用户名: 密码: 验证码:
配合物为前驱体的多孔稀土氧化物制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土氧化物材料,如二氧化铈、氧化镧、氧化钇等,因其在光学、催化、热学等方面的优异性能受到人们的广泛关注。近年来不同形貌和纳米结构的稀土氧化物材料被合成并见诸报道,例如稀土氧化物胶体微球、薄膜、纳米颗粒、纳米管、纳米棒或者三维大孔材料等。考虑到稀土氧化物材料的优异性能,合成具有新形貌和纳米结构的稀土氧化物材料,发展简便并适用广泛的制备方法具有重要的理论和实际意义。
     本文主要研究以水热方法合成一系列不同形貌的稀土配位聚合物材料,并以此为前驱体,通过焙烧合成相应的稀土氧化物纳米结构材料。本文使用X-射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、核磁共振(NMR)、红外光谱(IR)、氮气吸附和元素分析(EA)等表征手段对所得材料进行了详细表征。同时仔细研究了各种前驱体的生成机理和形貌控制条件,并应用这一方法合成了一系列掺杂型稀土固溶体氧化物材料。本文的主要内容有以下三部分:
     1)稀土-天冬酰胺配位聚合物大孔、微球及空心球材料及其相应稀土氧化物材料的合成。
     通过天冬酰胺与稀土离子在水热条件下反应,以自下而上(bottom-up)的无模板方式合成了一系列稀土配位聚合物材料,包括:具有取向大孔或多级结构大孔的块体材料,分散性良好的实心微球或者空心微球材料,其中大孔和空心球配位聚合物材料系首次报道。通过对跟踪实验的详细表征,证实了这些配位聚合物材料的生成过程均遵循Ostwald熟化规律,配位聚合物材料中有机配体所占的比例决定了材料的形貌和生成过程。而且通过这一方法,还可以获得稀土-稀土以及过渡金属-稀土掺杂型的配位聚合物大孔及微球材料。
     以所制备的配位聚合物材料为前驱体,通过在空气中焙烧热解,可以进一步获得相应的稀土氧化物材料,包括:具有多级孔结构的稀土氧化物材料,由纳米颗粒聚集而成的壳核型或实心微球材料,具有纳米孔壁的空壳球材料以及多种掺杂型稀土氧化物固溶体材料。紫外-可见漫反射谱和荧光谱测试用来表征了部分氧化物材料的光学性能。
     这一无模板和自下而上的组装方法体现了金属—配体相互作用与组装的高度可调性,并为合成其它成分和形貌可调的金属氧化物提供了新的有效途径。
     2)草酸根阴离子与氨基酸竞争作用调控下制备稀土基前驱体材料及其相应的稀土氧化物材料。
     通过稀土阳离子、草酸根阴离子、谷氨酰胺或者天冬酰胺在水热条件下的反应合成了稀土基前驱体化合物,包括纤维束或三维大孔材料。将这些前驱体化合物在空气中焙烧即获得了相应的稀土氧化物材料,这些氧化物材料很好的保持了其前驱体的微观形貌,而且焙烧后生成的氧化物颗粒堆积构筑形成了多孔结构。
     尽管天冬酰胺和谷氨酰胺的结构比较相近,在水热条件下,它们与稀土阳离子的络合相互作用能力却表现出了很大的差异,这一点可由ESI-MS(电喷雾质谱)的检测在分子水平上获得了证实。对于谷氨酰胺而言,它与稀土阳离子的络合作用弱于稀土阳离子和草酸根阴离子的静电相互作用力。因此,当反应体系中使用谷氨酰胺做为添加剂时,所得的前驱体材料为结晶的草酸盐纳米纤维束。然而,对于天冬酰胺,它与稀土阳离子的络合作用强于静电作用力,因此在它的反应体系中,所获得的前驱体材料是具有三维大孔结构的无定形配合物。
     基于天冬酰胺和草酸根离子对于稀土阳离子的竞争性相互作用,通过改变草酸根浓度和反应溶液pH值的方式,可以方便地调节所得前驱体材料的形貌,例如:获得了具有不同孔隙率的大孔材料,具有两种孔径分布的大孔材料和由菱形纳米片组成的面包状颗粒等。
     将这些前驱体材料在空气中焙烧后,获得了保持其前驱体形貌的多孔稀土氧化物材料。这一部分内容表明有机分子与金属阳离子络合能力的强弱可能是它们实现对于金属盐前驱体形貌控制的关键因素。
     3)以EDTA为配体合成了一系列结晶稀土配位聚合物材料及其相应的稀土氧化物材料。
     在水热条件下,EDTA可以与多种稀土阳离子形成结晶稀土配体聚合物材料,这些稀土配位聚合物材料具有纳米纤维和微片两类形貌。与前述各种无定形配位聚合物不同的是,结晶配位聚合物可以通过EA,XPS,TGA等测试手段的综合应用,明确得出表示其成分的化学式。跟踪实验证实了EDTA配位聚合物材料的形成过程遵循Ostwald熟化规律。
     以EDTA为配体还可以合成稀土—稀土,稀土—过渡金属配位聚合物材料,值得注意的是这些掺杂型配位聚合物材料的形貌与结构和掺杂金属的种类,浓度具有明显的相关性。例如:锰-镧配位聚合物微片,随着锰所占比例(摩尔量)的增加,所得微片材料的尺寸明显减小。
     将这些结晶配位聚合物材料在空气中焙烧,即可进一步获得相应的多孔稀土氧化物纤维、微片材料。在焙烧所得的样品中,大部分较好的保持了前驱体的形貌。
Lanthanide oxides and mixed oxides such as:ceria, lanthanum oxide, yttria etc., have wide applications due to their luminescent, catalytic and thermal properties. As a result, different morphologies of colloid spheres, thin films, nanoparticles, nanotubes, nanorods or microrods, and 3D-macroporous materials have been reported in recent years. Considering excellent properties of lanthanide oxides, It is very important to fabricate lanthanide oxides with novel morphology and structure using simple and universal synthetic method.
