用户名: 密码: 验证码:
超磁致伸缩作动器优化及主动隔振控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着主动隔振控制技术的发展,对作动器的要求越来越高,这催生了智能材料作动器的诞生和发展。利用超磁致伸缩材料制作的作动器具有许多优越的性能,但其自身也存在一些比较突出的缺点,如非线性,磁滞现象,发热现象等问题,这大大阻碍了其实际应用,所以本文从分析超磁致伸缩机理入手,从以下几方面对作动器进行优化设计:
     1)利用作动器导磁内壁和端盖及超磁致伸缩材料棒构成闭合磁路,同时在超磁致伸缩材料棒两端放置导磁片,从而使其所处磁场更加均匀;
     2)合理选择偏置磁场强度及驱动磁场强度,以提高作动器输出的线性度,并降低作动器输出位移中的倍频分量;
     3)为超磁致伸缩材料施加预压力以提高其伸缩率,并对预压弹簧刚度进行优化计算;
     4)对驱动螺线管进行优化设计以提高作动器工作效率;
     5)为了减小涡流效应,对超磁致伸缩材料棒结构进行优化设计,采用多片结构方案;
     6)用肋片散热代替水冷方式,使作动器的应用更加灵活,方便;
     7)对作动器进行磁屏蔽,减小其对周围设备的干扰。在完成了作动器优化设计之后,对基于超磁致伸缩作动器的隔振原理进行了透彻分析,提出了其实质是位移跟踪的看法,并和传统的力控制进行了对比,仿真结果表明,位移跟踪模型无论在稳定性上还是稳态误差上都优于力控制模型。以此为根据,建立了主被动联合隔振平台的控制模型,并分析了被动隔振元件性能参数对系统整体隔振性能的影响。
     在控制算法方面,本文在最小均方自适应(LMS)算法基础上进行改进,主要目的是提高控制算法稳定性。为此提出了一种基于归一化LMS的约束权函数算法,该算法兼有变步长LMS和约束权函数的优点。在主动隔振系统中,次通道的影响不容忽视,通常做法是对其进行在线辨识,但辨识所用的白噪声同时进入到了误差信号中,从而会破坏系统性能,所以本文在滤波Fx_LMS算法的基础上进行改进,从误差信号中剥离用于辨识的白噪声信号,从而提高辨识精度并改善控制系统性能。另外,目前人们在研究控制算法时很少注意控制器实际输出能力的问题,这可能会导致在实际工作中元器件的烧毁,而如果为了保护元器件进行简单的限幅的话,会在系统中引入高频噪声,所以本文提出了一种误差约束自适应控制算法,该方法的中心思想是对反馈信号进行约束,即不使控制算法收敛到最优值,仿真表明该方法在保护系统元件的同时不会产生高频噪声。
     为了对上面所做工作进行验证,本文首先利用现有元器件进行了控制算法的试验。在试验中,利用信号发生器模拟平台振动,然后控制作动器输出位移跟踪该振动信号,并利用位移传感器检测作动器实际输出位移。试验结果表明本文提出的算法可以实现对周期信号的控制且性能较稳定。
     然后为了验证本文提出的隔振模型和控制算法,根据压磁-压电比拟法并利用ANSYS软件对超磁致伸缩作动器进行了静态仿真和谐性仿真,结果表明本文提出的作动器优化设计方法比较合理,利用该原理设计的作动器性能比较理想。最后,利用UG、MATLAB和ADAMS软件搭建了基于超磁致伸缩作动器的虚拟隔振平台,并利用其进行控制算法和系统模型的仿真验证。结果表明本文所建模型简单,实用;所提算法均能够实现振动的隔离,而且较为稳定,可为工程实际应用提供借鉴。
With the advancement of active control on vibration, higher demands on actuator catalyze the creation and development of intelligent materials. Due to its giant magnetostrictive strain, high power density, high electromechanical coupling coefficient and high response speed, the giant magnetostrictive actuator (GMA) has been widely concerned in the field of intelligent actuator by researchers in China and abroad. However, there’re also many disadvantages which challenge its actual application, such as nonlinearity, hysteresis and radiation. Based on the analysis of the giant magnetostrictive phenomenon and its form mechanism, research of optimization design which could improve the performance of the GMA are processed as follows:
     1) Magnetism material is used to make the inner wall and the two tips of GMA in order to form a closed loop around the giant magnetostrictive material (GMM) rod. Two pieces of magnetizer are placed at each end of GMM to proportion the distribution of magnetic field in GMA and reduce the leakage of magnetism.
