用户名: 密码: 验证码:
QCD求和规则与若干强子结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在QCD求和规则的框架内对质量1.5GeV左右标量介子九重态的结构与扭度-3的光锥波函数、最低的标量与赝标量D介子结构作了系统的研究。
     按照强子谱给出的信息,质量在1.5GeV左右的轻介子f0(1370)、K0*(1430)、a0(1450)和f0(1500)/f0(1710)构成JP=0+九重态。首先我们的计算表明,在阈值和Borel窗口对每个成员都相同的情况下,通常的求和规则不能得到关于这个多重态成员结构的合理结果。随后在单瞬子近似下,我们在求和规则中加入了相应的瞬子效应,计算结果显示,加入瞬子效应的求和规则可以很好地区分这个多重态,f0(1370)、K0*(1430)和a0(1450)可以在朴素夸克模型的框架内得到很好的解释,f0(1500)具有很大的胶子成分,它们的结构可以表示为:f_0(1370)=(uu+dd)/(?),(1430)=sd,α_0(1450)= (uu-dd)/(?),f_0(1500)=0.9GeV_(ss)+2α_sG_(μν)~αG~(αμν),而f0(1710)的结构还需要深入的分析。
     根据本文确定的夸克结构,我们计算了瞬子效应对f0(1370)、K0*(1430)、a0(1450)以及π介子扭度-3的光锥分布幅度的影响。结果表明,这几个介子扭度-3的光锥分布幅度对瞬子密度的大小敏感,在纵向动量分数的某些区间是非正定的,这些波函数对于分析重介子的非轻子衰变具有参考意义。对于可能影响光锥波函数的瞬子效应的其它因素,如真实的瞬子密度、多瞬子效应和非价态贡献等作了初步分析。
     从实验可以知道,对于最低态的D介子,JP=0-道双重态质量分裂与夸克模型的预言一致,而JP=0+道的质量分裂与夸克模型预言相反。在QCD求和规则中,作为非微扰修正出现的算符凝聚贡献,一些项是宇称相关的,对于纯轻夸克系统,这样的修正项被压低,然而当重夸克出现时,它们的效应就会有所增强。在原始的QCD求和规则框架内,假设cq结构,我们研究了味SU(3)对称性破缺在实现同一个JP道成员Ds和Dd质量分裂中的作用。计算结果表明,质量效应和宇称相关的非微扰相互作用能够给出正确的D介子质量分裂的趋势:对于0一道,m_D_s-m_D_d-35MeV,0~+道m_D_d-m_D_s-15MeV,这样的质量分裂趋势与实验结果一致。进一步的定性分析可以知道,在0-道,宇称相关的修正项对D。和Dd质量分裂保持一致,导致这一个道质量差比较大;而0+道宇称相关的修正项对Ds和Dd质量差有所抵消,导致这个道质量差较小,这样能对这两个道不同的质量差提供合理的解释。
     其它一些相关的话题也作了扼要的讨论。
In this thesis we systematically studied the structure of scalar mesons around 1.5GeV(i.e., K_0~*,α_0 and f_0) as well as the lowest D mesons of 0~- and 0~+ channels in the framework of QCD sum rules approach.
     Firstly we gave a systematic description of QCD sum rules approach, in-cluding its principle and necessary mathematical tools. Then we derived the sum rules from light scalar current correlation function. But the results shown that the conventional sum rules can not reveal the realistic mass spectrum of 0+ channel around 1.5GeV. After improving the sum rules by including the instan-ton effects, the masses of scalar meson nonet around 1.5GeV were well separated from each other. The results suggested that f_0(1370), K_0~*(1430) and ao(1450) mesons can be accommodated with the naive quark model, while there is large glueball component inα_0(1500). The underlying structure of f_0(1710) still need further study.
     Then based on the suggested structure of f_0(1370), K_0~*(1430),α_0(1450) and pion, we calculated their twist-3 light-cone distribution amplitudes by use of QCD sum rules with inclusion of instanton effects. We found that when the instan-ton involved the twist-3 light-cone distribution amplitudes can develop negative values in some longitudinal momentum fraction range. These instanton-involved twist-3 light-cone distribution amplitudes may be helpful to extract reasonable results in hadronic B decay to mesons mentioned above. We conjectured that the exact instanton density, multi-instantons effect and non-valence contribution may have some impacts on the results which will be implemented in future work.
     Finally the mass spitting of multiplet members in 0~- and 0~+ channels of D meson were studied within the framework of conventional QCD sum rules. The results indicated that if we appropriately considered the different role of parity-dependent force induced from the complicated nonperturbative QCD vacuum, which represents itself by parity-dependent condensates in 0~- and 0~+ channels, not only can we give a reasonable explanation to the mass gap of the members in the same channel, but also there will be larger splitting of 0 than 0~+channel. Results also shown that the operator mixing effects was crucial in realizing correct splitting in 0~+members. Generalization to higher states and B mesons were also briefly discussed.
引文
3本小节主要取自于[8]第一章,关于标准模型更完整的描述可参阅文献[9,10,11,12,13,14,15].
    [1]G. Zweig. An SU(3) model for strong interaction symmetry and its break-ing, CERN preprint 8419/Th-412,8182/Th-401(1964).
    [2]M. Gell-Mann. A schematic model of baryons and mesons. Phys. Lett., 8(3):214-215,1964.
    [3]S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak interactions with lepton-hadron symmetry. Phys. Rev. D,2(7):1285-1292,1970.