     In this dissertation, we focus on a bottom-up, template-free fabrication of a series lanthanide based precursors and their corresponding lanthanide oxides. By a facile hydrothermal reaction with lanthanide ions and organic ligands e.g.:amino acids, lathandie based metal-organic compounds could be prepared, and with these compounds as precursors, lanthanide oxides were obtained by calcination. The products were carefully characterized by various methods, including Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared spectroscopy (FT-IR)^ X-Ray Powder Diffraction (XRD), N2 adsorption-desorption, UV-Vis diffuse reflection spectroscopy, Thermo Gravimetric-Differential Thermal Analysis (TG-DTA) and X-ray Photoelectron Spectroscopy (XPS), Elemental analysis(EA) etc., and the formation mechanisms and morphology control factors were studied in detail meanwhile. Moreover, series of doped lanthanide oxide solid solution were also prepared using this method. The main content of the thesis is composed of the following three parts:
     1) A series of unique lanthanide-organic coordination polymer products were fabricated by a bottom-up and template-free method of hydrothermal reaction with lanthanide ions and asparagine. The as-prepared products included macroporous foam with aligned or hierarchical macropores, dispersed microspheres and hollow spheres, among them, the macroporous foam and hollow spheres coordination polymers were first reported.
     From the time-dependent experiments of all the as-synthesized coordination polymers, it is proved that the formation mechanisms of these products were Ostwald ripening process, and organic content of coordination polymers was found as the key point for the morphology and the formation process of the products. Moreover, using this template free method, lanthanide mixed coordination polymers and transition metal doped lanthanide coordination polymers could also be prepared.
     Furthermore, with these coordination polymer products as precursors, corresponding lanthanide oxides were obtained after calcination, such as hierarchical meso-macroporous lanthanide oxides foams, core-shell microspheres assembled by nanoparticles, hollow spheres with porous walls and many kinds of doped lanthanide oxides materials. Among them, some products with luminescent properties were test using UV-Vis and Fluorescence instruments.
     Our work displays the extensive tailorability of metal-ligand interaction, and may open up new possibilities for the fabrication of metal oxides with well-defined morphologies and diverse compositions.
     2) Lanthanide based precursors (including nanofibers and 3D-macroporous foam) were synthesized by a hydrothermal reaction with lanthanide salts, sodium oxalate and asparagine (or glutamine). With these compounds as precursors, lanthanide oxides were obtained after calcination which remained the morphology of their precursors. Moreover, assembled nanoparticles gave rise to a porous structure for these lanthanide oxides materials.
     Although asparagine and glutamine have similar structure, they exhibited greatly different complexation abilities with lanthanide cations, and this point was further confirmed by ESI-MS detection at the molecular level。For glutamine, its complex ability with lanthanide cations was weaker than the electrostatic interactions between oxalate anions and lanthanide cations. So when using glutamine, the as-prepared product was crystalline oxalate nanofibers. While for asparagine, its complex ability with lanthanide cations was stronger than the electrostatic interaction. So when using asparagine, the product was amorphous lanthanide organic precursors with 3D macroporous structures.
     Variation of oxalate anion concentration or the pH value of the reaction solution could tune the morphology of the products, e.g.:macroporous foams with tunable porosity, macroprous foam with bimodal macropores and microparticles assembled by rhombic nanoplates were prepared.
     With these compounds as precursors, porous lanthanide oxides were obtained which remained the morphology of their precursors. Our work suggests that the complexation ability of organic molecules with metal cations could be a crucial factor for morphological control of the precursors.
     3) Crystalline lanthanide coordination polymers including nanofibers and microflakes were fabricated under hydrothermal conditions with EDTA and lanthanide cations. Time dependent experiments were performed and it is proved that the formation mechanism of these crystalline coordination polymers was Ostwald ripening. Here the chemical compositions of coordination polymers could be calculated assisted by EA, XPS and TGA test.
     Moreover, this method was expanded to prepare lanthanide-lanthanide and lanthanide-transition metal coordination polymers. It is interesting to note that different doped metal cations and their quantity could influence the morphology of as-prepared products. For example, the size of Mn-La microflakes was decreased when the doped Mn cations increased.