     2) Methods of selecting the intensity of pre-magnetic field and drive magnetic field are discussed to increase linearity and to eliminate frequency multiplication in GMA.
     3) Pre-pressure is applied to GMM by a spring to improve the ratio of expansion, and the rigidity of the spring is optimized.
     4) The shape of the drive solenoid is optimized to enhance the work efficiency of GMA.
     5) GMM is cut into small slices along the axes so that the whirlpool effect is weakened.
     6) The traditional water cooling controlling system is replaced by configuration with rib, which makes the application of GMA more flexible and convenient.
     7) To reduce the disturbance to other equipments around it, GMA is shielded with non-magnetism material.
     Principles of vibration isolation (VI) are intensively analyzed after finishing the optimization design of GMA. An opinion that the essential of VI here is displacement tracking is proposed, which is compared with traditional force control. Then the model of VI platform is established based on displacement tracking, and how the parameters of passive VI affects the VI capability of the whole system is discussed. Simulation results show that displacement tracking has better performance of stability and less steady-state error than force control does.
     About control arithmetic, a new arithmetic of constraint weight function based on normalized LMS which originates from minimum mean square adaptive LMS is raised in order to improve the stability of system. This new arithmetic has both the advantages of changeable step LMS and constraint weight function. In the active vibration isolation system, the effect of secondary path is very important, and it’s usually solved by using on line identification. But the white noise used in the identification enters into the error signal which would damage the performance of the system. In this dissertation the white noise is separated from the error signal by using improved Fx-LMS arithmetic to increase the identification precision and system capability.
     Furthermore, the actual output ability of the controller is often neglected by people while doing researches on control arithmetic, this could make the elements burnt while in practice. But high frequency noise will be brought in if simply using slicing to protect the elements. A new error constraint adaptive control arithmetic is proposed in this dissertation to solve those problems above, which could restrict the feedback signal to make system achieve a non-zero convergence. Simulation results show that this method could protect the elements without bringing in high frequency noise.
     Experiments are done with the equipments available about control arithmetic in order to validate the ideas and simulations above. Signal generator is used to simulate the vibration of the platform, and the displacement outputs of the actuators are controlled to follow the vibration signal, while the actual displacements of the actuators are tested by displacement sensors. Simulation results show that the arithmetic proposed in this paper could control the periodic signal and has a good stability.
     Next, both static and compatible simulations of GMA are done by piezoelectric- piezomagnetic analogy, mainly using ANSYS. Results show that the design of the actuators here is proper as the performance is good.
     Last, after finishing the capability checkout of the actuator, a virtual vibration isolation platform based on GMA is built using UG, MATLAB and ADAMS, and simulations of the proposed algorithms and the system model are done on this platform for proof. Results show that the model is simple and effective and the arithmetic proposed in the paper could implement the vibration isolation and also has a good stability, so it might be used for reference in engineering application.
