用户名: 密码: 验证码:
拱泥仿生机器人系统设计及其虚拟样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拱泥机器人是一种能在水下泥土环境中按照规划轨迹完成攻打千斤洞作业的新型水下特种机器人,用来替代潜水员攻打千斤洞的手工作业。由于拱泥机器人是工作在海底泥土环境中,缺少必要的检测和通讯手段,一旦在试验或工作中发生意外,势必造成金钱和时间上的浪费。针对这一问题,本文提出了一种拱泥仿生机器人的总体技术方案,并对其虚拟样机展开了研究,为拱泥机器人实验样机的研制奠定了基础。应用虚拟样机技术开发基于蠕动原理拱泥仿生机器人是增强我国拱泥机器人自主研发和技术创新能力的有效途径。在拱泥仿生机器人设计的初期阶段针对其仿生机构、海洋土力学、运动学及其控制策略进行数学建模与仿真研究,可对拱泥仿生机器人总体性能进行匹配和整体优化,这对于缩短产品开发周期、降低成本、改进设计质量、提高市场竞争力具有重要的理论意义和学术价值。论文的主要研究内容如下所述。
     论文介绍了基于蠕动原理拱泥仿生机器人系统设计及其虚拟样机研究的背景与意义,概括了蠕动爬行机器人以及国内拱泥机器人的研究现状,从产品开发流程的角度出发,阐述了虚拟样机技术的产生背景、理论与方法及其工程应用,基于仿生机器人的主要研究问题即机构设计问题、建模问题以及控制策略问题这三个方面,提出应用虚拟样机技术进行拱泥仿生机器人系统设计及其虚拟样机研究的主要内容及其技术路线。
     根据蚯蚓的生理结构及其运动机理,提出了一种拱泥仿生机器人的总体技术方案;结合并联机构的特点,对拱泥机器人转向关节展开了深入的研究,并进行运动学的数值分析及计算机仿真研究。仿真结果表明,转向关节具有推进、跟进及转向三个功能。同时基于并联机构工作空间的研究方法,进行了转向关节装配方案的优化设计,并基于自顶向下的设计方法,进行了转向关节的参数化三维建模与自动装配方面的研究。基于自主移动机器人的控制策略分析的基础上,提出了基于规划与行为的混合式拱泥机器人控制体系结构;结合拱泥机器人的整体结构和运动特点,分析了拱泥机器人的控制策略,并设计了拱泥机器人的局部路径规划器。
     论文介绍了海洋沉积土的来源与分布情况,以及淤泥质粘土的工程性质。应用土的抗剪强度理论等经典土壤力学理论从宏观上进行拱泥机器人直行和转向时的受力分析。应用离散单元法进行土壤动态行为模拟,从细观上揭示了土壤动态行为的变化规律。在转向关节运动学模型的基础上,建立了拱泥机器人的运动学模型,为拱泥机器人的虚拟样机研究奠定了基础。
     通过分析复杂产品虚拟样机的信息与功能集成原理,建立了基于参数驱动的虚拟样机体系结构,并采用实例分析的方式将该结构应用在拱泥机器人虚拟样机的设计中。该结构为企业开发复杂产品、实施虚拟样机工程、进行产品创新提供了一条有效的途径。
     在虚拟样机的仿真实验研究方面,首先提出了避障控制器路径规划算法,并进行了仿真实验;采用多种计算机技术,分别从数据接口模块、数学运算模块、图形化仿真模块、硬件接口模块等方面展开研究,建立了拱泥机器人运动过程的图形化仿真平台,并进行了拱泥机器人作业模拟实验。
     在总结全文工作的基础上,对进一步的研究提出了建议和展望。
Move-in-mud robot is a new-type and special-use underwater robot, which can perform the hole excavating work along the planned trajectory in the mud under water so as to alternate the manual operation of drivers. As the lack of necessary means of communication and testing in the seabed soil environment where move-in-mud robot working, an accident occurs once during the trial or work which will cause inevitably a waste of time and money. Aimed at this problem, an overall technical scheme of bionic move-in-mud robot is presented in this dissertation, and the study of its virtual prototype is carried out. The application of virtual prototype technology to develop the bionic move-in-mud robot based on the creeping principle is an effective way to increase the abilities of technology innovation and development on our own technology. During the early stage of design of move-in-mud robot, those performances, such as bionic mechanism, soil mechanics, kinematics, control strategy, can be proceeded to mathematical modeling and simulation. By this way the overall performances are matched and optimized integrally. Consequently it is of important theoretical significance and academic value to study the virtual prototype of move-in-mud robot based on the creeping principle to shorten the development cycle of product, reduce production cost, improve the quality of design and increase the ability of market competition. Those research works above lay the foundation for the development of experimental prototype of move-in-mud robot. The main contents of this dissertation are given as follows.