    [4]M. Kobayashi and T. Maskawa. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys,49(2):652-657,1973.
    [5]M. L. Perl et al. Evidence for anomalous lepton production in e+e- anni-hilation. Phys. Rev. Lett.,35(22):1489-1492,1975.
    [6]G. J. Feldman et al. Inclusive anomalous muon production in e+e- annihi-lation. Phys. Rev. Lett.,38(3):117-120,1977.
    [7]M. L. Perl et al. Properties of the proposed τ charged lepton. Phys. Lett., B70(4):487-490,1977.
    [8]A. V. Manohar and M. B. Wise. Heavy quark physics. Cambridge University Press, New York,2000.
    [9]T. P. Cheng and L. F. Li. Gauge theories of elementary particle physics. Clarendon, Oxford,1984.
    [10]J. F. Donoghue, E. Golowich, and B. R. Holstein. Dynamics of the standard model. Cambridge University Press, New York,1994.
    [11]M. E. Peskin and D. V. Schroeder. An introduction to quantum field theory. Westview Press,1995.
    [12]S. Weinberg. The quantum theory of fields, Vol Ⅰ:Foundations and Vol II: Modern Applictions. Cambridge University Press, New York,1995.
    [13]C. Quigg. Gauge theories of the strong, weak, and electromagnetic interac-tions. Westview Press,1983.
    [14]T. Morii, C. S. Lim, and S. N. Mukherjee. The physics of the standard model and beyond. World Scientific, Singapore,2004.
    [15]P. Langacker. The standard model and beyond. CRC Press & Taylor Francis, 2010.
    [16]D. J. Gross and F. Wilczek. Asymptotically free gauge theories. Ⅰ. Phys. Rev. D,8(10):3633-3652,1973.
    [17]D.J. Gross and F. Wilczek. Asymptotically free gauge theories. Ⅱ. Phys. Rev. D,9(4):980-993,1974.
    [18]D. J. Gross and F. Wilczek. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett.,30(26):1343-1346,1973.
    [19]H. D. Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett.,30(26):1346-1349,1973.
    [20]H. D. Politzer. Asymptotic freedom:an approach to strong interactions. Phys. Rept.,14(4):129-180,1974.
    [21]W. J. Marciano and H. Pagels. Quantum chromodynamics:a review. Phys. Rept.,36(3):137-276,1978.
    [22]G. Sterman. An introduction to quantum field theory. Cambridge University Press,1993.
    [23]F. J. Yndurain. The theory of quark and gluon interactions. Springer, Berlin,2006.
    [24]T. Muta. Foundations of quantum chromodynamics,3rd edition. World Scientific, Singapore,2010.
    [25]S. L. Glashow. Partial-symmetries of weak interactions. Nucl. Phys.,22(4): 579-588,1961.
    [26]S. Weinberg. A model of leptons. Phys. Rev. Lett.,19(21):1264-1266, 1967.
    [27]A. Salam. Elementary particle. theory: relativistic group and analytic-ity" (Nobel Symposium No.8), p.367, Edited by N. Svartholm, Almquist and Wiksell, Stockholm,1968.
    [28]H. Georgi. Weak interactions and modern particle theory. Ben-jamin/Cummings,1984.
    [29]P. W. Higgs. Broken symmetries, massless particles and gauge fields. Phys. Lett.,12(2):132-133,1964.
    [30]P. W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett.,13(16):508-509,1964.
    [31]F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett.,13(9):321-323,1964.
    [32]G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global conservation laws and massless particles. Phys. Rev. Lett., 13(20): 585-587,1964.
    [33]T. W. B. Kibble. Symmetry breaking in non-Abelian gauge theories. Phys. Rev.,155(5):1554-1561,1967.
    [34]T. D. Lee and C. N. Yang. Question of parity conservation in weak inter-actions. Phys. Rev., 104(1): 254-258, 1956.
    [35]C. S. Wu et al. Experimental test of parity conservation in beta decay. Phys. Rev.,105(4):1413-1415,1957.
    [36]R. N. Mohapatra and P. B. Pal. Massive neutrinos in physics and astro-physics. World Scientific, New Jersey,2004.
    [37]N. Cabibbo. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10(12):531-533,1963.
    [38]C. Amsler et at. Review of particle physics. Phys. Lett, B66.7(1-5):1-1340, 2008.
    [39]L. Wolfenstein. Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett.,51(21):1945-1947,1983.
    [40]G. Buchalla, A. J. Buras, and M. E. Lautenbacher. Weak decays beyond leading logarithms. Rev. Mod. Phys.,68(4):1125-1244,1996.
    [41]F. E. Close. Introduction to quarks and partons. Academic Press, Inc., New York,1979.
    [42]Fayyazuddin and Riazuddin. A modern introduction to particle physics, 2nd edition. World Scientific, Singapore,2000.
    [43]J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the 2π decay of the K_2~0meson. Phys. Rev. Lett.,13(4):138-140,1964.
    [44]G.C. Branco, L. Lavoura, and J. P. Silva. CP violation. Oxford Science Publications, Clarendon Press, Oxford,1999.
    [45]I.I. Bigi and A. I. Sanda. CP violation. Cambridge University Press, New York,2000.
    [46]R. Fleischer. CP violation in the B system and relations to K→ πνν decays. Phys. Rept.,370(6):537-680,2002.
    [47]A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf. New extended model of hadrons. Phys. Rev. D,9(12):3471-3495,1974.