引文
[1]朱石坚,何琳.船舶机械振动控制[M].北京:国防工业出版社,2006:10-12
    [2] Kuirs R. Some observation on the achievable properties of diesel isolation system [J]. Bulletin Shipboard Acoustics, 1986, ISBV, 90-247-3402,
    [3]沈密群,严济宽. 舰船浮筏装置工程实例. 噪声与振动控制[J]. 1994, (1): 21-23
    [4] Scott D. Sommerfeldt. Adaptive vibration control of vibration isolation mounts using an LMS-based control algorithm [D]. Pennsylvania: the Pennsylvania state university, 1989
    [5]Dino Sciulli. Dynamics and control for vibration isolation design [D].Virginia: the Virginia polytechnic institute and state university, 1997
    [6] J. Van Eijk. On the design of plate-springs [D]. Delft University of Technology, Delft: 1985
    [7] Flotow A.H.von. An expository overview of active control of machinery mounts[C]. Proceedings of the 27th conference on decision and control, volume 3, Austin, 1988:2029-2032
    [8] Sievers L.A.and Flotow A.H.von. Linear control design for active vibration isolation of narrow band disturbances [C]. Proceedings of the 27th conference on decision and control, volume 2, Austin, 1988:1032-1037
    [9] 陈定中.舷侧阵声纳安装平台隔振系统振动控制技术研究[D].杭州:浙江大学机械于能源工程学院,2005
    [10] Brodie Engi Corp. Development of electromagnetic vibration neutralizer[R]. ASTIA, Dec., 1955
    [11] Crede C E, Cavanaugh R D. Feasibility study of an active vibration isolator for a helicopter rotor[R]. WAPC 58-183, 1958
    [12] Roger K L, Hodges G E, Felt L. Active flutter suppression-a flight test demonstration [C]. In proc. AIAA/ASME/SAE 15th SSDMC. 1974:74-402
    [13] Conor D. Johnson, Paul S. Wilke, Patrick J. Grosserode. Whole-spacecraft vibration isolation system for the GFO/Taurus mission[C]. The smart structures and materials conference, passive damping and isolation. Vol.3045, San Diego, 1999:23-30
    [14] Stephen C. Galea, Thomas G. Ryall, et al. Next generation active buffet suppression system [R]. AIAA/ICAS International air and space symposium and exposition, 2003: 2003-2905
    [15] Hampton R. D., Grodsinsky C.M., Allaire P. E., et al. Optimal microgravity vibration isolation: an algebraic introduction [J]. Journal of the Astronautical Science, 1992, 40(2): 241-259.
    [16] Alok Sinha, Chikuan K Kao. A new approach to active vibration isolation for microgravity space experiments [R]. NASA-TM-102470, N90-17929.
    [17] Harvey G M Jr.John A T. Topics in landing gear dynamics research at NASA Lankly [R]. ICAS-86-5, 1994
    [18] Takahashi M D, Friedmann P P. Design of a simple active controller to suppress helicopter air resonance[R].ln Proc. 44th Annual Forum of AHS, 1988
    [19] Lehman G,Kube R. Automatic vibration reduction at a four blade hingeless model rotor-a wind runnel demonstration [J]. Vertical, 1990, 14(1):231-243
    [20] Leslie A. Sullivan, Robert J. Fuentes, Vit Babuska. On-orbit active vibration isolation: the satellite UItraqiet isolation technologies experiment (SUITE)[R]. AIAA Paper 2003-6358, 2003
    [21] Watters B G. A perspective on active machine isolation[C]. Proceeding of the 27th conference on decision and control. Ascstion, Teras, 1988:530-541
    [22] Mitsuhashi K, et al. Application of active vibration isolating system to diesel mounting[C]. Proceeding 18th International congress on combustion engine, disel engine volume, 1989:42-46
    [23] Mathias Winberg, Thomas L Lag?. Inertial mass active mount used in a marine application [C]. The Adaptronic Congress’ 99. Berlin: Potsdam, 1999:236-243
    [24] Watters B G., Colema R B, Duckworth G L, et al. A perspective on active machinery isolation [C]. Proceeding of the 27th Conference on Decision and Control. Austin, Texas, 1988: 1012-1017
    [25] Richardson J J, Bosma J, Larriva D, et al. A review of the technology reinvestment project [R]. Potomac Institute for Policy Studies. Arlington Virginia, USA, 1999.