     The research background and meaning of system design of bionic move-in-mud robot and its virtual prototype based on the creeping principle are given, and the present research status of crawing robot and move-in-mud robot at home are summarized. From the product development process point of view, the background, theory and methodology and its engineering application are described. On the basis of three problems of bionic robot, such as mechanism design, modeling and control strategy, the main research contents and technical route of this dissertation are presented by virtual prototype technology.
     According to the analysis on the physiological structure and movement mechanism of earthworm, an overall technical scheme of move-in-mud robot is presented. Combined with the characteristic of parallel mechanism, the turning joint of move-in-mud robot is studied deeply, and the numerical analysis and computer simulation of its kinematics are carried out. The results show that the turning joint possesses three functions that are push, follow and turning. Meantime, based on research method of parallel mechanism workspace the optimatioan design of assembly plan of turning joint is processed, and based on top-down method the parameterized three-dimentional modeling and automatic assembly of the turning joint are studied. On the basis of analysis on control strategy of autonomous mobile robot, the mixed architecture of move-in-mud robot based on planning and behavior is proposed. Combined with the overall mechanism and movement characteristic, the control strategy of move-in-mud robot is analysed, and the local path planning is designed.
     The source and distribution of marine sedimentary soil and the engineering property of silt clay are introduced. Using classical soil mechanics theory the force analysis of bionic move-in-mud robot is processed during linear and turning movement from macroscopic view. Using discrete element method the dynamic behavior of soil is simulated so as to reveal the change law of soil from the microscopic view. On the basis of kinematical model of turning joint, the kinematic model of bionic move-in-mud robot is established. These works lay the foundation for the study on virtual prototype of move-in-mud robot.
     By analysing the integrated principle of information and function of complex product virtual prototype, the parameter-driven architecture of virtual prototype is created and applied to the virtual prototype design of move-in-mud robot by the case analysis way. This architecture provides an effective way to develop complex product, carries out virtual prototype projects and product innovation for enterprise.
     For the simulation experiment of virtual prototype, the path planning algorithm of obstacle avoidance controller is proposed and verified by simulation experiment. Adoping a variety of computer technologies, the graphical simulation platform of movement process of move-in-mud robot is created at the variouos aspects of data interface module, mathematical operation module, graphical simulation module and hardware interface module. At last, the simulation experiment of working process of move-in-mud robot is carried out.
     On the bisis of the summaries and the conclusion of all research works, some suggestions and prospects for further researches are put forwards.
引文
[1]朱世华.国外海上救援装备发展综述[J].海军装备, 1994, (6):4-7.
    [2] Wilson Kindlein Junior, Andréa Seadi guanabara. Methodology for Product Design based on the Study of Bionics[J]. Materials and Design, 2005, 26:149-155.
    [3] A. Leroyer, M. Visonneau. Numerical Methods for RANSE Simulations of a Self-propelled Fish-like Body[J]. Journal of Fluids and Structures, 2005, 20:975-991.
    [4]马光.仿生机器人的研究进展[J].机器人, 2001, (5):443-446.
    [5]冯士伦,王建华,林杨,等.蠕动爬行攻泥机构转向工作特性的有限元分析[J].船舶工程, 2003, 25(5):32-34.
    [6]魏洪兴,孟庆鑫,王田苗.拱泥机器人原理样机的研制[J].中国造船, 2003, 44(1):89-93.
