用户名: 密码: 验证码:
横向磁场永磁电机及其驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
横向磁场永磁电机(TFPM)是在永磁同步电机的基础上发展起来的,作为一新型逆变器供电的永磁同步电机,具有转矩密度高、低速特性好、可靠性高等特点。近几年来,随着电动车、电力直接推进装置和风力发电等技术研究的深入,人们对高转矩密度、低速直接驱动电机的要求更加迫切,横向磁场永磁电机逐渐成为研究热点。但TFPM结构复杂、制造工艺困难,这限制了TFPM在实际中的推广应用。本文在总结了国内外现有TFPM电机主要研究成果的基础上,提出了一种新型定子组合式TFPM的结构形式,并对样机的设计、分析和驱动系统设计进行了全面的研究。
     第一,提出并研制了一种新型定子组合式横向磁场永磁电机的结构形式,该电机的定子由内定子铁心、外定子铁心和定子过渡铁心三部分组成。由于定子过渡铁心中具有定位功能的槽形口,内外定子磁极铁心可以积木式的直接插入公共联结铁心的槽形口中,简化了制造工艺,降低了生产成本,提高了定子部件的装配定位精度。在给出样机设计参数的基础上,根据TFPM磁场三维分布的特点,采用三维等效磁网络磁场数值计算方法,进行了不同工作情况下样机的磁场分析,计算了气隙磁密、感应电动势、电磁转矩、自定位力矩和绕组电感等TFPM电机的静态特性参数。计算结果与样机试验结果基本吻合。
     第二,分析了TFPM的数学模型,并由能量守恒定理,推导了正弦电流驱动时电磁转矩表达式。根据各相绕组独立的特点,提出了一种基于标量电流(电流的幅值和相位)概念的TFPM转矩控制。无须进行矢量变换,控制各相电流的幅值和电流与该相反电势之间的夹角即可控制电机的输出转矩,并分别对电流与反电动势同相和最大转矩/电流比两种控制方式进行了分析。研究了提高TFPM功率因数的方法,并给出了其约束条件。通过MATLAB/Simulink仿真平台,建立了TFPM极其控制系统的数字仿真模型,对不同控制方式下的TFPM控制系统进行了仿真研究。
     第三,分析了组成高性能TFPM驱动系统所必须的速度调节器和电流调节器。在分析了传统PI控制与模糊控制特点的基础上,设计了用于TFPM的模糊自整定PI控制器,仿真及实验结果表明该调节器具有较好的动静态性能,鲁棒性好。TFPM各相绕组相互独立,根据这一特点,本文研究了一种P+Resonant电流调节器,并应用于TFPM驱动控制系统中,直接在静止坐标系下对TFPM各相交流电流进行控制。该电流调节器的设计思想是基于通信系统中调制与解调制的原理,稳态时电枢电流能跟踪参考电流的变化,可以完全消除电流的相位和幅值误差。
     第四,设计了基于TMS320LF2407的TFPM全数字控制系统,研究采用低分辨率霍尔位置信号获得连续转子位置信息的转子位置预估技术,给出了具体的实现过程并对造成实际转子位置估计误差的各种因素进行了详细分析。
     第五,为了降低逆变器供电的TFPM驱动系统的电磁干扰水平,研究了SPWM扩频控制的基本原理,应用傅立叶频谱和k阶Bessel的函数分析,得出SPWM周期扩频的频谱分布情况。分析了混沌的定义和特征,利用其具有连续频谱的特点,提出了一种基于Full-logistic混沌序列的SPWM扩频控制技术。根据混沌序列伪随机性的特点,推导了混沌SPWM频谱分布的一般表达式,仿真和实验结果验证了混沌SPWM对降低逆变器供电的TFPM驱动系统电磁噪声的有效性。
In recent years,as a novel invert-fed and Permanent-magnetic machine, Transverse flux permanent-magnetic machine(TFPM) received wide attention. Particularly,they are attractive for electric vehicles,electric ships and industrial robots since they offer the distinct advantages of high torque density for electric launch and low speed operation for direct drive.Although so many fine characteristics,TFPM hasn't been commercialized up to now.The main drawbacks are the complicated configuration,the difficulty in manufacturing and higher cost of production,which restrict it development.According to what have done before, a novel TFPM geometry with assembled stator arrangement is proposed here. Based on this prototype,in-deep research works on the control system are carried out and have a good success as below.