    [48]T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis. Masses and other parameters of the light hadrons. Phys. Rev. D,12(7):2060-2076,1975.
    [49]R. L. Jaffe and K. Johnson. Unconventional states of confined quarks and gluons. Phys. Lett., B60(2):201-204,1976.
    [50]K.G.Wilson. Confinement of quarks. Phys. Rev.D,10(8): 2445-2459, 1974.
    [51]R. P. Feynman and A. R. Hibbs. Quantum mechanics and path integrals. McGraw-Hill, New York,1965.
    [52]M. Creutz. Quarks, gluons, and lattices, Cambridge University Press,1985.
    [53]J. B. Kogut. The lattice gauge theory approach to quantum chromody-namics. Rev. Mod. Phys.,55(3):775-836,1983.
    [54]I. Montvay and G. Munster. Quantum fields on a lattice. Cambridge Uni-versity Press,1997.
    [55]H. J. Rothe. Lattice gauge theories: an introduction. World Scientific, Singapore,2005.
    [56]M. A. Shifman, A. Ⅰ. Vainshtein, and V. Ⅰ. Zakharov. QCD and resonance physics, sum rules. Nucl Phys., B147(5):385-447,1979.
    [57]M. A. Shifman, A. Ⅰ. Vainshtein, and V.Ⅰ. Zakharov. QCD and resonance physics. applications. Nucl. Phys., B147(5):448-518,1979.
    [58]K.G. Wilson. Non-lagrangian models of current algebra. Phys. Rev., 179(5):1499-1512,1969.
    [59]L. J. Reinders, H. Rubinstein, and S. Yazaki. Hadron properties from QCD sum rules. Phys. Rept.,127(1):1-97,1985.
    [60]S. Narison. QCD spectral sum rules. World Scientific, Singapore,1989.
    [61]P. Colangelo and A. Khodjamirian. QCD sum rules, a modern perspective, arXiv: hep-ph/0010175.
    [62]B. L. Ioffe. Calculation of baryon masses in quantum chromodynamics. Nucl. Phys., B188(2):317-341,1981.
    [63]V. A. Novikov, M. A. Shifman, A. Ⅰ. Vainshtein, and V. Ⅰ. Zakharov. Are all hadrons alike? Nucl. Phys., B191(2):301-369,1981.
    [64]A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin. Pseu-doparticle solutions of the Yang-Mills equations. Phys. Lett., B59(1):85-87,1975.
    [65]G.'t Hooft. Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett.,37(2):8-11,1976.
    [66]G.'t Hooft. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D,14(12):3432-3450,1976.
    [67]E. V. Shuryak. Pseudoscalar mesons and instantons. Nucl. Phys., B214(2): 237-252,1983.
    [68]G.'t Hooft. A planar diagram theory for strong interactions. Nucl. Phys., B72(3):461-473,1974.
    [69]G.'t Hooft. A two-dimensional model for mesons. Nucl. Phys., B75(3): 461-470,1974.
    [70]E. Witten. Baryons in the 1/N expansion. Nucl. Phys., B160(1):57-115, 1979.
    [71]S. Coleman. Aspects of symmetry:selected Erice lectures of Sidney Cole-man. Cambridge University Press,1988.
    [72]R. F. Dashen and A. V. Manohar. Baryon-pion couplings from large Nc QCD. Phys. Lett., B315(3-4):425-430,1993.
    [73]R. Dashen, E. Jenkins, and A. V. Manohar.1/Nc expansion for baryons. Phys. Rev. D,49(9):4713-4738,1994.
    [74]R. F. Dashen, E. Jenkins, and A. V. Manohar. Spin-flavor structure of large Nc baryons. Phys. Rev. D,51(7):3697-3727,1995.
    [75]A. V. Manohar. Large N QCD, arXiv:hep-ph/9802419.
    [76]J. Goldstone and R. L. Jaffe. Baryon number in chiral bag models. Phys. Rev. Lett.,51(17):1518-1521,1983.
    [77]P. J. Mulders. Theoretical aspects of hybrid chiral bag models. Phys. Rev. D,30(5):1073-1083,1984.
    [78]A. Hosaka and H. Toki. Chiral bag model for the nucleon. Phys. Rept., 277(2-3):65-188,1996.
    [79]M. Rho, A. S. Goldhaber, and G. E. Brown. Topological soliton bag model for baryons. Phys. Rev. Lett.,51(9):747-750,1983.
    [80]R. T. Cahill and C. D. Roberts. Soliton bag models of hadrons from QCD. Phys. Rev. D,32(9):2419-2428,1985.
    [81]A. P. Balachandran, V. P. Nair, S. G. Rajeev, and A. Stern. Soliton states in the quantum-chromodynamic effective lagrangian. Phys. Rev. D,27(5): 1153-1164,1983.
    [82]G. S. Adkins, C. R. Nappi, and E. Witten. Static properties of nucleons in the Skyrme model. Nucl. Phys., B228(3):552-566,1983.
    [83]G. S. Adkins and C. R. Nappi. The Skyrme model with pion masses. Nucl. Phys., B233(1):109-115,1984.
    [84]P. D. B. Collins. An introduction to Regge theory and high energy physics. Cambridge University Press,1977.
    [85]O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz. Large N field theories, string theory and gravity. Phys. Rept.,323(3-4):183-386, 2000.
    [86]T. Sakai and S. Sugimoto. Low energy hadron physics in holographic QCD. Prog. Theor. Phys.,113(4):843-882,2005.