    [7]张英,孙虎,胡勇,等.水下仿生拱泥机器人方案研究[J].武汉理工大学(学报信息与管理工程版), 2005, 27(4):43-46.
    [8]李燕.仿蚯蚓在土质环境下拱洞机器人的研究[D].陕西:西北工业大学(硕士学位论文), 2004.
    [9]刘伟庭,方向生,陈裕泉.仿生“蚯蚓”机器人的SMA执行器[J].传感技术学报, 2005, 18(3):623-626.
    [10]王坤东,颜国正.仿蚯蚓蠕动微机器人牵引与运动控制[J].机器人, 2006, 28(1):19-24.
    [11]胡勇,张英,郭福先,等.水下仿生穿千斤攻泥器的研究[J].中国造船, 2004(增刊):300-304.
    [12] A. MüLLER, P. MAI?ER. Kinematic and Dynamic Properties of Parallel Manipulators[J]. Multibody System Dynamics, 2001, 5:223-249.
    [13] Xinjun Liu, Qiming Wang, Jinsong Wang. Kinematics, Dynamics and Dimesional Synthesis of a Noval 2-DOF Translational Manipulator[J]. Journal of Intelligent and Robotic Systems, 2004, 41:205-224.
    [14] Yi Lu, Bo Hu, Yan Shi. Kinematics Analysis and Statics of a 2SPS+UPR Parallel Manipulator[J]. Multibody System Dynamics, 2007, 18:619-636.
    [15]熊光楞.并行工程的理论与实践[M].北京:清华大学出版社, 2000.
    [16]熊光楞,郭斌,陈晓波.协同仿真与虚拟样机技术[M].北京:清华大学出版社, 2004.
    [17]曾庆良,熊光愣,范文慧.并行工程环境的面向成本设计[J].机械工程学报, 2001, 37(7):1-4.
    [18] D. Crestani, E. Rondeau, Z. Idelmerfaa, et al. Communication and Cooperation Analysis in a Concurrent Engineering Experiment[J]. International Journal of Manufacture Technology, 2001, 18:745-754.
    [19] L.M. Jiao, L.P. Khoo, C.H. Chen. An Intelligent Concurrent Design Task Planner for Manufacturing Systems[J]. International Journal of Advance Manufacture Technology, 2004, 23:672-681.
    [20]蒋光秀.并行工程在卫星研制项目管理中的应用[J].质量与可靠性, 2006, (5):38-40.
    [21]李波,赵健康,戴金海.飞行器设计并行工程中多视图响应分析[J].计算机仿真, 2006, 23(9):19-22.
    [22]范李,刘启珊.并行工程在汽车产品开发设计中的运用[J].中国汽车制造, 2007, (2):18-20.
    [23]郭重庆.全球化与中国制造业[J].中国工程科学, 2001, (4):17-21.
    [24] Xenophon Koufteros, Mark Vonderembse, et al. Concurrent Engineering and its Consequences[J]. Journal of Operation Management, 2001, (19):97-115.
    [25]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报, 2003, 39(10):73-78.
    [26]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势[J].机械工程学报, 2006, 42(1):73-78.
    [27] H.J. Bullingrer, J. Warschat, D. Fischer. Rapid Product Development-an Overview[J]. Computers in Industy, 2000, (42):99-108.
    [28] James C. Schaaf, Jr. Faye Lynn Thompson. System Concept Development with Virtual Prototyping[C]. Proceeding of the 1997 Winter Simulation Conference, 1998:941-947.
    [29] Antonino Gomes de sa, Gabriel Zachmann. Virtual Reality as a Tool for Verification of Assembly and Maintenance Process[J]. Computers & Graphics, 1999, (23):389-403.
    [30] Mitchell M. Tseng, Jianxin Jiao, et al. A Framework of Virtual Design for Product Customization[C]. Proceedings of IEEE International Conferenceon Emerging Technologies and Factory Automation, 1997:7-14.