    [26] Takafumi Fujita, Yasutaka Tagawa, Kouichi Kajiwara, et al. Active 6-DOF microvibrationcontrol system using piezoelectric actuator[C]. The third international conference on adaptive structures , San Diego, California, 1992:514-528
    [27] Kajiwara K, Hayatu M, Imaoka S, et al. Large scale active micro-vibration control system using piezoelectric actuators applied to semiconductor manufacturing equipment [J]. JSME 1997,63(3):3735-3742
    [28] 张春良.微制造平台振动主动控制研究[D].杭州:浙江大学机械与能源工程学院,2003
    [29] Hedlick J K. Railway vehicle active suspension [J]. Vehicle System Dynamics, 1981(10): 267-272.
    [30] Lijima T, Akatsu Y, akahashi K, et al. Development of a hydraulic active suspension. SAE paper 931971, 1993:2142-2153
    [31] Hoogterp F B, Eiler M K, Mackie W J. Active suspension in the automotive industry and the military. SAE paper 961037,1996:96-101
    [32] Sharp R. S., Crolla D.A. Road vehicle suspension system design-a review [J]. Vehicle system dynamics, 1987,Vol.16:167-192
    [33] 小泉智志.日本住友金属主动控制技术[J].国外铁道车辆,vol.41(1),2004 : 34-3 7.
    [34] Aoyama Y, et al. Development of the full active suspension by Nissan. SAE paper 901747, 1990
    [35] 杨东利. 超磁致伸缩执行器及其在主动振动控制中的应用研究[D].杭州:浙江大学机械与能源工程学院,2002
    [36] 陈大任.压电陶瓷微位移驱动器概述[J].电子元件与材料,1994,13(1):2-7.
    [37] 杨铁军, 刘志刚, 张天元等. 柴油机装置液压伺服主动隔振台架研究[J]. 船舶工程, 2003, 25(4): 50-55.
    [38] 邢向丰, 李凤兰, 权龙. 汽车液压主动悬架的PID控制[J]. 太原理工大学学报, 2000, 31(3): 240-243.
    [39] 韩波, 王庆丰, 路甬祥. 基于LQG理论的液压主动悬架仿真研究[J]. 机械工程学报, 1998, 34(6): 59-65.
    [40] Xu Y L, Yang Z C, Chen J, et al. Microvibration controlplatform for high Technology facilities subject to traffic-induced ground motion. Engineering Structures, 2003(25): 1069-1082.
    [41] Hodgson, D. A. Frequency-Shaped control of active isolators[C]. Proceedings of theinternational technical specialists meeting on rotorcraft acoustics and rotor fluid dynamics. Philadekphia:1991:15-17
    [42] Toshiaki H, Satoshi K, Ryoichi T. H∞ control of railroad vehicle active suspension. Automatica, 1995, Vol. 31(1): 13-24.
    [43] Yoshimura T, Kume A, Kurimoto M, et al. Construction of an active suspension system of a quarter car model using the concept of sliding mode control. Journal of Sound and Vibration, 2001, 239(2): 187-199.
    [44] 张明亮, 朱建忠, 王贵林. 超精密机床自平衡充气式隔振技术. 机械设计与制造, 1999(5):61-63.
    [45]隋华.压电效应的有限元分析及压电悬置控制方法的研究[D].吉林:吉林大学汽车工程学院. 2002
    [46] David A. Kienholz. Active alignment and vibration control system for large airborne optical system. Smart structures and materials conference[C]. San Diego, CA 2000.3
    [47] Mathias Winberg, Thomas L Lag?. Inertial mass active mount used in a marine application. The Adaptronic Congress’ 99. Potsdam, Berlin, 1999.
    [48] 张洪田,刘志刚,张天元等. 电磁式主动隔振装置性能试验研究[J]. 振动与噪声控制. 1996.2:15-17.
    [49]浦军, 梅德庆, 陈子辰. 超精密隔振平台主动振动控制系统设计[J]. 机械设计, 2003, 20(7): 31-33.