     Furthermore, porous lanthanide oxides nanofibers and microflakes could be obtained by thermolysis of their corresponding precursors. However, minor lanthanide oxides could not remain the morphology of their precursors after calcination, and this problem should be solved in future in our lab.
引文
[1]车云霞,申泮文,化学元素周期系,南开大学出版社,1999,244-261
    [2]郑子樵,李红英,稀士功能材料,2006
    [3]刘光华,稀士固体材料学,机械工业出版社,1997
    [4]Adachi G, Imanaka N, The Binary Rare Earth Oxides, Chem Rev,1998,98:1479~1514
    [5]Tschope A, Ying J K, Synthesis of nanostructured catalytic materials using a modified magnetron sputtering technique, Nanostruct Mater,1994,4:617~623
    [6]Li Y X, Zhou X Z, Wang Y, et al., Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide, Materials Letters,2004,58:245~249
    [7]Zhang D E, Ni X M, Zheng H G, et al. ,Fabrication of rod-like CeO2:Characterization, optical and electrochemical properties, Solid State Sci,2006,8:1290~1293
    [8]Idakiev V, Tabakova T, Tenchev K, et al.,Gold nanoparticles supported on ceria-modified mesoporous-macroporous binary metal oxides as highly active catalysts for low-temperature water-gas shift reaction, J Mater Sci,2009,44:6637-6643
    [9]Dikmen S, Aslanbay H, Dikmen E, et al., Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell, J Power Sources,2010,195,2488~2495
    [10]Hirano M, Kato E, Hydrothermal Synthesis of Cerium(IV) Oxide, J Am Ceram Soc 1996, 79:777~780
    [11]Chebgyun W, Qian Y, Changsui W, Li Y, et al., A novel method to prepare nanocrystalline (7 nm) ceria, Mater Sci Eng B,1996,39:160~162
    [12]毓娟,揭雪飞,董新法,等,CeO2在催化氧化反应中的应用电源技术,2002,26(1):43-46
    [13]Dai H X, Ng C F, Au C T, SrC12-Promoted REOx (RE DCe, Pr, Tb) Catalysts for the Selective Oxidation of Ethane:A Study on Performance and Defect Structures for Ethene Formation. J Cata,2001.199:177~192
    [14]Wang K, Ji S F, Shi X J, et al., Autothermal oxidative coupling of methane on the SrC03/Sm2O3 catalysts, Cata Commun,2009,10:807~810
    [15]Zhou H P, Si R, Song W G, et al., General and facile synthesis of ceria-based solid solution nanocrystals and their catalytic properties, J Solid State Chem,2009,182:2475~2485
    [16]Delannoy L, Fajerwerg K, Lakshmanan P, et al., Supported gold catalysts for the decomposition of VOC:Total oxidation of propene in low concentration as model reaction, Applied Catalysis B:Environmental,2010,94:117~124
    [17]郭耘,卢冠忠,稀土催化材料的应用及研究进展.中国稀土学报,2007,25:1-15
    [18]赵全中,胡辉,余福胜等,稀土氧化物催化还原烟气中的SO2,化工环保,2007,27:160-163
    [19]Ferreira A C. Ferraria A M, do Rego A M B, et al., Partial oxidation of methane over bimetallic nickel-lanthanide oxides, J Alloy Compound,489 (1):316~323
    [20]缪清,熊国兴,盛世善,等,碱金属和稀土金属氧化物修饰的NiO/Al2O3催化剂上甲烷部分氧化剂合成,科学通报,1997,45(5):495-497
    [21]付鹏,徐志军,初瑞清,稀土氧化物在陶瓷材料中应用的研究现状及发展前景,陶瓷,2008,12:7-10
    [22]唐志阳,稀土氧化物在陶瓷中的应用,山东陶瓷,2005,28(2):16-19
    [23]栗正新,La2O3、CeO2、Y2O3对陶瓷磨具结合剂性能影响的研究,金刚石与磨料磨具工程,2007,4:51-54
    [24]杨飒,周美玲,王金淑,等,复合稀土氧化物2钼2铼金属陶瓷阴极的次级发射性能,中国有色金属学报,2004,14(1):18-22
    [25]Cao XQ, Vassen R, Fischer W, et al., Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications, Adv Mater,2003,15: 1438~1442
    [26]顾牡,邱隆清,刘小林,等,Gd2O3:Eu3+溶胶—凝胶薄膜发光特性研究,光谱学与光谱分析,2005,25(8):1190-1194
    [27]黄永平,Y203:Eu3+薄膜的制备及发光性能的研究,感光科学与光化学,2007,25(2):111-114
    [28]宋宏伟,稀土掺杂氧化物纳米发光材料研究,发光学报,2008,29(6):922-934
    [29]Adachi GY, Imanaka N, Tamura S, Ionic Conducting Lanthanide Oxides, Chem Rev 2002,102:2405~2429
    [30]Huang W, Shuk P, Greenblatt M, Hydrothermal Synthesis and Properties of Ce1-xSmxO2-x/2 and Ce1-xCaxO2-x Solid Solutions, Chem Mater,1997,9:2240~2245
    [31]Alcock C B, Fergus J W, Wang, L, The electrolytic properties of LaYO3 and LaAlO3 doped with alkaline-earth oxides, Solid State Ionics 1992,51:291~295
    [32]Goutenoire F, Isnard O; Retoux R, et al., Crystal Structure of La2Mo2O9, a New Fast Oxide-Ion Conductor, Chem Mater,2000,12:2575~2580
    [33]Takashima M, Yonezawa S, Tanioka T, et al., Oxide ion conductive structure and chemical stability of Nd2Gd203F6, Solid State Sci 2000,2:71~76
    [34]M.Yada, H.Kitamura, M.Maehida, etal.Yttritun—Based Porous materials temPlated by anionic SUrfaetant assemblies, Inorg.Chem,1998,37:6470-6478
    [35]M Yada, H.Kitamura, A.Iehinose, etal.MesoPorous magnetie materials based on rare earth oxides, Angew.Chem.Int.Ed,1999,38(23):3506~3512.
    [36]Terribile D, Trovarelli A, Leitenburg C D, et al., Unusual Oxygen Storage/Redox Behavior of High-Surface-Area Ceria Prepared by a Surfactant-Assisted Route, Chem Mater,1997,9: 2676~2678
    [37]Daniel M L, Kevin M R, Michael A M, Preparation of ordered mesoporous ceria with enhanced thermal stability, J Mater Chem,2002,12:1207~1212
    [38]杨儒,刘建红,李敏,非表面活性剂合成CeO2介孔材料,中国稀土学报,2004,22(6):739-746
    [39]杨儒,刘建红,李敏,介孔稀土氧化物的制备方法, 中国专利,CN1511787A,2004,7:14-21
    [40]Yoland C, Beatriz J, Cedric B, et al., Synthesis, characterization and optical properties of Eu2O3 mesoporous thin films, Nanotechnology,2007,18:055705~055713.
    [41]Jan R, Hanno S, Tanya T, et al., mesoporous CeO2:synthesis by nanocasting, characterization and catalytic properties, Micro Meso Mater,2007,101:335~346
    [42]Zhang GJ, Shen ZR, Liu M, et al.,Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids, J Phys Chem B,2006,110, 25782~25790.