    [31] Jeenal Vora, Santosh Nair, Anand K. Gramopadye, et al. Using Virtual Reality Technology for Aircraft Visual Inspection Training: Presence and Comparison Studies[J]. Applied Ergonomics, 2002, 33:559-570.
    [32] T.S. Mujber, T. Szecsi, M.S.J. Hashmi. Virtual Reality Applications in Manufacturing Process Simulation[J]. Journal of Materials Processing Technology, 2004, 155:1834-1838.
    [33] Panagiota Papadopoulou. Applying Virtual Reality for Trust-building E-commerce Environments[J]. Virtual Reality, 2007, 11:107-127.
    [34] L. Barbieri, F. Bruno, F. Caruso, et al. Innovative Integration Techniques between Virtual Reality Systems and CAx Tools[J]. The International Jounal of Advanced Manufacturing Technology, 2007, 34:766-779.
    [35] Antonio Jimeno, Alberto Puerta. State of the Art of the Virtual Reality applied to Design and Manufacturing Processes[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33:866-874.
    [36] Levent U. G?kdere, Khalid Benlyazid, Roger A. Dougal, et al. A Virtual Prototype for a Hybrid Electric Vehicle[J]. Mechatronics, 2002, 12:575-593.
    [37] Jae Ick Lee, Sung Wook Chun, Soon Ju Kang. Virtual Prototyping of PLC-based Embedded System using Object Model of Target and Behavior Model by Conberting RLL-to-statechart Directly[J]. Journal of Systems Architecture, 2002, 48:17-35.
    [38] T.Y. Yan, J.H. Chung, Y.S. Choi. Design of the Driving System of an Automatic Vacuum Packer using Functional Virtual Prototyping[J]. Biosystems Engineering, 2004, 89(1):37-46.
    [39] X.J. Fan, J. Zhou, G.Q. Zhang. Multi-physics Modeling in Virtual Prototyping of Electronic Packages—Combined Thermal, Thermo-mechanical and Vapor Pressure Modeling[J]. Microelectronics Reliablility, 2004, 44:1967-1976.
    [40] Xia Yimin, Bu Yingyong, Ma Zhiguo. Modeling and Simulation of Ocean Mining Subsystem based on Virtual Prototyping Technology[J]. Journal CSUT, 2005, 12(2):176-180.
    [41] Gianni Ferretti, GianAntonio Magnani, Paolo Rocco. Virtual Prototyping of Mechatronic Systems[J]. Annual Reviews in Control, 2004, 28:193-206.
    [42] Alistair Sutcliffe, Brian Gault, Neil Maiden. ISRE: Immersive Scenario-based Requirements Engineering with Virtual Prototypes[J]. Requiements Engineering, 2005, 10:95-111.
    [43] R. Bergman, J. D. Baker. Enabling Collaborative Engineering and Science at JPL[J]. Advances in Engineering Software, 2000, (31):661-668.
    [44]王志华,陈翠英.基于ADAMS的联合收割机振动筛虚拟设计[J].农业机械学报, 2003, (4):53-56.
    [45]李勇,曾志新,叶茂,等.虚拟样机技术在小型农用装载机设计中的应用[J].农业工程学报, 2004, 20(5):134-137.
    [46]王春光,谭立东.基于虚拟样机技术的牧草高密度压捆过程分析[J].农业机械学报, 2005, (3):99-101.
    [47] K J. Quillin. Kinematic Scaling of Locomotion by Hydrostatic Animals: Ontogeny of Peristaltic Crawling by the Earthworm Lumbricus Terrestris[J]. The Journal of Experimental Biology, 1999:661-674.
    [48] Ren L, Tong J, Li J, et al. Soil Adhesion and Biominetics of Soil-engaging Components: a Review[J]. Journal Agric Engng Res, 2001, 79(3):239-263.
    [49]施卫平,任露泉.蚯蚓蠕动过程中非光滑波纹形体表的力学分析[J].力学与实践, 2005, 27(3):73-74.
    [50] Luquan Ren, Zhiwu Han, Jianjiao Li, et al. Effects of Non-smooth Characteristics on Bionic Bulldozer Blades in Resistance Reduction against Soil[J]. Journal of Terramechanics, 2003, 39:221-230.