     Firstly,a novel TFPM configuration which features an assembled stator and a sandwiched PM rotor is proposed.The stator is made up of U-cores which embrace the armature winding.These U-cores are configured by the outer core,inner core and joint core,which the outer and inner core of stator-poles can be inserted into slots easily just like the building blocks.Such assembly involves simple mechanical structures and hence low manufacturing cost.As no dimension is really larger than the others,the TFPM has a complex three-dimension(3D) flux pattern where the magnetic flux passes radially,axially and circumferentially from the rotor to the stator.A 3D equivalent magnetic network(3DEMN) method suitable for 3D electromagnetic analysis is used to analyze the prototype,and some solution, such as air-gap flux distribution,no-load EMF,static torque.Experimental results agree with the design calculation.
     Secondly,the mathematic model for TFPM was established.The torque expression is achieved when sinusoidal armature current is applied.According to the phase-decoupling characteristic of TFPM,a novel torque control strategy based on the scalar conception of current is put forward.The shaft torque can be obtained by controlling the amplitude and the phase angle of the armature current without resort to vector transformation.The theory of power factor in TFPM is discussed and the relationship between the power factor and torque is studied in this paper. An universal modularized digital simulation model was developed on the platform of MatLab/SimuLink software package.Based on this platform,dynamic digital simulation for the prototype and its control system were executed,the operational performances under different modes are to be analyzed.
     Thirdly,the speed controller and current controller of the TFPM control system are discussed.The fuzzy-tuning PI controller is analyzed and designed for speed controller.Experiments and simulation results demonstrate that the fuzzy-tuning PI controller is superior to the traditional PI controller.A new stationary-frame(P+Resonant) ac current control strategy that can eliminate the steady-state error is proposed and applied to the control of transverse flux permanent-magnet machine(TFPM).Based on the principle of the modulation and demodulation,this ac controller can achieve the same frequency response characteristic as the equivalent dc controller.The validity of control system of TFPM using this current control strategy is confirmed by simulation results.
     Fourthly,a digital control system based on TMS320LF2407 DSP is designed and implemented.Arming at the limitation of sine-wave drive technique in hall sensor position signal with low resolution,a research on the continuous rotor estimation technique and related sine-wave driving technique is conducted.The working principal of rotor estimation and its realization process are given in the paper as well as the analysis on the estimation error.
     Finally,the frequency modulated pulse width modulation(PWM) is introduced.Based on the Fourier Transformation and Bessel function,the power spectral density of the SPWM voltage-source H-inverter with periodic and randomized switching frequency is presented.Since the chaotic sequence has the randomized characteristic and continuous power spectrum,a low EMI non-periodic modulation strategy based on chaotic sequence obtained from the logistic map is proposed.With the adoption of the chaos-based SPWM technique, the resulting power spectrum of the voltage-source H-inverter can be compelled to be continuous,while the harmonic peak can be reduced by 15dB.Both computer simulation and experimental results is given to verify the proposed modulation strategy.
引文
1.H.Weh,Transversal flow machine in accumulator arrangement,United States Patent:5051641,1991.
    2.K.Strnat;G.Hoffer;J.Olson and W.Ostertag,A Family of New Cobalt-Base Permanent Magnet Materials,Journal of Applied Physics,1967,Vol.38,Issue 3,Page(s):1001-1002.