    [43]Zhang Y G, Lei Z B, Li J M, et al., A new route to three-dimensionally well-ordered macroporous rare-earth oxides, New J Chem,2001.25:1118-1120
    [44]Wu Q Z, Shen Y, Liao J F, et al., Synthesis and characterization of three-dimensionally ordered macroporous rare earth oxides, Materials Letters,2004, 58:2688~2691
    [45]Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation, Applied Catalysis B:Environmental,2009,91:11-20
    [46]Ma T Y, Yuan Z Y, Cao J L, Hydrangea-Like Meso-/Macroporous ZnO-CeO2 Binary Oxide Materials:Synthesis, Photocatalysis and CO Oxidation, Eur J Inorg Chem, 2010,716~724
    [47]Suzuki K, Sinha A K, Monodisperse, bimodal mesoporous ceria catalysts and adsorbents for air Purification, J Mater Chem,2007,17,2547~2551
    [48]Wang H, Yu M, Lin CK, et al., Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@Si02 Particles with Core-shell Structure, J Phys Chem C,2007. 111: 11223~11230
    [49]Ma Z Y, Dosev D, Nichkova M, et al., Synthesis and bio-functionalization of multifunctional magnetic Fe3O4@Y2O3:Eu nanocomposites, J Mater Chem,2009.19: 4695~4700
    [50]Feldmann C, Polyol-Mediated Synthesis of Nanoscale Functional Materials, Adv Funct Mater,2003,13:101~107
    [51]Liang X, Wang X, Zhuang Y, Formation of CeO2-ZrO2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect, J Am Chem Soc,2008,130: 2736~2737
    [52]Li J G, Li X D, Sun X D, et al., Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping, J Phys Chem C 2008,112:11707~11716
    [53]Feng X D, Sayle D C. Wang Z L, et al., Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science,2006,312:1504~1508
    [54]Kang YC, Roh HS, Park SB, et al., Preparation of Y2O3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis, Adv Mater, 2000,12:451~453
    [55]Kang HS, Kang YC, Koo HY, et al., Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution, Materials Science and Engineering B-Solid State Materials For Advanced Technology,2006,127:99~104
    [56]Titirici M M, Antonietti M, Thomas M, A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach, Chem Mater,2006,18: 3808~3812
    [57]Shchukin D G, Caruso R A, Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration, Chem Mater, 2004,16:2287~2292
    [58]Sun X M, Liu J F, Li Y D, Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres, Chem Eur J,2006,12: 2039~2047
    [59]Chen C H, Abbas S F, Morey A, Controlled Synthesis of Self-Assembled Metal Oxide Hollow Spheres Via Tuning Redox Potentials:Versatile Nanostructured Cobalt Oxides, Adv Mater,2008,20,1205~1209
    [60]Vantomme A, Yuan Z Y, Du G H, Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2 Nanorods, Langmuir,2005,21:1132~1135
    [61]Sun C., Li H., Wang Z. X., et al., Synthesis and characterization of polycrystalline CeO2 nanowires, Chem Letter,2004,33:662~663
    [62]Wu G S, Zhang L D, Cheng B C, et al., Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach, J Am Chem Soc,2004,126 5976~5977.
    [63]Xu A W, Fang Y P, You L P, et al., A Simple Method to Synthesize Dy(OH)3 and Dy2O3 Nanotubes,J Am Chem Soc,2003,125:1494~1495.
    [64]Tang B, Zhuo L, Ge J, A surfactant-free route to single-crystalline CeO2 nanowires, Chem Commun 2005,3565~3567
    [65]Tang C C, Bando Y, Liu B D,Cerium oxide nanotubes prepared from cerium hydroxide nanotubes, Adv Mater 2005,17:3005~3009
    [66]Bai X, Song H W, Yu L X, et al., Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method, J Phys Chem B,2005,109:15236-15242.
    [67]Pol V G, Palchik O, Gedanken A,et al., Synthesis of Europium oxide nanorods by ultrasound irradiation, J Phys Chem B,2002,106:9737~9743.
    [68]Suresh C K, Swanand D P, Sameer D, et al., Spontaneous self-assembly of Cerium oxide nanoparticles to nanorods through supraaggregate formation, J Phys Chem B, 2005,109:6936~6939.
    [69]Han W Q, Wu L J, Zhu Y M, Formation and oxidation state of CeO2-x nanotubes, J Am Chem Soc,2005,127:12814~12815
    [70]Chen P L, Chen I W, Reactive Cerium(Ⅳ) oxidepowders by the homogeneous precipitation method, J Am Ceram Soc1993,76:1577~1583
    [71]Hsu W P, Ronnqist L, Matijevic E, Preparation and properties omonodispersed colloidal particles of lanthanide compounds.2. Cerium(1V), Langmuir,1988,4:31~37
    [72]Hirano M, Kato E, Hydrothermal Synthesis of Cerium(Ⅳ) oxide, J Am Ceram Soc,1996, 79:777~780
    [73]Zhou Y, Phillips R J, Switzer J A, Electrochemical synthesis and sintering of nanocrystalline Cerium(Ⅳ) oxide powders, J Am Ceram Soc 1995,78:981~985
    [74]Yu T, Joo J, Park Y I, et al., Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes, Angew Chem Int Ed,2005,44: 7411~7414
    [75]Masui T, Fujiwara K, Machida K, et al., Characterization of Cerium(Ⅳ) Oxide Ultrafine Particles Prepared Using Reversed Micelles, Chem Mater,1997,9:2197~2204
    [76]Wang F, Liu X G, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem Soc Rev,2009,38:976~989
    [77]Lim S F, Riehn R, Ryu, W S, et al., In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans, Nano Lett,2006,6:169~174
    [78]Vetrone F, Boyer J C, Capobianco J A, et al., Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals, J Appl Phys,2004,96: 661~667
    [79]Luo X and Cao W, Ethanol-assistant solution combustion method to prepare La2O2S:Yb,Pr nanometer phosphor, J Alloys Compd,2008,460:529~534
    [80]Xu L, Yu Y, Li X, et al., Synthesis and upconversion properties of monoclinic Gd2O3:Er3+ nanocrystals, Opt Mater,2008,30:1284~1288
    [81]Milanov A P, Toader T, Parala H, et al., Lanthanide Oxide Thin Films by Metalorganic Chemical Vapor Deposition Employing Volatile Guanidinate Precursors, Chem Mater,2009, 21:5443~5455
    [82]Yu R B, Yan L, Zheng P, et al.,Controlled Synthesis of CeO2 Flower-Like and Well-Aligned Nanorod Hierarchical Architectures by a Phosphate-Assisted Hydrothermal Route, J Phys
    Chem C,2008,112:19896-19900
    [83]Lehn J M, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew Chem Int Engl,1989,27:89~112
    [84]Batten S R, Robson R, Interpenetrating Nets:Ordered, Periodic Entanglement, Angew Chem Int Ed,1998,37:1460~1490