    [50] Lacy S L, Bernstein D S. Identification of an electromagnetic actuator. Decision and Control, Proceedings of the 41st IEEE Conference on, Dec. 2002, Vol. 4: 4521-4526.
    [51]李云超, 王良曦, 张玉春. 电磁主动悬架的建模及仿真研究[J]. 装甲兵工程学院学报,2004, 18(1): 66-70.
    [52] Eric Flint, Michael E. Evert, Eric Anderson, Patrick Flannery. Active/Passive Counter-Force Vibration Control and Isolation Systems [C]. Proceedings of the IEEE 2000 Aerospace Conference. Big Sky, Montana. 2000.3
    [53] Spangler, Ronald L, Jr. Piezoelectric actuators for helicopter rotor control, SM thesis, Massachusetts institute of technology, Cambridge, MA, 1989
    [54] 程宜杰.稀土超磁致伸缩材料在军事及海洋开发中的应用前景探讨[J]. 中国科技信息. 2006, 20: 285-286
    [55] 盖玉先, 滕燕, 董申. 超精密机床磁致伸缩作动器隔振系统[J]. 制造技术与机床, 2001(1): 29-32.
    [56] Chunliang Zhang, Deqing Mei, Zichen Chen. Fuzzy generalized predictive control of microvibration for a micro-manufacturing platform. American Control Conference, 2003. Proceedings of the 2003, Vol.5: 3690-3695.
    [57] 孟爱华,项占琴,吕福在.微型超磁致伸缩高速阀致动器的优化设计[J].浙江大学学报, 2006, 40(2):216-220.
    [58] 朱金才,顾仲权. 磁致伸缩作动器的设计及其动态特性研究[J]. 南京航空航天大学学报, 1998, 30(4): 413-418.
    [59] 李超,李琳. 磁致伸缩材料作动器用于主动振动控制的实验研究[J]. 航空动力学报, 2003, 18(1): 134-139.
    [60] Yoshioka H, Takahashi Y, Katayama K, et al. An active Microvibration isolation system for hi-tech manufacturing facilities. Journal of Vibration and Acoustics. 2001, 123(2): 269-275.
    [61] Choi S B, Park Y K, Fukuda T. A proof-of-concept investigation on active vibration control of hybrid smart structures. Mechatronics, 1998,8: 673-689.
    [62] 汤敏.振动-离心复合环境中随机振动的自适应逆控制方法研究[D]. 四川大学.2005
    [63] Suk-Min Moon, Robert L. Clark. Optimal sensing strategy for adaptive control of optical systems [C]. Smart structures and materials: modeling, signal processing, and control. San Diego: 2005:209-218
    [64] C.R.Fuller, S.J.Elliott, P.A.Nelson, Active Control of Vibration[M], Kluwer Academic Press, 1997
    [65] 孙朝辉,王冲等.结构振动主动控制理论及试验研究[J].振动工程学报1994.7(4).154一160
    [66] E.K.Dimitriadis, C.R.Fuller and C.A.Rogers., Piezoelectric actuators for distributed vibration excitation of thin plates [J]. Journal of Viration and Acoustics. Jan. 1991,133: 100-107
    [67] Scott D S. Multi-channel adaptive control of structural vibration. Noise Control Engineering Journal,1991,32(2): 77—89
    [68] Scott D S,Nobuo T. Modification to overall system response when using narrowband adaptive feed-forward control system. Journal of Dynamic Systems,Measurement,andControl,1993.115:612—626
    [69] 马扣根,顾仲权.直升机结构响应自适应控制研究.航空学报,1997, 18(3):359-362
    [70] 马扣根等.柔性建筑结构风振自适应控制方法与试验研究.振动工程学报, 1998,11(2):131-137
    [71] 朱晓锦.压电机敏析架结构振动自适应控制及试验研究[J].振动、测试与诊断,1998,18(2): 98-102
    [72] 马扣根,顾仲权.振动结构的多输入/多输出实时辨识控制与试验研究[J].航空学报,2000,21 (1): 60-63
    [73] 金石成. 基于自适应滤波的振动-离心力复合环境自适应控制研究[D]. 成都:四川大学,2004
    [74] Li Mingfeng. Active vibration control of a gearbox system with emphasis on gear whine reduction [D]. Cincinnati: University of Cincinnati, 2005
    [75] B. REBBECHI, C. HOWARD and C. Active control of gearbox vibration[C]. HANSEN 1999 Proceedings of the Active Control of Sound and Vibration Conference, Fort Lauderdale: 295-304.