    [87]T. Sakai and S. Sugimoto. More on a holographic dual of QCD. Prog. Theor. Phys.,114(5):1083-1118,2005.
    [88]A. J. Buras. Weak Hamiltonian, CP violation and rare decays, arXiv:hep-ph/9806471.
    [89]W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta. Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D,18(11):3998-4017,1978.
    [90]K. G. Wilson and W. Zimmermann. Operator product expansions and composite field operators in the general framework of quantum field theory. Commun. Math. Phys.,24(2):87-106,1972.
    [91]E. V. Shuryak. Correlation functions in the QCD vacuum. Rev. Mod. Phys., 65(1):1-46,1993.
    [92]J. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev., 82(5):664-679,1951.
    [93]J. Schwinger. Particles, sources and fields Vol. Ⅰ. Addison-Wesley, Reading, MA,1970.
    [94]M. S. Dubovikov and A. V. Smilga. Analytical properties of the quark polarization operator in an external selfdual field. Nucl. Phys., B185(1): 109-132,1981.
    [95]C. Cronstrom. A simple and complete Lorentz-covariant gauge condition. Phys. Lett, B90(3):267-269,1980.
    [96]M. A. Shifman. Wilson loop in vacuum fields. Nucl. Phys., B173(1):13-31, 1980.
    [97]W. Hubschmid and S. Mallik. Operator expansion at short distance in QCD Nucl. Phys., B207(1):29-42,1982.
    [98]V. A. Novikov, M. A. Shifman, A. Ⅰ. Vainshtein, and V. Ⅰ. Zakharov. Cal-culations in external fields in quantum chromodynamics:Technical review. Fortschr. Phys.,32(11):585-622,1984.
    [99]S. Narison. Techniques of dimensional renormalization and applications to the two point functions of QCD and QED. Phys. Rept.,84(4):263-399, 1982.
    [100]P. Pascual and R. Tarrach. Lecture Notes in Physics Vol.194, QCD:renor-malization for the practitioner. Springer-Verlag, Berlin,1984.
    [101]A. S. Wightman. Quantum field theory in terms of vacuum expectation values. Phys. Rev.,101(2): 860-866,1956.
    [102]G. Kallen. On the definition of the renormalization constants in quantum electrodynamics. Helv. Phys. Acta,25:417-434,1952.
    [103]H. Lehmann. On the properties of propagation functions and renormaliza-tion contants of quantized fields. Nuovo Cim.,11(4):342-357,1954.
    [104]J. D. Bjorken and S. D. Drell. Relativistic quantum fields. McGraw-Hill, New York,1965.
    [105]B.P. Palka. An introduction to complex function theory. Springer, Berlin, 1991.
    [106]S. Weinberg. The quantum theory of fields, Vol. Ⅲ. Cambridge university, press,1996.
    [107]M. A. Shifman and A. Ⅰ. Vainshtein. Instantons versus supersymmetry: Fifteen years later, arXiv: hep-th/9902018.
    [108]M. Bianchi, S. Kovacs, and G. Rossi. Instantons and supersymmetry. in Lect. Notes. Phys., Vol.737:303-470,2008.
    [109]M. B. Green and M. Gutperle. Effects of D-instantons. Nucl. Phys., B498(1):195-227,1997.
    [110]M. B. Green and P. Vanhove. D-instantons, strings and M-theory. Phys. Lett., B408(1):122-134,1997.
    [111]M. Bianchi, M. B. Green, S. Kovacs, and G. Rossi. Instantons in supersym-metric Yang-Mills and D-instantons in IIB superstring theory. JEEP,08: 013,1998.
    [112]J. H. Schwarz. TASI lectures on non-BPS D-brane systems, arXiv: hep-th/9908144.
    [113]J. M. Maldacena, G. W. Moore, and N. Seiberg. D-brane instantons and K-theory charges. JHEP,11:062,2001.
    [114]V. I. Novikov, M. A. Shifman, A. I. Vainshtein, and· V. I. Zakharov. ABC of instantons in ITEP lecctures on particle physics and field theory Vol. Ⅰ, p.201-299. World Scientific, Singapore,1999.
    [115]B. L. Ioffe, V. S. Fadin, and L. N. Lipatov. Quantum chromodynamics: perturbative and nonperturbative aspects. Cambridge University Press, New York,2010.
    [116]E. V. Shuryak. The QCD vacuum, hadrons, and superdense matter,2ed edition. World Scientific, Singapore,2004.
    [117]M. A. Shifman edited. Instantons in gauge theories. World Scientific, Sin-gapore,1994.
    [118]W. Greiner and J. Reinhardt. Field quantization. Springer Verlag, Berlin, 1996.
    [119]A. M. Polyakov. Quark confinement and topology of gauge groups. Nucl. Phys., B120(3):429-458,1977.
    [120]L. D. Landau and E. M. Lifshitz. Quantum mechanics: non-relativistic theory. Butterworth-Heinemann,1991.
    [121]K. M. Bitar and S.-J. Chang. Vacuum tunneling of gauge theory in Minkowski space. Phys. Rev. D,17(2):486-497,1978.
    [122]C. G. Callan, R. F. Dashen, and D. J. Gross. Toward a theory of the strong interactions. Phys. Rev. D, 17(10):2717-2763,1978.
    [123]C. G. Callan, R. F. Dashen, and D. J. Gross. The structure of the gauge theory vacuum. Phys. Lett., B63(3):334-340,1976.