    3.唐任远,现代永磁电机理论与设计,机械工业出版社,1997。
    4.李钟明;刘卫国等,稀土永磁电机,国防工业出版社,1999年7月第一版。
    5.李亚旭,横向磁通电动机拓扑结构初析,船电技术,2003,(1),Page(s):8-12。
    6.Jens-Peter Altendorf,OKOFEH—A Research Project for Initiating Further Development of Drive Systems for Electric,Hybrid and Fuel Cell Vehicles,EV18,Berlin,2001.
    7.A.J.Mitcham,Transverse flux motor for electric propulsion of ships,Proceedings of IEE,London,UK,1997.
    8.Ahmed Masmoudi;Ahmed Elantably,Transverse Flux Permanent Magnet Machines:an Important Challenge for the Improvement of the Mass Production Potential of Electric Propulsion Drives,EV17,2000.
    9.M.R.Dubois;H.Polinder;J.A.Ferreira,Comparison of generator topologies for direct-drive wind turbines,IEEE Nordic Workshop on Power and Industrial Electronics,2000,Page(s):22-26.
    10.郑文鹏;江建中,基于三维磁网络法E型铁心横向磁场电机的设计与研究,电机工程学报,VOL.24,No.8,2004,Page(s):138-141。
    11.李永斌;袁琼;江建中,一种新型聚磁式横向磁通永磁电机研究,电工技术学报,Vol.18,No.5,2003,Page(s):46-49。
    12.M.Bork;G.Henneberger,New transverse flux concept for an electric drive system,Proceedings of International Conference on Electrical Machines,Spain,Vol.3,1996,Page(s):308-313.
    13.H.Weh;H.May,Achievable force densities for permanent magnet excited machines in new configurations,Proceedings of International Conference on Electrical Machines,Germany,Vol.3,1986,Page(s):1107-1111.
    14.R.Kruse;G.Pfaff;C.Pfeiffer,Transverse Flux Reluctance Motor for Direct Servodrive Applications,Industry Applications Conference,1998,Page(s):655-662.
    15.陈国呈,PWM变频调速及软开关电力变换技术,机械工业出版社,2001。
    16.王兆安;黄俊,电力电子技术,机械工业出版社,2001。
    17.李永东,交流电机数字控制系统,机械工业出版社,2002。
    18.苏彦民,交流调速系统的控制策略,机械工业出版社,1998。
    19.郭庆鼎;王成元,交流伺服系统,机械工业出版社,1998。
    20.诸静,模糊控制原理与应用,机械工业出版社,1995。
    21.孙增圻,智能控制理论与应用,清华大学出版社,1997。
    22.S.Fukuda,Novel Current-Tracking Method for Active Filters Based on a Sinusoidal Internal Model,IEEE Transaction on Industry Applications,VOL.37,NO.3,Page(s):888-895.
    23.W.M.Arshad;T.Backstrom;C.Sadarangani,Analytical design and analysis procedure for a transverse flux machine,IEEE International Conference on Electric Machines and Drives,2001,Page(s):115-121.
    24.K.Y.Lu;E.Ritchie,P.O.Rasmussen,et al,Modelling a Single Phase Surface Mounted Permanent Magnet Transverse Flux Machine Based on Fourier Series Method, Electric Machines and Drives Conference, Vol:1, 2003, Page(s): 340-345.
    25. CD. French; C. Hodge; M. Husband, Optimised torque control of marine transverse-flux propulsion machines, International Conference on Power Electronics, Machines and Drives, 2002. (Conf. Publ. No. 487), 4-7 June 2002, Page(s): 1 -6.
    26. M.R. Harris; G.H. Pajooman; S.M. Abu Sharkh, The problem of power factor in VRPM (transverse-flux) machines, International Conference on Electrical Machines and Drives, 1997 Eighth (Conf. Publ. No. 444), 1-3 Sept. 1997 , Page(s): 386 -390.
    27. A. Masmoudi; A. Elantably, A simple assessment of the cogging torque in a transverse flux permanent magnet machine, IEEE International Conference on Electric Machines and Drives, 2001, Page(s): 754 -759.