    [76] T. J. SUTTON and S. J. Active attenuation of periodic vibration in nonlinear systems using an adaptive harmonic controller[C]. ELLIOTT 1995 Journal of Vibration and Acoustics, Transactions of the ASME 117(3(A)): 355-362.
    [77] R.H.Cabell,C.R.Fuller. A principal component algorithm for feed-forward active noise and vibration [J]. Journal of Sound and Vibration,1999,227(1):159-181
    [78] Douglas,S.C. Sawada, H. Makino, S. Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters[C]. speech and audio processing, 2005, 13: 92-104
    [79] 孙木楠.一种噪声与振动主动控制的滤波-MLMS算法[J].振动与冲击,2002,21(2):50-57.
    [80] 高慧,牛敏聪.自适应噪声抵消技术中的一种变步长的最小均方(LMS)算法研究[J].航天医学与医学工程,2002,15(5):366-368
    [81] 张春红,汤炳新.主动隔振技术的回顾与展望[J].河海大学学报,第16卷第2期,2002年6月.
    [82] 颜桂云.地震、风激励作用下高层建筑振动控制的研究[D].杭州:浙江大学结构工程研究所,2005
    [83] 贾振元,杨兴.超磁致伸缩材料控制模型的研究[J].压电与声光,2001,4 (2): 164-166a
    [84] 唐志峰.超磁致伸缩执行器的基础理论与试验研究[D].杭州:浙江大学机械制造及自动化系,2005
    [85] L. D. JONES and E. GARCIA. Adaptive Structures and Composite Materials : Analysis and Application[C]. ASME 1994 International Mechanical Engineering Congress and Exposition. Chicago: Illinois,1994: 155-165
    [86] K. S. KANNAN and A. DASGUPTA, Finite element modeling of multifunctional composites with embedded magnetostrictive devices [C]. ASME 1994 International Mechanical Engineering Congress and Exposition, Chicago, Illinois,1994: 21-28,.
    [87] 吕福在.用于柴油机电喷系统的GMM高速强力电磁阀和电控系统的研究[D].杭州:浙江大学,2000
    [88] K. Prajapati, R. D. Greenough, A. G. Jenner. Device oriented magnetoelastic properties of Tb x Dy1? xFe1.95(X=0.27, 0.3) at elevated temperatures [J]. J. Appl. Phys, 1994, 76 (10) :7154-7156.
    [89] 王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金出版社,2001.