    [124]R. Jackiw and C. Rebbi. Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett.,37(3):172-175,1976.
    [125]D. Diakonov. Instantons at work. Prog. Part. Nucl. Phys.,51(1):173-222, 2003.
    [126]R. Rajaraman. Solitons and instantons. North-Holland, Amsterdam,1982.
    [127]T. Schafer and E. V. Shuryak. Instantons in QCD. Rev. Mod. Phys.,70(2): 323-425,1998.
    [128]S. Helgason. Differential geometry, Lie groups, and symmetric spaces Academic Press, New York,1978.
    [129]A. S. Schwarz. Topology for physicists. Springer,1994.
    [130]G. P. Lepage and S. J. Brodsky. Exclusive processes in perturbative quan-tum chromodynamics. Phys. Rev. D,22(9):2157-2198,1980.
    [131]R. Bott. An application of Morse theory to the topology of Lie groups. Bull. Soc. Math. Fr.,84:251-281,1956.
    [132]S. Vandoren and P. van Nieuwenhuizen. Lectures on instantons, arXiv: hep-th/0802.1862.
    [133]C. W. Bernard, N. H. Christ, A. H. Guth, and E. J. Weinberg. Pseu-doparticle parameters for arbitrary gauge groups. Phys. Rev. D,16(10): 2967-2977,1977.
    [134]N. Dorey, T. J. Hollowood, V. V. Khoze, and M. P. Mattis. The calculus of many instantons. Phys. Rept.,371(4-5):231-459,2002.
    [135]M. F. Atiyah and R. S. Ward. Instantons and algebraic geometry. Commun. Math. Phys.,55(2):117-124,1977.
    [136]R. Jackiw and C. Rebbi. Degrees of freedom in pseudoparticle systems. Phys. Lett, B67(2):189-192,1977.
    [137]S. Deser. Absence of static solutions in source-free Yang-Mills theory. Phys. Lett., B64(4):463-464,1976.
    [138]K. Huang. Quarks, leptons, gauge fields,2nd edition. World Scientific, Singapore,1992.
    [139]M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Yu. Ⅰ. Manin. Construction of instantons. Phys. Lett., A65(3):185-187,1978.
    [140]L. S. Brown, R. D. Carlitz, D. B. Creamer, and C. Lee. Propagation func-tions in pseudoparticle fields. Phys. Rev. D,17(6):1583-1597,1978.
    [141]H. Forkel. A primer on instantons in QCD, arXiv:hep-ph/0009136.
    [142]P. Faccioli and E. V. Shuryak. Systematic study of the single instanton approximation in QCD. Phys. Rev. D,64(11):114020,2001.
    [143]D. Ⅰ. Diakonov and V. Yu. Petrov. Instanton based vacuum from Feynman variational principle. Nucl. Phys., B245:259-292,1984.
    [144]D. Ⅰ. Diakonov and V. Yu. Petrov. A theory of light quarks in the instanton vacuum. Nucl. Phys., B272(2):457-489,1986.
    [145]M. F. Atiyah and Ⅰ. M. Singer. The index of elliptic operators.3. Annals Math.,87:546-604,1968.
    [146]M. F. Atiyah and Ⅰ. M. Singer. The index of elliptic operators.4. Annals Math.,93:119-138,1971.
    [147]A. S. Schwarz. On regular solutions of euclidean Yang-Mills equations. Phys. Lett., B67(2):172-174,1977.
    [148]R. Jackiw and C. Rebbi. Spinor analysis of yang-mills theory. Phys. Rev. D,16(4):1052-1060,1977.
    [149]S. L. Adler. Axial-vector vertex in spinor electrodynamics. Phys. Rev., 177(5):2426-2438,1969.
    [150]J. S. Bell and R. Jackiw. A PCAC puzzle:π_0 → γγ in the sigma model. Nuovo Cim., A60(1):47-61,1969.
    [151]K. Fujikawa. Path-integral measure for gauge-invariant fermion theories. Phys. Rev. Lett.,42(18):1195-1198,1979.
    [152]M. A. Shifman, A. I. Vainshtein, and V. Ⅰ. Zakharov. Instanton density in a theory with massless quarks. Nucl. Phys., B163:46-56,1980.
    [153]E. V. Shuryak. Theory and phenomenology of the QCD vacuum. Phys. Rept.,115(4-5):151-314,1984.
    [154]M. Abramowitz and Ⅰ.A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover:New York,1972.
    [155]王竹溪,郭敦仁.特殊函数概论.北京大学出版社,北京,2000.
    [156]I. S. Gradshteyn and Ⅰ. M. Ryzhik. Table of Integrals, Series, and Products, 7th edition. Academic Press, Singapore,2007.
    [157]S. Godfrey and J. Napolitano. Light-meson spectroscopy. Rev. Mod. Phys., 71(5):1411-1462,1999.
    [158]F. E. Close and N. A. Tornqvist. Scalar mesons above and below 1GeV. J. Phys., G28(10):R249-R267,2002.
    [159]C. Amsler and N. A. Tornqvist. Mesons beyond the naive quark model. Phys. Rept.,389(2):61-117,2004.
    [160]R. J. Jaffe. Multiquark hadrons. Ⅰ. phenomenology of q~2Q~2 mesons: Phys. Rev. D,15(1):267-280,1977.
    [161]R. L. Jaffe. Multiquark hadrons. Ⅱ. methods. Phys. Rev. D,15(1):281-289,1977.