    [85]Nonat A M, Harte A J, Senechal-David K, et al.,Luminescent sensing and formation of mixed f-d metal ion complexes between a Eu(Ⅲ)-cyclen-phen conjugate and Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) in buffered aqueous solution, Dalton Trans,2009,24:4703~4711
    [86], Heterobimetallic complexes of lanthanide and lithium metals with dianionic guanidinate ligands:Syntheses, structures and catalytic activity for amidation of aldehydes with amines, J Oragnometallic Chem,2009,2010,695:747~752
    [87]Huang Y G, Jiang F L, Hong M C, Magnetic lanthanide-transition-metal organic-inorganic hybrid materials:From discrete clusters to extended frameworks, Coord Chem Rev,2009, 253:2814~2834
    [88]黄春辉,易涛,徐光宪,稀士配合物的配位数和配位原子,今日化学,1990,5:5-8
    [89]Tsukube H, Shinoda S, Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates, Chem Rev,2002,102:2389~2404
    [90]Chen L, Bu X H, Histidine-Controlled Two-Dimensional Assembly of Zinc Phosphite Four-Ring Units, Chem Mater,2006,18:1857~1860
    [91]Li Q Y, Yang G W, Tang Y X, et al., Constructions of a Set of New Lanthanide-Based Coordination Polymers with Hatza Ligands (Hatza=5-Aminotetrazole-l-Acetic Acid), Cryst Growth Des,2010,10:165~170
    [92]Wang N, Yue S T, Liu Y L, et al., Hydrothermal Syntheses, Crystal Structure, and Magnetic Characterization of Two 3d-4f Heterometallic Coordination Polymers, Cryst Growth Des, 2009,9:368~371
    [93]Sun X P, Dong S J, Wang E K, Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature, J Am Chem Soc 2005,127:13102~13103
    [94]Oh M, Mirkin C A, Chemically tailorable colloidal particles from infinite coordination polymers, Nature,2005,438:651~654
    [95]Oh M, Mirkin C A, Ion exchange as a way of controlling the chemical compositions of nano- and microparticles made from infinite coordination polymers, Angew Chem Int Ed, 2006,45:5492~5494
    [96]Jeon Y M, Heo J, Mirkin C A, Dynamic interconversion of amorphous microparticles and crystalline rods in salen-based homochiral infinite coordination polymers, J Am Chem Soc, 2007,129:7480~7481
    [97]Jeon Y M, Armatas G S, Heo J, et al., Amorphous infinite coordination polymer microparticles:A new class of selective hydrogen storage materials, Adv Mater,2008,20: 2105~2110
    [98]Rieter W J, Pott K M, Taylor K M L, et al., Nanoscale Coordination Polymers for Platinum-Based Anticancer Drug Delivery, J Am Chem Soc,2008,130:11584~11585
    [99]Imaz 1, Maspoch D, Rodriguez-Blanco C, et al., Valence-tautomeric metal-organic nanoparticles, Angew Chem Int Ed,2008,47:1857~1860
    [100]Rieter W J, Taylor K M L, An H, et al., Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents. J Am Chem Soc,2006,128:9024~9025.
    [101]Lin W B, Rieter W J, Taylor K M L, Modular Synthesis of Functional Nanoscale Coordination Polymers, Angew Chem Int Ed,2008,47:2-11
    [102]Taylor, K M L Jin A, Lin W B. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging, Angew Chem Int Ed,2008. 47:7722~7725
    [103]Jung S, Oh M, Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles, Angew Chem Int Ed,2008,47: 2049~2051
    [104]Park K H, Jang K, Son S U, et al., Self-Supported Organometallic Rhodium Quinonoid Nanocatalysts for Stereoselective Polymerization of Phenylacetylene, J Am Chem Soc, 2006.128:8740~8741
    [105]Coronado E, Galan-Mascaros J R, Monrabal-Capilla M, et al., Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, Adv Mater, 2007,19:1359~1361
    [106]Rieter W J, Taylor K M L, Lin W B, Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. J Am Chem Soc,2007,129:9852~9853
    [107]Jung S, Cho W, Lee H J, et al., Self-Template-Directed Formation of Coordination-Polymer Hexagonal Tubes and Rings, and their Calcination to ZnO Rings, Angew Chem Int Ed,48:1459-1462
    [108]Cho W, Lee Y H, Lee H J, et al.,Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology, Chem Commun. 2009,4756-4758
    [109]Blanford C F, Yan H, Schroden R C, et al, Gems of Chemistry and Physics:Macroporous Metal Oxides with 3D Order, Adv Mater,2001,13:401~407
    [110]Chandrappa G T, Steunou N, Livage J, Macroporous crystalline vanadium oxide foam, Nature,2002,416:702~702
    [111]Walsh D, Arcelli L, Ikoma T, et al, Dextran templating for the synthesis of metallic and metal oxide sponges, Nat Mater,2003,2:386~U5
    [112]Zhang H F, Hussain I, Brust M, et al, Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles, Nat Mater,2005,4: 787~793
    [113]Yuan Z Y, Su B L, Insights into hierarchically meso-macroporous structured materials, J Mater Chem,2006,16:663~677
    [114]Lee J, Kim J, Hyeon T, Recent Progress in the Synthesis of Porous Carbon Materials, Adv Mater,2006,18:2073~2094
    [115]Toberer E S, Schladt T D, Seshadri R, Macroporous Manganese Oxides with Regenerative Mesopores, J Am Chem Soc,2006,128:1462~1463
    [116]Louer D. Auffredic J P, Langford J I, et al., A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line-broadening analysis, J Appl Crystallogr,1983,16,183~191.
    [117]Sankaranarayanan V K, Gajbhiye N S, Thermal decomposition of dysprosium iron citrate, Thermochim Acta,1989,153,337~348
    [118]Sankaranarayanan V K, Gajbhiye N S, Low-Temperature Preparation of Ultrafine Rare-Earth Iron Garnets, J Am Ceram Soc,1990,73,1301
    [119]Langford J I, Boultif A, Auffredic J P,et al., The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide, J Appl Crystallogr,1993,26,22-33.
    [120]Guillou N, Auffredic J P, Louer D, The early stages of crystallite growth of CeO2 obtained from a cerium oxide nitrate, Powder Diffr,1995,10,236~240
    [121]Fierro G, Morpurgo S, Jacono M L, M et al., Preparation, characterisation and catalytic activity of CuZn-based manganites obtained from carbonate precursors,Appl Catal, A,1998, 166,407~417
    [122]Traversa E, Nunziante P, Sakamoto M, et al., Synthesis and structural characterization of trimetallic Perovskite-type oxides, LaFexCo1-xO3, by the thermal decomposition of cyano complexes, La[FexCo1-x(CN6)]center dot nH(2)O, Mater Res Bullin,1998,33,673~681.