    28. Tae-yun Lun; Do-Hyun Kang; Jong-Moo Kim; Dong-Hee Kim, A study on control of drive for vibrator using PM-type transverse flux linear motor, Power Conversion Conference, 2002. PCC Osaka 2002, Volume: 1 , 2-5 April 2002, Page(s): 43 -47.
    29. Chang Junghwan; Kang Dohyun, Development of transverse flux linear motor with permanent-magnet excitation for direct drive applications, IEEE Trans on Magnetics, Vol.41, 2005, Page(s): 1936-1939.
    30. K. Y. Lu; E. Ritchie; P. O. Rasmussen; P. Sandholdt, General Torque Equation Capable of Including Saturation Effects for a Single Phase Surface Mounted Permanent Magnet Transverse Flux Machine, Industry Applications Conference, 2003, Page(s):1382 - 1388.
    31. Dinyu Qin; Ronghai Qu; T. A. Lipo, A Novel Electric Machine Employing Torque Magnification And Flux Concentration Effects, Industry Applications Conference, 1999, Vol.1, Page(s): 132-139.
    32. A. Masmoudi; A. Elantably, An approach to sizing high power density TFPM intended for hybrid bus electric propulsion, Electric Machines and Power Systems', Vol.28, No.1, 2000, Page(s): 341-354.
    33. Pragasen Pillay, Application Characteristics of Permanent Magnet Synchronous and Brushless dc Motors for Servo Drives, IEEE Transactions on Industry Application, VOL.27,1991, Page(s): 986-996.
    34. L. Zhong; M. F. Rahman; W. Y. Hu; K. W. Lim, A Direct Torque Controller for Permanent Magnet Synchronous Motor Drives, IEEE Transactions on Energy Conversion, Vol.14, 1999,Page(s): 637-642.
    35. Zhao Yu; Chai Jianyun, Power Factor Analysis of Transverse Flux Permanent Machines, International Conference on Electrical Machines and Systems, Vol.1,2005, Page(s): 450-453.
    36. Cheng-Tsung Liu; Kun-Shian Su; Jyh-Wei Chen, Operational stability enhancement analysis of a transverse flux linear switched-reluctance motor, IEEE Transactions on Magnetics, Volume: 36, Issue: 5, 2000, Page(s): 3699-3702.
    37. Yuqi Rang; Chenglin Gu; Huaishu Li, Analytical design and modeling of a transverse flux permanent magnet machine, IEEE International Conference on Power System Technology, Vol. 4, 2002, Page(s): 2164-2167.
    38. Shigeo. Morimoto; Yoji. Takeda; Takao Hirasa, Current Phase Control Methods for Permanent Magnet Synchronous Motors, IEEE Transaction on Power Electronics, Vol.5, 1990, Page(s):133-139.
    39.Pillay P.;Krishnan R.,Modeling of Permanent Magnet Motor Drives,IEEE Trans.on Ind.Elec.,Vol.35,No.4,1988,Page(s).537-541.
    40.郑文鹏;江建中等,基于三维磁网络法E型铁心横向磁场电机的设计与研究,中国电机工程学报,Vol.24,No.8,2004,Page(s):138-141。
    41.袁琼,聚磁式横向磁场永磁电机的研究[D],上海大学硕士学位论文,2003。
    42.A.Babazadeh;H.R.Karimi and B.Moshiri,A Neuro-Fuzzy Based Approach for Output Tracking of Transverse Flux Machines,IEEE Conference on Control Applications,2005Page(s):272-276.
    43.崔巍,基于各相磁路解耦结构的新型永磁同步电机及其驱动系统的研究,博士论文,2004。
    44.陈伯时,电力拖动自动控制系统。机械工业出版社。
    45.汤宁平,矩阵变换器供电的交流励磁风力发电系统研究,博士论文,2005。
    46.L.Zhong;M.F.Rahman,Analysis of direct torque control in permanent magnet synchronous motor drives,IEEE Trans.Power Electron,VOL.12,No.3,MAY 1997,Page(s):528-535.