    [90] 李恒菊.磁致伸缩材料在微动工作台中的应用[D].武汉:武汉理工大学,2005
    [91] 梁灿彬,秦光戎,梁竹健.电磁学[M]. 北京:人民教育出版社,1980:299-302
    [92] G. Engdahl. Design Procedures for optimal Use of Giant Magnetostrictive Material in Magnetostrictive Actuator Applications[C]. ACTUATOR 2002, 8th International Conference on New Actuators, 2002, Bremen, Germany, P41:554-557
    [93] 梁才海.基于磁致伸缩作动器的主动隔振系统研究[D].北京:北京航空航天大学机械电子工程系,2005
    [94]赵明生.电气工程师手册(第二版)(M).北京:机械工业出版社,2002:526-545
    [95] Carmody T. NOMOGRAPH-max Operating Current [M]. PRD Electronics, Inc., Syosset NY
    [96] 尹子栋.超磁致伸缩式微小型高速开关阀驱动部件关键技术研究[D].西安:西北工业大学航空宇航制造工程系,2006
    [97] 唐志峰. 超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学机械与能源学院,2005
    [98] Clark A. Magnetostrictive Rare Earth-Fe2 Compounds, Ferromagnetic Materials [M]. North-Holland Pub, Amsterdam, 1980
    [99] 唐兴伦,范群波,张朝晖等. Ansys 工程应用教程(热与电磁学篇)[M].北京:中国铁道出版社,2003年
    [100] 陶文铨.传热学[M].北京:北京航空航天大学出版社,2006年
    [101] 卢全国,陈定方,钟毓宁等. 超磁致伸缩致动器热变形影响及温控研究[J].中国机械工程,2007,18(1):16-19
    [102] 万红,吴学忠,刘希从.层状复合材料磁电效应的数值分析[J].功能材料,2005,4:509-512
    [103] 夏铁坚,周利生,范进良等.一种大功率稀土纵向振动换能器的研究[J].声学技术, 2003, 22(1):22-25
    [104] 左鹤声,彭玉莺.振动试验模态分析[M]. 北京:中国铁道出版社.1995.
    [105] Rick Kellogg, Alison Flatau. Investigation of a Terfenol-D tunable mechanical resonator[C]. Proceedings of SPIE, 2001,4327: 550-559.
    [106] L. Gros, G. Reyne, C. Body, G Meunier. Strong Coupling Magneto Mechanical Methods Applied to Model Heavy Magnetostrictive Actuators[J]. IEEE Transactions on Magnetics,1998, 34(5):3150-3153.
    [107] Rongge Yan, Bowen Wang, Qingxin Yang, et al. A Numerical Model of Displacement for Giant Magnetostrictive Actuator[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2):1914-1917.
    [108] M. Kaltenbacher, S. Schneider, R. Simkovics, et al. Nonlinear Finite Element Analysis of Magnetostrictive Transducers [C]. Proceedings of SPIE, 2001, 4326 : 160-168
    [109] 顾仲权,朱金才,彭福军,等.磁致伸缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998,11(4):381-388
    [110] 方同, 薛璞. 振动理论及应用[M]. 西安:西北工业大学出版社, 2002: 61-67
    [111] J. A. Macinante, Seismic Mountings for Vibration Isolation. Wiley-Interscience, first edition, 1984.
    [112] 张磊. 基于磁致伸缩作动器的主动隔振技术研究[D].北京:北京航空航天大学, 2004
    [113] Hrovat, D., survey of advanced suspension developments and related optimal control applications [J]. Automatica, 1997,33(1): 1781-1917
    [114] Housner, G. W., Bergman, L.A., Caughey, T. K., etc. structural control: past, present, and future [J]. Journal of Engineering Mechanics, ASCE, 123, No. 9: 897-971
    [115] Nguyen, T., Bui, T., Tran, T., etc. A hybrid control of active suspension system using H∞ and nonlinear adaptive controls [J]. IEEE International Symposium on Industrial Electronics, 2: 839-844
    [116] Widrow B, Shur D, Shaffer S. On adaptive inverse control[c].Proceedings of 15th Asilomar Conference[C]. Sata Clara, CA,1981.185-189
    [117] Burgess J C. Active adaptive sound control in a duct: a computer simulation[J]. Journal of Acoustical Society of America, 1981,70(5):715-726
    [118]B. Widrow, S. D. Stearns. Adaptive signal processing [M]. New Jersey: Prentice-Hall .1985
    [119] Simon Haykin. Adaptime filter theory [M]. China: publishing house of electronics industry. 2006: 181-270.
    [120] Nagumo, J. I., A. Noda. A learning method for system identification[J]. IEEE. Trans. Autom. Control, 1967, AC(12):124-126
    [121] S. M. Kuo, D. R. Morgan. Active noise control: a tutorial review[c].Proceedings of the IEEE 87(6), 1999:943-973.
    [122] D. R. Morgan. An analysis of multiple correlation cancellation loops with a filter in the auxiliary path [J]. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-28, 1980:454-467.