    [123]Zhang G J, Shen Z R, Liu M, et al..,Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids, J Phys Chem B,2006,110, 25782~25790.
    [124]Liu M, Zhang G J, Shen Z R, et al..,Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3, Solid State Sci,2009,11,118~128.
    [1]Wu G S, Zhang L D, Cheng B C, et al, Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach, J Am Chem Soc,2004,126:5976~5977
    [2]Si R, Zhang Y W, You L P, et al, Rare-Earth Oxide Nanopolyhedra, Nanoplates, and Nanodisks, Angew Chem Int Ed,2005,44:3256~3260
    [3]Yada M, Kitamura H, Ichinose A, et al, Mesoporous Magnetic Materials Based on Rare Earth Oxides, Angew Chem Int Ed,1999,38:3506~3510
    [4]Li G J, Li X D, Sun X D, et al, Uniform Colloidal Spheres for (Y1-xGdx)2O3 (x=0-1): Formation Mechanism, Compositional Impacts, and Physicochemical Properties of the Oxides, Chem Mater,2008,20:2274~2281
    [5]Masuda Y, Yamagishi M, Koumoto K, Site-Selective Deposition and Micropatterning of Visible-Light-Emitting Europium-Doped Yttrium Oxide Thin Film on Self-Assembled Monolayers, Chem Mater,2007,19:1002~1007
    [6]Goldys E M, Drozdowicz-Tomsia K, Jinjun S, et al, Optical Characterization of Eu-Doped and Undoped Gd2O3 Nanoparticles Synthesized by the Hydrogen Flame Pyrolysis Method J Am Chem Soc,2006,128:14498~14505
    [7]Mao Y, Huang J Y, Ostroumov R, et al, Synthesis and Luminescence Properties of Erbium-Doped Y2O3 Nanotubes, J Phys Chem C,2008,112:2278~2285
    [8]Yang J, Li C, Cheng Z,et al, Size-Tailored Synthesis and Luminescent Properties of One-Dimensional Gd2O3:Eu3+ Nanorods and Microrods, J Phys Chem C,2007,111: 18148~18154
    [9]Zhang Y G, Lei Z B, Li J M, et al, A new route to three-dimensionally well-ordered macroporous rare-earth oxides, New J Chem,2001,25:1118~1120
    [10]Blanford C F, Yan H, Schroden R C, et al, Gems of Chemistry and Physics:Macroporous
    Metal Oxides with 3D Order, Adv Mater,2001,13:401~407
    [11]Chandrappa G T, Steunou N, Livage J, Macroporous crystalline vanadium oxide foam, Nature,2002,416:702
    [12]Walsh D, Arcelli L, Ikoma T, et al, Dextran templating for the synthesis of metallic and metal oxide sponges, Nat Mater,2003,2:386~U5
    [13]Zhang H F, Hussain 1, Brust M, et al, Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles, Nat Mater,2005,4: 787~793
    [14]Yuan Z Y, Su B L, Insights into hierarchically meso-macroporous structured materials, J Mater Chem.2006,16:663~677
    [15]Lee J, Kim J, Hyeon T, Recent Progress in the Synthesis of Porous Carbon Materials, Adv Mater,2006,18:2073~2094
    [16]Toberer E S, Schladt T D, Seshadri R, Macroporous Manganese Oxides with Regenerative Mesopores, J Am Chem Soc,2006,128:1462~1463
    [17]Toberer E S, Seshadri R, Template-free routes to porous inorganic materials, Chem Commun,2006,3159~3165
    [18]Carn F, Saadaoui H, Masse P,et al, Three-Dimensional Opal-Like Silica Foams, Langmuir, 2006,22:5469~5475
    [19]Sun W, Puzas J E, Sheu T J, et al, Nano- to Microscale Porous Silicon as a Cell Interface for Bone-Tissue Engineering, Adv Mater,2007,19:921~924
    [20]Ma Y, Dong W F, Hempenius M A, et al, Layer-by-Layer Constructed Macroporous Architectures, Angew Chem Int Ed,2007,46:1702~1705
    [21]Zhou J F, Zhou M F, Caruso R A, Agarose Template for the Fabrication of Macroporous Metal Oxide Structures, Langmuir,2006,22:3332~3336
    [22]Moulton B, Zaworotko M J, Coordination polymers:toward functional transition metal sustained materials and supermolecules, Curr Opin Solid State Mater Sci,2002,6: 117~123
    [23]James S L, Metal-organic frameworks, Chem Soc Rev,2003,32:276~288
    [24]Hong M C, Inorganic-Organic Hybrid Coordination Polymers:A New Frontier for Materials Research, Cryst Growth Des,2007,7:10~14
    [25]Oh M, Mirkin C A, Chemically tailorable colloidal particles from infinite coordination polymers, Nature,2005,438:651~654
    [26]Sun X P, Dong S J, Wang E K, Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature, J Am Chem Soc,2005,127:13102~13103
    [27]Oh M, Mirkin C A, Ion Exchange as a Way of Controlling the Chemical Compositions of Nano- and Microparticles Made from Infinite Coordination Polymers, Angew Chem Int Ed, 2006,45:5492~5494
    [28]Ye Q, Song Y M, Wang G X, et al, Ferroelectric Metal-Organic Framework with a High Dielectric Constant, J Am Chem Soc,2006,128:6554~6555
    [29]Maeda H, Hasegawa M, Hashimoto T, et al, Nanoscale Spherical Architectures Fabricated by Metal Coordination of Multiple Dipyrrin Moieties, J Am Chem Soc,2006,128: 10024~10025
    [30]Rieter W J, Taylor K M L, An H, et al, Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents, J Am Chem Soc,2006,128:9024~9025
    [31]Jeon Y M, Heo J, Mirkin C A, Dynamic Interconversion of Amorphous Microparticles and Crystalline Rods in Salen-Based Homochiral Infinite Coordination Polymers, J Am Chem Soc,2007,129:7480~7481
    [32]Luisi B S, Rowland K D, Moulton B, Coordination polymer gels:synthesis, structure and mechanical properties of amorphous coordination polymers, Chem Commun,2007, 2802~2804
    [33]Rieter W J, Taylor K M L, Lin W B, Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing, J Am Chem Soc,2007,129:9852~9853
    [34]Taylor K M L, Rieter W J, Lin W B, Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging, J Am Chem Soc,2008,130:14358~14359