    [51] L.Q. Ren, Z.W. Han, J.Q. Li, et al. Experimental Investigation of Bionic Rough Curved Soil Cutting Blade Surface to Reduce Soil Adhesion and Friction[J]. Soil & Tillage Research, 2006, 85:1-12.
    [52] Hong Zhou, Hongyu Shan, Xin Tong, et al. The Adhesion of Bionic Non-smooth Characteristics on Sample Surfaces against Parts[J]. Materials Science and Engineering, 2006, 417:190-196.
    [53]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社, 1997:3-5.
    [54] Bruno Siciliano. The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-loop Direct Kinematics Algorithm[J]. Robotica, 1999, (17):437-445.
    [55]孔令富,张世辉,肖文辉,等.基于牛顿—欧拉方法的6-PUS并联机构刚体动力学模型[J].机器人, 2004, 26(5):395-399.
    [56]郝秀清,胡福生,陈建涛.基于牛顿—欧拉法的3PTT并联机构动力学分析及仿真[J].中国机械工程, 2006, 17(增刊):32-36.
    [57]赵强,阎绍泽.双端虎克铰型六自由度并联机构的动力学模型[J]. 2005, 45(5):610-613.
    [58]白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究[J].北京航空航天大学学报, 2004, 30(1):51-54.
    [59]敖银辉,陈新,李克天.基于微分几何的并联机构动力学及复合控制[J].中国机械工程, 2007, 18(11):1339-1342.
    [60]吴宇列,吴学忠,刘冠峰,等.黎曼几何在并联机构动力学中的应用[J].机械设计与制造, 2002, (3):79-80.
    [61]张均富,王进戈,徐礼钜.基于螺旋理论的球面并联机构动力学解析模型[J].农业机械学报, 2007, 38(4):122-126.
    [62]郭旭伟,王知行.基于ADAMS的并联机床运动学和动力学仿真[J].现代设计与制造, 2003, 32(7):119-122.
    [63]郝秀清,胡福生,郭宗和,等.基于ADAMS的3-PTT并联机构运动学和动力学仿真[J].机械设计, 2006, 23(9):9-11.
    [64] Yan Bingbing, Ren Fujun. Parameterized Design of Mechanical Structure of Move-in-mud Robot[J]. IEEE International Conference on Robotics and Biomimetics 2006,1-3:120-124.
    [65]徐国华,谭民.移动机器人的发展现状及其趋势[J].机器人技术与应用, 2001, (3):7-14.
    [66] Brooks R. A Robust Layered Control System for a Mobile Robot[J]. IEEE Transactions on Robotics and Automation, 1986, 2(1):14-23.
    [67] Gat E. Three Layer Architectures in Artificial Intelligence and Mobile Robots. AAAI Press/The MIT Press, 1990.
    [68]蔡自兴,周翔,李枚毅,等.基于功能/行为集成的自主式移动机器人进化控制体系结构[J].机器人, 2000, (3):169-175.
    [69]李磊,陈细军,侯增广,等.自主轮式移动机器人CASIA-I的整体设计[J].高技术通讯, 2003, (11):51-55.
    [70]许宏岩,王树国,付宜利,等.仿生机器人体系结构的研究[J].机械工程师, 2004, (1):3-7.
    [71] T. Lazno-Perez. Automatic Planning of Manipulator Transfer Movements[J].IEEE Trans On Sys Man and Cyb, 1981, 11(11):681-698.
    [72] V. Boschian, A. Pruski. Grid Modeling of Robot Cells: a Memory Efficient Approach[J]. Journal of intelligent and Robotics Systems, 1993, 8(1):201-209
    [73] Alexopoulos C, Griffin P M. Path Planning for Mobile Robot[J]. IEEE Trans on System Man and Cybernetics, 1992, 22(2):318-322.
    [74] Brooks R A. Solving the Find-path Problem by Good Representation of Free Space[J]. IEEE Trans on Sys Man and Cybern, 1983, 13(3):190-197.
    [75]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人, 2005, 27(2):132-136.