    [162]M. G. Alford and R. L. Jaffe. Insight into the scalar mesons from a lattice calculation. Nucl. Phys., B578(1-2):367-382,2000.
    [163]M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda. QCD factor-ization for B→ ππ decays:strong phases and CP violation in the heavy quark limit. Phys. Rev. Lett.,83(10):1914-1917,1999.
    [164]M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda. QCD factor-ization for exclusive non-leptonic B meson decays:General arguments and the case of heavy-light final states. Nucl. Phys., B591(1-2):313-418,2000.
    [165]M. Beneke, G. Buchalla, M. Neubert, and C..T. Sachrajda. QCD factor-ization in B → πK,ππ decays and extraction of Wolfenstein parameters Nucl. Phys., B606(1-2):245-321,2001.
    [166]M. Beneke and M. Neubert. QCD factorization for B→ PP and B→ PV decays. Nucl. Phys., B675(1-2):333-415,2003.
    [167]H.-Y. Cheng and K.-C. Yang. B→ f_0(980)K decays and subleading cor-rections. Phys. Rev. D,71(5):054020,2005.
    [168]H.-Y. Cheng, C.-K. Chua, and K.-C. Yang. Charmless hadronic B decays involving scalar mesons:Implications on the nature of light scalar mesons. Phys. Rev. D,73(1):014017,2006.
    [169]H.-Y. Cheng, C.-K. Chua, and K.-C. Yang. Charmless B decays to a scalar meson and a vector meson. Phys. Rev. D, 77(1):014034,2008.
    [170]Z.-Q. Zhang. Study of scalar meson f_0(980) and K_0~*(1430) from B→ f_0(980)ρ(ω,φ) and B→K_0~*(1430)ρ(ω) decays. Phys. Rev. D, 82(3): 034036,2010.
    [171]C. Amsler. Further evidence for a large glue component in the f_0(1500) meson. Phys. Lett., B541(1-2):22-28,2002.
    [172]H.-Y. Cheng, C.-K. Chua, and K.-F. Liu. Scalar glueball, scalar quarkonia, and their mixing. Phys. Rev. D, 74(9):094005,2006.
    [173]S. He, M. Huang, and Q.-S. Yan. Pseudoscalar glueball in a chiral la-grangian model with instanton effect. Phys. Rev. D,81(1):014003,2010.
    [174]H.-Y. Cheng and C.-K. Chua. Charmless B→ K_η~(') decays with K_h=K, K~*,K_0~*(1430),K_2~*(1430). Phys. Rev. D, 82(3): 034014,2010.
    [175]S. Spanier, N. A. Tornqvist, and C. Amsler. Note on scalar mesons in Ref. [34].
    [176]Z. F. Zhang and H. Y. Jin. Comment on "Chiral suppression of scalar-glueball decay", arXiv:hep-ph/0511252.
    [177]H.-Y. Jin, S.-M. Liu, Z.-F. Zhang, and X.-Q. Li. Chiral suppression and SU(3) symmetry in scalar glueball decays. Chin. Phys. Lett.,25(5):1609-1612,2008.
    [178]J. Zhang, H. Y. Jin, Z. F. Zhang, T. G. Steele, and D. H. Lu. Light scalar. mesons in QCD sum rules with inclusion of instantons. Phys. Rev. D, 79(11):114033,2009.
    [179]A. Khodjamirian, T. Mannel, and M. Melcher. Kaon distribution amplitude from QCD sum rules. Phys. Rev. D,70(9):094002,2004.
    [180]P. Ball and R. Zwicky. B_(d,s) →ρ, ω, K~*,φ decay form factors from light-cone sum rules reexamined. Phys. Rev. D,71(1):014029,2005.
    [181]E. V. Shuryak. The role of instantons in quantum chromodynamics.2. Hadronic structure. Nucl. Phys., B203(1):116-139,1982.
    [182]E. V. Shuryak. The role of instantons in quantum chromodynamics.1. Physical vacuum. Nucl. Phys., B203(1):93-115,1982.
    [183]H. Forkel and M. Nielsen. The electromagnetic pion form-factor and in-stantons. Phys. Lett, B345(1):55-60,1995.
    [184]A. E. Dorokhov, S. V. Esaibegian, N. Ⅰ. Kochelev, and N. G. Stefanis. Multi-instanton effects in QCD sum rules for the pion. J. Phys., G23(6):643-649, 1997.
    [185]H. Forkel. Scalar gluonium and instantons. Phys. Rev. D,64(3):034015, 2001.
    [186]H. Forkel. Direct instantons, topological charge screening, and QCD glue-ball sum rules. Phys. Rev. D,71(5):054008,2005.
    [187]M.-C. Chu, J. M. Grandy, S. Huang, and J. W. Negele. Evidence for the role of instantons in hadron structure from lattice QCD. Phys. Rev. D, 49(11):6039-6050,1994.
    [188]M. Cristoforetti, P. Faccioli, M. C. Traini, and J. W. Negele. Exploring the chiral regime of QCD in the interacting instanton liquid model. Phys. Rev. D,75(3):034008,2007.
    [189]C. Amsler and F. E. Close. Evidence for a scalar glueball. Phys. Lett., B353(2-3):385-390,1995.
    [190]C. Amsler and F. E. Close. Is f0(1500) a scalar glueball? Phys. Rev. D, 53(1):295-311,1996.
