1) gene in biopsy specimens from human patients with sporotrichosis. J Dermatol Sci.2003.33(1):73-4.
    [14]Kanbe T, Natsume L, Goto I, et al. Rapid and specific identification of Sporothrix schenckii by PCR targeting the DNA topoisomerase II gene. J Dermatol Sci.2005.38(2):99-106.
    [15]Hu S, Chung WH, Hung SI, et al. Detection of Sporothrix schenckii in clinical samples by a nested PCR assay. J Clin Microbiol.2003.41 (4): 1414-8.
    [16]Xu TH, Lin JP, Gao XH, Wei H, Liao W, Chen HD. Identification of Sporothix schenckii of various mtDNA types by nested PCR assay. Med Mycol.2010.48(1):161-5.
    [17]王晓慧,冀朝辉,李若瑜.种特异性引物鉴定申克孢子丝菌.中华皮肤科杂志.2004.37(4):203-205.
    [18]王永晨,王连明,路娟.应用特异性引物鉴定人申克孢子丝菌感染.中国实验诊断学.2009.13(11):1504-1507.
    [19]王连明,辛晓敏,路娟,王晓慧,王永晨.应用巢式PCR检测实验小鼠组织中申克孢子丝菌.中国实验诊断学.2009.13(7):872-874.
    [20]Liu X, Zhang Z, Hou B, et al. Rapid identification of Sporothrix schenckii in biopsy tissue by PCR. J Eur Acad Dermatol Venereol.2013. 27(12):1491-7.
    [21]Willinger B, Obradovic A, Selitsch B, et al. Detection and identification of fungi from fungus balls of the maxillary sinus by molecular techniques. J Clin Microbiol.2003.41(2):581-5.
    [1]Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science.1996.274(5289):998-1001.
    [2]Gallagher RI, Blakely SR, Liotta LA, Espina V. Laser Capture Microdissection:Arcturus (XT) Infrared Capture and UV Cutting Methods. Methods Mol Biol.2012.823:157-78.
    [3]He J, Zhu J, Liu Y, et al. Immunohistochemical staining, laser capture microdissection and FASP assisted proteomic analysis of target cell populations within tissue samples. LID-10.1002/elps.201200566 [doi]. Electrophoresis.2013
    [4]Vanderburg CR, Clarke MS. Laser capture microdissection of metachromatically stained skeletal muscle allows quantification of fiber type specific gene expression. Mol Cell Biochem.2012
    [5]McAlister C. The use of fluorescence in situ hybridisation and laser microdissection to identify and isolate male cells in an azoospermic sexual assault case. Forensic Sci Int Genet.2011.5(1):69-73.
    [6]Wang K, Lau TY, Morales M, Mont EK, Straus SE. Laser-capture microdissection:refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level. J Virol.2005. 79(22):14079-87.
    [7]Wang K, Mahalingam G, Hoover SE, et al. Diverse herpes simplex virus type 1 thymidine kinase mutants in individual human neurons and Ganglia. J Virol.2007.81(13):6817-26.
    [8]Peng T, Zhu J, Phasouk K, Koelle DM, Wald A, Corey L. An effector phenotype of CD8+ T cells at the junction epithelium during clinical quiescence of HSV-2 infection. J Virol.2012
    [9]Kalantari M, Garcia-Carranca A, Morales-Vazquez CD, et al. Laser capture microdissection of cervical human papillomavirus infections: copy number of the virus in cancerous and normal tissue and heterogeneous DNA methylation. Virology.2009.390(2):261-7.
    [10]van der Marel J, Quint WG, Schiffman M, et al. Molecular mapping of high-grade cervical intraepithelial neoplasia shows etiological dominance of HPV16. Int J Cancer.2012.131(6):E946-53.
    [11]Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology.2011.414(2):153-63.
    [12]Selva E, Hofman V, Berto F, et al. The value of polymerase chain reaction detection of Mycobacterium tuberculosis in granulomas isolated by laser capture microdissection. Pathology.2004.36(1): 77-81.
    [13]Zhu G, Xiao H, Mohan VP, et al. Gene expression in the tuberculous granuloma:analysis by laser capture microdissection and real-time PCR. Cell Microbiol.2003.5(7):445-53.
    [14]Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ. Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol.2008.74(14):4463-71.
    [15]Perez-Osorio AC, Williamson KS, Franklin MJ. Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J Bacteriol.2010.192(12):2991-3000.
    [16]De Hertogh G, Lemmens B, Verhasselt P, et al. Assessment of the microbiota in microdissected tissues of Crohn's disease patients. Int J Inflam.2012.2012:505674.
    [17]Toracchio S, El-Zimaity HM, Urmacher C, Katz S, Graham DY. Mycobacterium avium subspecies paratuberculosis and Crohn's disease granulomas. Scand J Gastroenterol.2008.43(9):1108-11.
    [18]Rowan F, Docherty NG, Murphy M, Murphy TB, Coffey JC,O'Connell PR. Bacterial colonization of colonic crypt mucous gel and disease activity in ulcerative colitis. Ann Surg.2010.252(5):869-75.
    [19]Smith B, Bode S, Petersen BL, et al. Community analysis of bacteria colonizing intestinal tissue of neonates with necrotizing enterocolitis. BMC Microbiol.2011.11:73.
    [20]Tiwananthagorn S, Iwabuchi K, Ato M, Sakurai T, Kato H, Katakura K. Involvement of CD4(+) Foxp3(+) regulatory T cells in persistence of Leishmania donovani in the liver of alymphoplastic aly/aly mice. PLoS Negl Trop Dis.2012.6(8):e1798.
    [21]Xue J, Hung CY, Yu JJ, Cole GT. Immune response of vaccinated and non-vaccinated mice to Coccidioides posadasii infection. Vaccine. 2005.23(27):3535-44.
    [22]van Driel KG, Boekhout T, Wosten HA, Verkleij AJ, Muller WH. Laser microdissection of fungal septa as visualised by scanning electron microscopy. Fungal Genet Biol.2007.44(6):466-73.
    [23]Olias P, Jacobsen ID, Gruber AD. Fungal species identification from avian lung specimens by single hypha laser microdissection and PCR product sequencing. Med Mycol.2011.49(1):56-61.
    [24]Westwater C, Schofield DA. Laser capture microdissection of Candida albicans from host tissue. Methods Mol Biol.2012.845:397-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700