    [76]王卫红,顾国民,秦绪佳,等.基于栅格法的矢量路径算法[J].计算机应用研究, 2006, (3):57-59.
    [77] Khatib O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots[J]. The International J. of Robotics Research, 1986, (5):72-89.
    [78]张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划[J].哈尔滨工业大学学报, 2006, 38(8):1306-1309.
    [79]王海英,蔡向东,尤波,等.基于遗传算法的移动机器人动态路径规划研究[J].传感器与微系统, 2007, 26(8):32-34.
    [80]苏治宝,陆际联.用模糊逻辑法对移动机器人进行路径规划的研究[J].北京理工大学学报, 2003, 23(3):290-293.
    [81]王岚,孟庆鑫,张立勋.拱泥机器人控制策略的研究[J].机床与液压, 2003, (4):24-25.
    [82]张岚,任福君,孟庆鑫,等.拱泥机器人避障运动过程数学模型研究[J].林业机械与木工设备, 2004, (2):29-32.
    [83]卢博,李赶先,黄韶健,等.中国黄海、东海和南海北部海底浅层沉积物升学物理性质之比较[J].海洋技术, 2005, 24(2):28-32.
    [84] Wang H J, Yang Z S, Saito Y, et al. The Huanghe (Yellow River) Water Discharge over the past 50 years Connections to Impacts from ENSO Events and Dams[J]. Gloval and Planetary Change, 2006, 50:212-225.
    [85] Yang Z S, Wang H J, Satio Y, et al. Dam Impacts on the Changjiang (Changjiang River) Sediment Discharge to the Sea: the past 55 years and after the Three Gorges Dam[J]. Water Resources Research, 2006, 42:1-10.
    [86]许淑梅,张晓东,翟世奎,等.长江口及其邻近海域表层沉积物粒度划分及变化规律研究[J].海洋地质动态, 2007, 23(2):1-8.
    [87]张宏,柳艳华,杜东菊.渤海湾西岸沉积物粒度参数特征及其工程性质分析[J].天津城市建设学院学报, 2007, 13(2):104-109.
    [88]李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型[J].土木工程学报, 2001, 34(6):74-79.
    [89]陈强,龙琼.振动沉管灌注砂桩在处理淤泥质粘土地基中的应用[J].湖南城市学院学报(自然科学版), 2004, 13(1):4-6.
    [90]张蕾.淤泥质粘土地质条件下注浆及搅拌桩地基加固引起的地层“隆-沉”规律[J].安徽建筑, 2004, (2):73-75.
    [91]朱陆明,林海龙.淤泥质粘土层地基处理两种设计方案比较[J].绍兴文理学院学报, 2005, 25(9):76-79.
    [92]郑军,阎长虹,夏良斌,等.苏州阳澄湖地区淤泥质粘土工程地质特性探讨[J].工程地质学报, 2006, 14(5):592-596.
    [93]孙海燕,陶桂兰,汉会.某电厂淤泥质土中大直径钢管的设计分析[J].科技资讯, 2007, (5):12-13.
    [94]杨虹,万忠伦.淤泥质粘土地基加固处理技术[J].铁道建筑, 2007, (1):66-67.
    [95]刘用海,朱向荣,王文军.宁波地区典型淤泥质粘土工程特性[J].煤田地质与勘探, 2007, 35(6):30-33.
    [96]柏炯,张庆贺.打(压)桩引起振动和挤土效应的预测及防治[J].振动与冲击, 1998, 17(2):34-38.
    [97] T. Hiromma, Y. Ohta, T. Kataoka. Analysis of the Soil Deformation Beneath a Wheel by Finite Element Method[J]. J. Japanese Society of Agricultural Machinery, 1994, 56(6):3-10.
    [98] Cundall P. A. A Computer Model for Simulating Progressive Large Scale Movements in Blocky Ystem[C]. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A.A. Balkema, 1971, (1):8-12.
    [99] Cundall P.A., O.D.L.Strack. A Discrete Numerical Method for Granular Assemblies[J]. Geotechnique, 1979, 29(1):47-65.