    [191]F. E. Close and A. Kirk. Scalar glueball qq mixing above 1GeV and impli-cations for lattice QCD. Eur. Phys. J., C21(3):531-543,2001.
    [192]L. S. Kisslinger and M. B. Johnson. Scalar mesons, glueballs, instantons and the glueball/sigma. Phys. Lett., B523(1-2):127-134,2001.
    [193]E. Bagan and T. G. Steele. Mass of the scalar glueball. Higher-loop effects in the QCD sum rules. Phys. Lett., B243(4):413-420,1990.
    [194]D. Harnett, T. G. Steele, and V. Elias. Instanton effects on the role of the low-energy theorem for the scalar gluonic correlation function. Nucl. Phys., A686(1-4):393-412,2001.
    [195]D. Harnett, K. Moats, and T. G. Steele. Near-maximal mixing of scalar gluonium and quark mesons:A gaussian sum-rule analysis, arXiv:hep-ph/0804.2195.
    [196]T. Schafer and E. V. Shuryak. Glueballs and instantons. Phys. Rev. Lett., 75(9):1707-1710,1995.
    [197]M. C. Tichy and P. Faccioli. The scalar glueball in the instanton vacuum. Eur. Phys. J., C63(3):423-433,2009.
    [198]G. P. Lepage and S. J. Brodsky. Exclusive processes in quantum chromo-dynamics: The form factors of baryons at large momentum transfer. Phys. Rev. Lett.,43(8):545-549,1979.
    [199]G. P. Lepage and S. J. Brodsky. Exclusive processes in quantum chromo-dynamics:evolution equations for hadronic wave functions and the form-factors of mesons. Phys. Lett., B87(4):359-365,1979.
    [200]S. J. Brodsky and G. P. Lepage. Exclusive processes quantum chromody-namics. in Adv. Ser. Direct. High Energy Phys., Vol.5:p.93-240, World Scientific, Singapore,1989.
    [201]V. M. Braun and I. E. Filyanov. Conformal invariance and pion wave functions of nonleading twist. Z. Phys., C48(2):239-248,1990.
    [202]P. Ball, V. M. Braun, Y. Koike, and K. Tanaka. Higher twist distribution amplitudes of vector mesons in QCD:Formalism and twist"three distribu-tions. Nucl. Phys., B529(1-2): 323-382,1998.
    [203]P. Ball and V..M. Braun. Higher twist distribution amplitudes of vector mesons in QCD:Twist-4 distributions and meson mass corrections. Nucl. Phys., B543(1-2):201-238,1999.
    [204]H.-Y. Cheng and J. G. Smith. Charmless hadronic B-meson decays. Ann. Rev. Nucl. Part. Sci,59:215-243,2009.
    [205]Y. Kwon, G. Punzi, and J. G. Smith. Production and decay of b-flavored hadrons in Ref. [34].
    [206]V. L. Chernyak and A. R. Zhitnitsky. Exclusive decays of heavy mesons. ucl. Phys., B201(3):492-526,1982.
    [207]V. L. Chernyak and A. R. Zhitnitsky. Asymptotic behavior of exclusive processes in QCD. Phys. Rept.,112(3-4):173-318,1984.
    [208]V. L. Chernyak and I. R. Zhitnitsky. Nucleon wave function and nucleon form-factors in QCD. Nucl. Phys., B246(1):52-74,1984.
    [209]P. Ball, V. M. Braun, and A. Lenz. Higher-twist distribution amplitudes of the K meson in QCD. JEEP,05: 004, 2006.
    [210]C.-D. Lii, Y.-M. Wang, and H. Zou. Twist-3 distribution amplitudes of scalar mesons from QCD sum rules. Phys. Rev. D,75(5):056001,2007.
    [211]V. M. Belyaev and M. B. Johnson. Distribution of valence quarks and light-cone QCD sum rules. Phys. Rev. D,56(3):1481-1488,1997.
    [212]A. Mitov. Perturbative heavy quark fragmentation function through (?)(α_s~2): gluon initiated contribution. Phys. Rev. D, 71(5): 054021,2005.
    [213]A. E. Dorokhov, W. Broniowski, and A. E. Ruiz. Photon distribution am-plitudes and light-cone wave functions in chiral quark models. Phys. Rev. D, 74(5):054023,2006.
    [214]P. Colangelo, F. De Fazio, and W. Wang. Bs→f0(980) form factors and Bs decays into f0(980). Phys. Rev. D,81(7):074001,2010.
    [215]K-C Yang. Light-cone distribution amplitudes of axial-vector mesons. Nucl. Phys., B776(1-2):187-257,2007.
    [216]S. Gottlieb and A. S. Kronfeld. Lattice and perturbative QCD analysis of exclusive processes. Phys. Rev. D, 33(1): 227-233,1986.
    [217]V. Yu. Petrov, M. V. Polyakov, R. Ruskov, C. Weiss, and K. Goeke. Pion and photon light-cone wave functions from the instanton vacuum. Phys. Rev. D, 59(11): 114018,1999.
    [218]S.-i Nam and H.-C. Kim. Leading-twist pion and kaon distribution ampli-tudes in the gauge-invariant nonlocal chiral quark model from the instanton vacuum. Phys. Rev. D,74(7):076005,2006.
    [219]S.-i Nam and H.-C. Kim. Twist-3 pion and kaon distribution amplitudes from the instanton vacuum with flavor SU(3) symmetry breaking. Phys. Rev. D,74(9):096007,2006.