    47.Bor-Jehng Kang;Chang-Ming Lia,A Robust Hysteresis Current-Controlled PWM Inverter for Linear PMSM Driven Magnetic Suspended Positioning System,IEEE Transactions on Industrial Electronics,Vol.48,No.5,2001,Page(s):956-967.
    48.P.Freere;D.Atkinson;P.Pillay,Delta Current Control for Vector Controlled Permanent Magnet Synchronous Motors,IEEE International Conference on Industry Application Society,Vol.1,1992,Page(s):550-557.
    49.卢红;梁任秋,电流跟踪型SPWM逆变器开关频率的制约因素,电力电子技术,Vol.4,1993,Page(s):10-14。
    50.胡庆彬;卢元元,高品质电流跟踪电压型逆变器,电力电子技术,Vol.1,1997,Page(s):33-36。
    51.陈桂明等,应用MATLAB建模与仿真,科学出版社,2001。
    52.E.Cerruo;A.Consoli;A.Raciti;A.Testa,Adaptive fuzzy control of high performance Motion System,IEEE International Conference on Industrial Electronics,1992,Page(s):88-94.
    53.E.Chiricozzi;F.Parasiliti;M.Tursini;D.Q.Zhang,Fuzzy self tuning PI control of PM synchronous motor drives,IEEE Transactions on Industrial Electronics,Vol.80,No.2,1996,Page(s):211-221
    54.Shih-Chang Hsu;Chio-Hao Liu,Fuzzy PI Controller Tuning for a Linear Permanent Magnet Synchronous Motor Drive,IECON'01,2001,Page(s):1661-1666.
    55.F.Alonge;F.D'lppolito;F.M.Raimondi;A.Urso,Method for designing PI-type fuzzy controllers for induction motor drives,IEE Proceeding on Control Theory Application,2001,Page(s):61-69.
    56.F.Parasiliti;M.Tursini,An analytical approach to the derivation of fuzzy PI scaling factors,International conference on Power Electronics and Drive System,Vol.1,1997,Page(s):280-285.
    57.阮毅;徐静;陈伯时,智能PI控制在交流调速系统中的应用,电工技术学学报,Vol.20,No.3,2005,Page(s):80-84。
    58.闻新;周露等,Matlab模糊逻辑工具箱的分析与应用,科学出版社,2001。
    59.Z.Ibrahim;Emil Levi,A Comparative Analysis of Fuzzy Logic and PI Speed Control in High-Performance AC Drives Using Experimental Approach,IEEE Transactions on Applications,VOL.38,NO.5,Page(s):1210-1218.
    60.F.Alonge;F.D'lppolito;F.M.Raimondi,Method for designing PI-type fuzzy controllers for induction motor drives,IEE Proc.-Control Theory Application,Vol.148,No.1,Page(s):61-69.
    61.M.P.Kazmierkowski,Current Control Techniques for Three-Phase Voltage-Source PWM Converters:A Survey,IEEE Trans on Industrial Electronics Vol.45,No.5,1998,Page(s):691-703.
    62.D.N.Zmood,Stationary Frame Current Regulation of PWM Inverters With Zero Steady-State Error.IEEE Trans.on Power Electronics,Vol.18,No.3,Page(s):814-822.
    63.S.Fukuda,Application of a Sinusoidal Internal Model to Current Control of Three-Phase Utility-Interface Converters,IEEE Transactions on Industrial Electronics,Vol.52,No.2,Page(s):420-426.
    64.K.H.Kim;H.S.Kim,An Improved Stationary-Frame-Based Current Control Scheme for a Permanent-Magnet Synchronous Motor,IEEE Transactions on Industrial Electronics,Vol.50,No.5,Page(s):1065-1068.