    [100] A. Fakhimi, F. Carvalho, T. Ishida, J.F. Labuz. Simulation of Failure around a Circular Opening in Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39:507-515.
    [101] S.P. Hunt, A.G. Meyers, V. Louchnikov. Modeling the Kaiser Effect and Deformation Rate Analysis in Sandstone using the Discrete Element Method[J]. Computers and Geotechnics, 2003,30:611-621.
    [102] N. Djordjevic. Discrete Element Modeling of the Influence of Lifters on Power Draw of Tumbling Mills[J]. Minerals Engineering, 2003, 16:331-336.
    [103] Wang, C., Tannant. D. D., P. A. Lilly. Numerical Analysis of the Stability of Heavily Jointed Rock Slopes using PFC2D[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40:415-424.
    [104] P.H.S.W. Kulatilake, Bwalya Malama, Jialai Wang. Physical and Particle Flow Modeling of Jointed Rock Block Behavior under Uniaxial Loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, (38):641-657.
    [105] A. Fakhimi, F. Carvalho, T. Ishida, J.F. Labuz. Simulation of Failure around a Circular Opening in Rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, (39):507-515.
    [106] Hiroaki Tanaka, Koji Inooku, Yuji Nagasaki, et al. Simulation of Soil Loosening at Subsurface Tillage using a Vibrating Type Subsoiler by means of the Distinct Element Method[C]. Proceedings of the 8th European Conference of the International Society for Terrain-Vehicle Systems, Umea, Sweden, June 18-22, 2000:32-38.
    [107] H.Fujii, A.Oida, H.Nakashima, et al. Analysis of Lunar Terrain-wheel System Interaction by DEM[C]. Proceedings of the 6th Asia-Pacific Conference of the International Society for Terrain-Vehicle Systems. Bangkok, Thailand, December 3-5, 2001:129-136.
    [108] CLEARY PAUL W. DEM Simulation of Industrial Particle Flows: Case Studies of Dragline Excavators, Mixing in Tumblers and Centrifugal Mills[J]. Powder Technology, 2000, 109(1):83-104.
    [109] Cundall P A, Strack O D L. A Distinct Numerical Model for Granular Assemblies[J]. Geotechnique, 1977, (77):47-65.
    [110] P.H.S.W. Kulatilake, Bwalya Malama, Jialai Wang. Physical and Particleflow Modeling of Jointed Rock Block Behavior under Uniaxial Loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, (38):641-657.
    [111]曹宇春,周健.软土地基上填土土坡滑动颗粒流模拟[J].浙江科技学院学报, 2006, 18(1):45-49.
    [112]张锐.基于离散元细观分析的土壤动态行为研究[D].吉林:吉林大学(博士学位论文), 2005:110-121.
    [113]魏洪兴.仿生拱泥机器人基础技术研究及原理样机研制[D].哈尔滨:哈尔滨工程大学(博士学位论文), 2001:50-53.
    [114]王岚.拱泥机器人的控制系统及路径规划研究[D].哈尔滨:哈尔滨工程大学(博士毕业论文), 2003:20-23.
    [115] N. Shyamsundar, R. Gadh. Collaborative Virtual Prototyping of Product Assemblies over the Internet[J]. Computer-aided Design, 2002, 34:755-768.
    [116] S.H. Choi, A.M.M. Chan. A Layer-based Virtual Prototyping System for Product Development[J]. Computers in Industry, 2003, 51:237-256.
    [117] S.H. Choi, A.M.M. Chan. A Virtual Prototyping System for Rapid Product Development[J]. Computer-Aided Design, 2004, 36:401-412.
    [118] Wei Xiang, Sai Cheong Fok, Georg Thimm. Agent-based Composable Simulation for Virtual Prototyping of Fluid Power System[J]. Computers in Industry, 2004, 54:237-251.
    [119]李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统, 2002, 8(9):678-683.
    [120]熊光愣,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报, 2001, 13(1):114-117.
    [121]胡劲松,周方洁.基于COM的MATLAB与Delphi混合编程研究[J].计算机应用研究, 2005, (1):165-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700