    [220]J. M. Link et al. Measurement of masses and widths of excited charm mesons D_2~*and evidence for broad states. Phys. Lett, B586(1-2):11-20, 2004.
    [221]B. Aubert et al. Observation of a narrow meson state decaying to D_s~+π0 at a mass of 2.32GeV/c2. Phys. Rev. Lett.,90(24):242001,2003.
    [222]D. Besson et al. Observation of a narrow resonance of mass 2.46GeV/c2 decaying to D_s~(*+)π0 and confirmation of the D_(sJ)~*(2317) state. Phys. Rev. D, 68(3):032002,2003.
    [223]G. S. Bali.D_(sJ)~+(2317):What can the lattice say? Phys. Rev. D,68(7): 071501,2003.
    [224]A. Dougall et al. The spectrum of Ds mesons from lattice QCD. Phys. Lett., B569(1-2):41-44,2003.
    [225]H.-W. Lin, S. Ohta, A. Soni, and N. Yamada. Charm as a domain wall fermion in quenched lattice QCD. Phys. Rev. D,74(11):114506,2006.
    [226]Y.-B. Dai, X.-Q. Li, S.-L. Zhu, and Y.-B. Zuo. Contribution of DK contin-uum in the QCD sum rules for D_(sJ)(2317). Eur. Phys. J., C55(2):249-258, 2008.
    [227]A. Hayashigaki and K. Terasaki. Charmed-meson spectroscopy in QCD sum rule, arXiv: hep-ph/0411285.
    [228]H.-Y. Cheng and W.-S. Hou. B decays as spectroscope for charmed four-quark states. Phys. Lett, B566(3-4):193-200,2003.
    [229]T. Barnes, F. E. Close, and H. J. Lipkin. Implications of a DK molecule at 2.32GeV. Phys. Rev. D,68(5): 054006,2003.
    [230]M. E. Bracco, A. Lozea, R. D. Matheus, F. S. Navarra, and M. Nielsen. Disentangling two- and four-quark state pictures of the charmed scalar mesons. Phys. Lett., B624(3-4):217-222,2005.
    [231]P. Colangelo, F. De Fazio, and A. Ozpineci. Radiative transitions of DsJ*(2317) and DsJ(2460). Phys. Rev. D, 72(7):074004,2005.
    [232]S. Narison. Open charm and beauty chiral multiplets in QCD. Phys. Lett., B605(3-4):319-325,2005.
    [233]R. M. Albuquerque, S. Narison, and M. Nielsen. SU(3) mass-splittings of the heavy-baryons octet in QCD. Phys. Lett., B684(4-5):236-245,2010.
    [234]M. Di Pierro and E. Eichten. Excited heavy-light systems and hadronic transitions. Phys. Rev. D,64(11):114004,2001.
    [235]S. C. Generalis and D. J. Broadhurst. The heavy-quark expansion and QCD sum rules for light quarks. Phys. Lett., B139(1-2):85-89,1984.
    [236]E. Bagan, J. I. Latorre, P. Pascual, and R. Tarrach. Heavy-quark expansion, factorization and 8-dimensional gluon condensates. Nucl. Phys., B254: 555-568,1985.
    [237]E. Bagan, H. G. Dosch, P. Gosdzinsky, S. Narison, and J. M. Richard. Hadrons with charm and beauty. Z. Phys., C64(1):57-71,1994.
    [238]M. Jamin and M. Munz. Current correlators to all orders in the quark masses. Z. Phys., C60(3):569-578,1993.
    [239]H.-Y. Jin, J. Zhang, Z.-F. Zhang, and T. G. Steele. SU(3)-symmetry break-ing effects and mass splitting in scalar and pseudoscalar D mesons from QCD sum rules. Phys. Rev. D,81(5):054021,2010.
    [240]L. J. Reinders, H. R. Rubinstein, and S. Yazaki. QCD contribution to vacuum polarization:The pseudoscalar unequal mass case. Phys. Lett., B97(2):257-260,1980.
    [241]T. M. Aliev and V. L. Eletsky. On leptonic decay constants of pseudoscalar D and B mesons. Yad. Fiz.,38:1537-1541,1983.
    [242]A. Khodjamirian and R. Rkckl. QCD sum rules for exclusive decays of heavy mesons, arXiv: hep-ph/9801443
    [243]Q. Mason et al. Accurate determinations of as from realistic lattice QCD. Phys. Rev. Lett.,95(5):052002,2005.
    [244]S. Narison. c, b quark masses and fDs, fBs decay constants'from pseu-doscalar sum rules in full QCD to order a_s~2. Phys. Lett., B520(1-2):115-123,2001.
    [245]N. Isgur and M. B. Wise. Weak decays of heavy mesons in the static quark approximation. Phys. Lett., B232(1):113-117,1989.
    [246]E. Eichten and B. R. Hill. An effective field theory for the calculation of matrix elements involving heavy quarks. Phys. Lett., B234(4):511-516, 1990.
    [247]H. Georgi. An effective field theory for heavy quarks at low energies. Phys. Lett, B240(3-4):447-450,1990.
    [248]M. Neubert. Heavy quark symmetry. Phys. Rept, 245(5-6): 259-396, 1994.
    [249]Y.-B. Dai, C.-S. Huang, C. Liu, and S.-L. Zhu. Understanding the D_(sJ)~+(2317) and D_(sJ)~+(2460) with sum rules in heavy quark effective theory Phys. Rev. D,68(11):114011,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700