    [123] B. Widrow, D. Shur and S. Shaffer. On adaptive inverse control[C]. Proceedings of the 15th ASILOMAR Conference on Circuits, Systems and Computers, 1981:185-195.
    [124] Widrow B, Shur D, Shaffer S. On adaptive inverse control. Proceedings of 15th Asilomar conference, Sata Clara CA, 1981:185-189.
    [125] Simon Haykin. Adaptive filter theory(fourth edition)(M). Beijing: Publishing House of Electronics Industry, 2002.
    [126] MengFeng Li. Active vibration control of a gearbox system with emphasis on gear whine reduction[D]. Cincinnati : University of Cincinnati., 2005
    [127] 杨铁军,刘志刚,张文平等. 基于x-RLMS的自适应有源隔振技术研究[J]. 内燃机学报,2001, 19(1):92-95
    [128] Sen M. Kuo, Dipa Vijayan. A secondary path modeling technique for active noise control systems [J]. IEEE transactions on speech and audio processing. 1997, 5(4):374-377
    [129] Muhammad Tahir Akhtar , Masayuki Kawamata. A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems [J]. IEEE Transactions on audio, speech ,and language processing.2006,14(2): 720-726
    [130] 唐倩,易树平,詹捷.虚拟原型试验仿真技术[J].重庆:重庆工学院学报,2001,15(2):55-57
    [131] 江诗林,吴泉源.开展虚拟实验系统的研究和应用[J].计算机工程与科学,2000,22(2):33-36
    [132] Room P M, Hanan J S, Prusinkiewicz P. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists [J]. Trends in Plant Science, 1996,1(1):33-38
    [133] Wilson P A, Chakrabrty S. The virtual plant: a new tool for the study and management of plant diseases [J]. Crop Protection, 1998,17(3):231-239
    [134]顾祝军,曾志远.虚拟现实技术在我国农业现代化中的应用[J].农机化研究,2005,1
    [135]赵星,de Reffye Philippe,熊范纶等.虚拟植物生长的双尺度白动机模型[J].北京:计算机学报,2001,24(6):6-9
    [136] 靳润昭,干兆毅.虚拟现实及其在农业上的应用[J].天津农学院学报,2001,8(2):27-32
    [137] 宋有洪,贾文涛,郭众等.虚拟作物研究进展[J].计算机与农业,2000,(6):6-9
    [138] 符涂斌,衰慧玲.恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验[J].科学通报,2001, 46(8):691-692
    [139] 程民治.物理学中的虚拟实验[J].现代物理知识,2000,12(4):16-18
    [140] 商桑,顾德均,姜茂仁.虚拟现实技术在网络教育中的应用[J].中国远程教育,2000 (7):49-51
    [141] 孙冬泳,汤健等.虚拟细胞一人工生命的模型[J].中华医学杂志,2001,81(21):33-36
    [142] 赵建卫,唐硕,吴催生.武器系统虚拟样机设计环境[J].飞行力学,2000,18(2)
    [143] 毛玉娇,王梅,陈远.虚拟现实技术及其应用[J].图书情报知识,1997,(4):25-28
    [144] 李瑞涛,方泥湄,张文明.虚拟样机技术的概念及应用机电一体化[J].金属矿山,2000,(5):17-19
    [145] 雷良育.基于虚拟现实的汽车平顺性仿真试验系统及其关键技术研究[D].浙江:浙江大学机械与能源工程学院.2005
    [146] 赵静斌.轿车电动天窗运动执行机构的虚拟样机分析与试验研究[D].长春:吉林大学车身工程系.2006
    [147] 万鑫铭.基于虚拟试验的汽车前碰撞安全气囊防护效率的研究[D].长沙:湖南大学机械与汽车工程学院.2005
    [148] 李军,邢俊文,覃文浩ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [149] 高卫民,王宏雁.UG 软件在白车身 CAD 建模中的应用[J].设计与计算,2001(1):13-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700