    65.D.N.ZMOOD,Stationary Frame Current Regulation of PWM Inverters With Zero Steady-State Error,IEEE Trans.on Power Electronics,Vol.18,No.3,2003,Page(s):814-822.
    66.FUKUDA.S,A Novel Current-Tracking Method for Active Filters Based on a Sinusoidal Internal Model,IEEE Trans.on Industry Applications,Vol.37,No.3,2001,Page(s):888-895.
    67.MARIAN.P.K;LUIGI.M,Current Control Techniques for Three-Phase Voltage-Source PWM Converters:A Survey[J],IEEE Trans.on Industrial Electronics,1998,45(5):691-702.
    68.Lennart.Harnefors;Hans-Peter.Nee,Model-Based Current Control of AC Machines Using the Internal Model Control Method,IEEE Transactions on Industry Applications,Vol.34,No.1,1998,Page(s):133-141.
    69.江思敏,TMS320LF240X DSP硬件开发教程,机械工业出版社,2003。
    70.Shigeo Morimoto;Yoji Takeda,Design and Control System of Inverter-Driven Permanent Magnet Synchronous Motors for High Torque Operation,IEEE Transactions on Industry Applications,Vol.29,Page(s):1150-1155.
    71.M.F.Rahman;L.Zhong;Khiang Wee Lira,A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening,IEEE Transactions on Industry Applications,Vol.34,No.6,November/December 1998,Page(s):1246-1253.
    72.I.Edwar;S.Wahsh,Feed forward FLC for PMSM drives,IEEE international conference on Vehicle Electronics,2001,Page(s):21-26.
    73.Carlo Cecati;MarcoTursin,Vector Control Algorithms Implementation for Inverter-Fed Permanent Magnet Synchronous Motor Using Transputer,IECON'91,Page(s):171-179.
    74.R.Redl,Electromagnetic environmental impact of power electronics equipment,Proceedings of IEEE,Vol.89,No.6,1994,Page(s):926-938.
    75.Zhang Dongbing;D.Y.Chen;F.C.Lee,An experimental comparison of conducted EMI emissions between a zero-voltage transition circuit and a hard switching circuit,PESC'96,Page(s):1992-1997.
    76.汪东艳;张林昌,电力电子装置电磁兼容性的研究进展,电工技术学报,Vol.15,No.1,2002,Page(s):47-51.
    77.钱照明;袁义生,开关电源EMC设计研究现状及发展,电子产品世界,2004,PP:51-60.
    78.李冠林;陈希有;刘凤春,混沌PWM逆变器输出电压功率谱密度分析,电机工程学报, Vol.26,No.20,2006,Page(s):79-83。
    79.杨汝;张波,开关变换器混沌PWM频谱量化特性分析,物理学报,Vol.55,No.11,2006,Page(s):5667-5673。
    80.王斌;李兴源等,基于马尔可夫链的双随机PWM技术的研究,电工技术学报,Vol.20,No.6,2005,Page(s):16-19。
    81.吴振军,混沌开关调制技术降低开关模式电源EMI水平研究,2003,硕士论文。
    82.裴雪军,PWM逆变器传到干扰的研究,2004,博士论文。
    83.郝柏林,从抛物线谈起-混动动力学引论,上海科技教育出版社,1995。
    84.C.L.Skibinski;R.J.Kerkman;D.Schlegel,EMI Emissions of Modem PWM AC Drives,IEE Industry Application magazine,Nov/Dec.1999,Page(s):47-81.
    85.F.Lin;D.Y.Chen,Reduction of power supply EMI emission by switching frequency modulation,IEEE Trans.On Power Electronics,Vol.9,No.1,1994,Page(s):132-137.
    86.G.H.Thomas;M.D.Deepakraj,Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,IEEE Trans.on Power Electronics,Vol.6,No.3,1991,Page(s):356-363.