    [35]Giulio G T G, Luigi D, Kinetics and mechanism of the thermal dehydration of 1. asparagine monohydrate microcrystals and single crystals:Role of ageing, Thermochimica Acta, 1998,311:129~140
    [36]Venyaminov S Y, Kalnin N N, Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. Ⅱ. Amide absorption bands of polypeptides and fibrous proteins in α-,β-, and random coil conformations, Biopolymers,1990,30:1259~1271
    [37]Nomiya K, Yokoyama H, Syntheses, crystal structures and antimicrobial activities of polymeric silver(I) complexes with three amino-acids [aspartic acid (H2asp), glycine (Hgly) and asparagine (Hasn)], J Chem Soc, Dalton Trans,2002,2483~2490
    [38]Ramaswamy S, Umadevi M, Rajaram R K, et al,Infrared and Raman spectral studies of L-ornithine nitrate, J Raman Spectroscopy,2003,34:806~812
    [39]Podstawka E, S'wiatlowska M, Borowiec E, et al, Food additives characterization by infrared, Raman, and surface-enhanced Raman spectroscopies, J Raman Spectroscopy, 2007,38:356~363
    [40]Zahn D, On the Role of Water in Amide Hydrolysis, Eur J Org Chem,2004,4020~4023
    [41]Gorb L, Asensio A, Tunon I, Ruiz-Lopez M F, Chem Eur J,2005,11:6743
    [42]Yang H G, Zeng H C, Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening, J Phys Chem B,2004,108:3492~3495
    [43]Chang Y, Teo J J, Zeng H C, Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres, Langmuir,2005,21:1074~1079
    [44]Lou X W, Wang Y, Yuan C, et al, Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity, Adv Mater,2006,18:2325~2329
    [45]Zeng H C, Synthetic architecture of interior space for inorganic nanostructures, J Mater Chem,2006,16:649~662
    [46]Yin Y D, Rioux R M, Erdonmez C K, et al, Formation of hollow nanocrystals through the nanoscale Kirkendall Effect, Science,2004,304:711~714.
    [47]Zeng S Y, Tang K B,Li T W, et al, Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment. J Phys Chem C,2007,111:10217~10225
    [48]徐如人,庞文琴,分子筛与多孔材料化学,2004,146-148.
    [49]Corma A, Atienzar P, Garcia H, et al., Hierarchically mesostructured doped CeO2 with potential for solar-cell use,2004,3:394~397
    [50]Chou T P, Zhang Q F, Fryxell G E, et al., Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency, Adv Mater,2007,19: 2588~2592
    [51]Zhang H, Xu Y, Yang W, et al, Dual-Lanthanide-Chelated Silica Nanoparticles as Labels for Highly Sensitive Time-Resolved Fluorometry, Chem Mater,2007,19:5875~5881
    [1]Davis M E, Ordered porous materials for emerging applications, Nature,2002,417,813~821
    [2]Lyons D M, Ryan K M, Morris M A, Preparation of ordered mesoporous ceria with enhanced thermal stability, J Mater Chem,2002,12,1207~1212
    [3]Hu Y S, Guo Y G, Sigle W, et al., Electrochemical lithiation synthesis of nanoporous
    materials with superior catalytic and capacitive activity, Nat Mater,2006,5,713~717.
    [4]Arico A S, Bruce P, Scrosati B, et al., Nanostructured materials for advanced energy
    conversion and storage devices, Nat Mater,2005,4,366~377.
    [5]Tebby Z, Babot O, Toupance T, et al., Low-Temperature UV-Processing of Nanocrystalline Nanoporous Thin TiO2 Films:An Original Route toward Plastic Electrochromic Systems, Chem Mater,2008,20,7260~7267
    [6]Cannas C, Ardu A, Musinu A, et al., Spherical Nanoporous Assemblies of Iso-Oriented Cobalt Ferrite Nanoparticles:Synthesis, Microstructure, and Magnetic Properties, Chem Mater, 2008,20,6364~6371
    [7]Zhu R, Jiang C Y, Liu B, et al., Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye, Adv Mater, 2009,21,994~1000
    [8]Sun T, Donthu S, Sprung M, et al.,,Thin Solid Films,2009,57,1095
    [9]Li S, Li Z W, Tay Y Y, et al., Growth Mechanism and Photonic Behaviours of Nanoporous ZnO Microcheerios, Cryst Growth Des,2008,8,1623~1627
    [10]Ren T Z, Yuan Z Y, Su B L, Hierarchical microtubular nanoporous zirconia with an extremely high surface area and pore volume, Chem Phys Lett,2004,388,46~49.
    [11]Antonelli D M, Ying J Y, Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism, Angew Chem, Int Ed Engl,1996,35,426~430
    [12]Antonelli D M, Ying J Y, Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves, Chem Mater,1996,8,874~881
    [13]Yang P D, Zhao D Y, Margolese D I, et al., Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework, Chem Mater,1999,11,2813~2826
    [14]Jones B H, Lodge T P, High-Temperature Nanoporous Ceramic Monolith Prepared from a Polymeric Bicontinuous Microemulsion Template, J Am Chem Soc,2009,131,1676~1677
    [15]Sarkar J, John V T, He J B, et al., Surfactant-Templated Synthesis and Catalytic Properties of Patterned Nanoporous Titania Supports Loaded with Platinum Nanoparticles, Chem Mater,2008,20,5301~5306
    [16]Katou T. Lee B, Lu D L, et al., Highly Enantioselective Phase-Transfer-Catalytic Alkylation of 2-Phenyl-2-oxazoline-4-carboxylic Acid tert-Butyl Ester for the Asymmetric Synthesis of a-Alkyl Serines, Angew Chem, Int Ed,2003,42,2382-2385
    [17]Tian B Z, Liu X Y, Solovyov L A, et al., Facile Synthesis and Characterization of Novel Mesoporous and Mesorelief Oxides with Gyroidal Structures, J Am Chem Soc,2004,126, 865~875
    [18]Holland B T, Blanford C F, Do T, et al., Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites, Chem Mater,1999,11,795~785
    [19]Lai X Y, Li X T, Geng W C, et al., Ordered mesoporous copper oxide with crystalline walls, Angew Chem, Int Ed,2007,46,738~741.