    87.A.M.Trzynadlowski;F.Blaabjerg,Random Pulse Width Modulation Techniques for Converter-Fed Drive Systems—A Review,IEEE Transactions on Industry Applications,Vol.30,NO.5,1994,Page(s):1166-1175.
    88.X.G.Cai;S.S.Qiu,Achua's circuit-based chaotic spread spectrum sequence,Journal of South China University of Technology,Vol.28,No.1,2000,pp.5-9.
    89.K.K.Tse;Henry Shu-Hung Chung,Analysis and Spectral Characteristics of a Spread-Spectrum Technique for Conducted EMI Suppression,IEEE Transactions on Power Electronics,VOL.15,Page(s):399-410.
    90.A.M.Stankovic;G.C.Verghese,Analysis and Synthesis of Randomized Modulation Schemes for Power Converters,IEEE Transactions on Power Electronics,Vol.10,NO.6,1995,Page(s):680-693.
    91.Q.Zhaoming;W.Xin;L.Zhengyu;M.H.Pong,Status of electromagnetic compatibility research in power electronics,IEEE PIEMC 2000 Record,2000,Page(s):46-56.
    92.A.Bellini;G.Franceschini;R.Rovatti;G.setti,Generation of low-EMI PWM Patterns for Induction Motor Drives with Chaotic Maps,IEEE International conference on Industrial Electronics Society,2001,Page(s):1527-1532.
    93.Cui.Wei;Chau.K.T.;Wang.Zheng;Jiang.J.Z,Application of chaotic modulation to ac motors for harmonic suppression,IEEE International Conference on Industrial Technology,2006,Page(s):2343-2347.
    92.陈金涛;辜承林,新型横向磁通永磁电机研究,中国电机工程学报,Vol.25,No.15,2005,Page(s):155-160。
    94.江建中;李永斌;施进浩,横向磁场永磁电机的研究与发展现状,微特电机,2003,Vol.5,Page(s):3-5。
    95.窦汝振,高性能永磁交流伺服系统及其新型控制策略的研究,博士论文,2002。
    95.林伟杰,永磁同步电机伺服系统控制策略的研究,博士论文,2005。
    98.万文斌;徐衍亮,永磁同步电动机的高性能电流控制器,电机工程学报,Vol.20,No.12,2000,Page(s):24-27。
    99.谭弗娃;金如麟,现代交流电机控制的现状与展望,微特电机,Vol.2,2000,Page(s):3-6。
    100.冯垛生;曾岳南,无速度传感器矢量控制原理,机械工业出版社,2001。
    101.马小亮,大功率交-交变频器调速及矢量控制技术,机械工业出版社,2004。
    102.刘豹,现代控制理论,机械工业出版社,2001。
    103.周鹗;曾朝辉,高性能永磁同步电机矢量控制系统研究,电机与控制学报,Vol.1 No.11997,Page(s):1-6。
    104.张豫;陈静薇;梁振鸿,基于DSP的永磁同步电机全数字化矢量控制,微电机,Vol.35,No.3,2002,Page(s):23-26。
    105.张昌凡;王耀南;何静,永磁同步伺服电机的变结构智能控制,中国电机工程学报,Vol.22,No.7,2002,Page(s):13-17。
    106.颜南明;马晓军;臧克茂,永磁同步电动机调速系统的矢量控制仿真,徽特电机,2004VOL.1,Page(s):24-30。
    107.纪志成;薛花;沈艳霞,永磁同步电机调速系统的模糊PI只能控制新方法,电工技术学报,Vol.18,No.6,2003,Page(s):53-58。
    108.施进浩;李永斌;江建中,聚磁式横向磁场永磁电机自定位转矩研究,电工技术学报,Vol.20,No.3,Page(s):37-39。
    109.许强;贾正春;李朗如,永磁同步电动机数字化电流控制方法,华中理工大学学报,Vol.25,No.2,Page(s):44-46。
    110.谭建成,电机控制专用集成电路,机械工业出版社,1999。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700