    [20]Louer D, Auffredic J P, Langford J I, et al., A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line-broadening analysis, J Appl Crystallogr,1983,16,183~191.
    [21]Sankaranarayanan V K, Gajbhiye N S, Thermal decomposition of dysprosium iron citrate, Thermochim Acta,1989,153,337~348
    [22]Sankaranarayanan V K, Gajbhiye N S, Low-Temperature Preparation of Ultrafine Rare-Earth Iron Garnets, J Am Ceram Soc,1990,73,1301
    [23]Langford J I, Boultif A, Auffredic J P,et al., The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite size and stacking faults in ex-oxalate zinc oxide, J Appl Crystallogr,1993,26,22~34.
    [24]Guillou N, Auffredic J P, Louer D, The early stages of crystallite growth of CeO2 obtained from a cerium oxide nitrate, Powder Diffr,1995,10,236~240
    [25]Fierro G, Morpurgo S, Jacono M L, M et al., Preparation, characterisation and catalytic activity of CuZn-based manganites obtained from carbonate precursors,Appl Catal, A,1998, 166,407-417
    [26]Traversa E, Nunziante P, Sakamoto M, et al., Synthesis and structural characterization of trimetallic Perovskite-type oxides, LaFexCol-xO3, by the thermal decomposition of cyano complexes, La[FexCol-x(CN6)]center dot nH(2)O, Mater Res Bullin,1998,33,673~681.
    [27]Zhang G J, Shen Z R, Liu M, et al..,Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids, J Phys Chem B,2006,110, 25782~25790.
    [28]Liu M, Zhang G J, Shen Z R, et al..,Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3, Solid State Sci,2009,11,118~128.
    [29]Tong H, Ma W T, Wang L L, et al., Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process, Biomaterials, 2004,25,3923~3929
    [30]Cheng P, Bohme D K, Gas-Phase Formation of Radical Cations of Monomers and Dimers of Guanosine by Collision-Induced Dissociation of Cu(II)-Guanosine Complexes, J Phys Chem B,2007,111,11075~11082
    [31]Oh M, Mirkin C A, Chemically tailorable colloidal particles from infinite coordination polymers, Nature,2005,438:651~654
    [32]Santillan G A, Carrano C J, Self-Assembly of Silver(I) Coordination Polymers Formed through Hydrogen Bonding with Ditopic Heteroscorpionate Ligands, Cryst Growth Des, 2009,9,1590~1598
    [33]Burchell T J, Eisler D J, Jennings M C, et al., Ring-opening polymerization of gold macrocycles and self-assembly of a coordination polymer through hydrogen-bonding, Chem Commun,2003,2228~2229
    [34]Rood J A, Boggess W C, Noll B C, et al., Assembly of a Homochiral, Body-Centered Cubic Network Composed of Vertex-Shared Mg12 Cages:Use of Electrospray Ionization Mass Spectrometry to Monitor Metal Carboxylate Nucleation, J Am Chem Soc,2007,129, 13675~13682
    [35]Shao S F, Zhang G J, Zhou H J, et al., Morphological evolution of PbS crystals under the control of 1-lysine at different pH values:The ionization effect of the amino acid, Solid State Sci,2007,9,725~731
    [1]Moulton B, Zaworotko M J, Coordination polymers:toward functional transition metal sustained materials and supermolecules, Curr Opin Solid State Mater Sci,2002,6:117~123
    [2]James S L, Metal-organic frameworks, Chem Soc Rev,2003,32:276~288
    [3]Hong M C, Inorganic-Organic Hybrid Coordination Polymers:A New Frontier for Materials Research, Cryst Growth Des,2007,7:10~14
    [4]Oh M, Mirkin C A, Chemically tailorable colloidal particles from infinite coordination polymers, Nature,2005,438:651~654
    [5]Oh M, Mirkin C A, Ion Exchange as a Way of Controlling the Chemical Compositions of Nano- and Microparticles Made from Infinite Coordination Polymers, Angew Chem Int Ed, 2006,45:5492~5494
    [6]Maeda H, Hasegawa M, Hashimoto T, et al., Nanoscale Spherical Architectures Fabricated by Metal Coordination of Multiple Dipyrrin Moieties, J Am Chem Soc,2006,128: 10024~10025
    [7]Rieter W J, Taylor K M L, Lin W B, Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing, J Am Chem Soc,2007,129:9852~9853
    [8]Taylor K M L, Rieter W J, Lin W B, Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging, J Am Chem Soc,2008,130:14358~14359
    [9]Kalek M, Madsen A S, Wengel J, Effective Modulation of DNA Duplex Stability by Reversible Transition Metal Complex Formation in the Minor Groove, J Am Chem Soc, 2007,129,9392~9400
    [10]Bernasconi L, Baerends E J, The EDTA Complex of Oxidoiron(Ⅳ) as Realisation of an Optimal Ligand Environment for High Activity of FeO2+, Eur J Inorg Chem,2008, 1672~1681
    [11]Chen D, Shelenkova L, Li Y, Kempf C R, et al., Laser Tweezers Raman Spectroscopy Potential for Studies of Complex Dynamic Cellular Processes:Single Cell Bacterial Lysis, Anal Chem,2009,81,3227~3238
    [12]Stavila V, Gulea A, Popa N, et al., A novel 3D Nd(Ⅲ)-Bi(Ⅲ) coordination polymer generated from EDTA ligand, Inorg Chem Commun,2004,7,634~637
    [13]Strathmann T J, S tone A,Reduction of the Carbamate Pesticides Oxamyl and Methomyl by Dissolved FeⅡ and CuⅠ, Environ Sci Technol,2001,35,2461~2469
    [14]Shao S F, Zhang G J, Zhou H J, et al., Morphological evolution of PbS crystals under the control of 1-lysine at different pH values:The ionization effect of the amino acid, Solid State Sci,2007,9,725~731
    [15]Shen Z R, Wang J G, Sun P C, et al., Porous lanthanide oxides via a precursor method: Morphology control through competitive interaction of lanthanide cations with oxalate anions and amino acids, Dalton Trans,2010, DOI:10.1039/b916167h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700