用户名: 密码: 验证码:
基于内聚力模型的复合材料拉伸性能细观有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现如今,无论从航空航天技术和核设备工程到微电子或者结构工程应用,复合材料都发挥着重要的作用。考虑到这一现实以及数值试验在结构和工业生产过程设计中的作用越来越大,计算力学研究和发展方向的最重要的内容之一就是要能够对这些材料进行精确模拟。现代复合材料计算力学通过不同的科学领域,从实验材料科学到先进计算技术和应用数学,遵从许多不同的研究方法。基于有限元方法的商业计算机程序(例如ABAQUS、ANSYS等)现在能够进行可视化多场、多相和非稳态物理和力学问题的研究,甚至可以使用随机变量把不确定性引入到计算机模拟之中。本论文基于细观力学理论,用有限元方法分析了两种典型复合材料(纤维增强单向复合材料和纳米化不锈钢层合轧压复合材料)的力学性能与其内在组分材料之间的关系,进行了如下几个方面的研究工作:
     1.对纤维增强单向复合材料的横向SEM图像进行了数字化处理,得到了纤维在横截面内的几何微结构特征属性,包括面积、离心率、空间分布、方位角等。然后,编写了方便ABAQUS软件调用的Python语言脚本程序。该程序实现了两种纤维随机分布的RVE模型的生成方法:一种是用于较低体积含量的硬核算法,另一种是用于较高体积含量的RVE模型生成的双扰动算法。本文利用双扰动算法生成的RVE模型,对纤维增强单向复合材料进行了横向刚度分析和极限承载力的分析。
     2.在考虑界面相情况下,对纤维增强单向复合材料横截面内单向拉伸时的力学行为进行了数值模拟,其中,界面相单元采用服从线性应力—分离演化规律的内聚力单元来表示。讨论了界面相厚度、模量、泊松比和强度对于复合材料整体横向性能的影响。研究结果表明:界面相厚度越小,界面相对刚度的影响越弱,而对泊松比ν的影响越大;界面相模量越大,复合材料的等效模量越大;复合材料整体横向拉伸强度随着界面相强度的增加而增加。
     3.联合使用ABAQUS中的子程序USDFLD和UMAT,模拟了单纤维复合材料体系的纵向拉伸损伤过程。其中,用内聚力单元来实现纤维与基体界面的脱粘过程。研究发现:对于此类模拟,退化因子d=0.01是足够而有效的;各个组分材料的强度对材料的失效都有明显的影响。
     4.通过在有限元网格中间插入内聚力单元,建立了纳米化不锈钢层合轧压结构复合材料的内聚有限元模型。分别研究了纳米晶层材料和粗晶基体材料的内聚强度与能量释放率对复合材料整体失效应变的影响,总结了拉伸过程中,微裂纹个数与损伤耗散能的变化规律。此外,纳米晶层体积含量在两种不同分布形式下,对复合材料整体失效应变的影响也做了初步研究。
     综上所述,本文建立了两种典型复合材料的有限元模型,研究了这些材料在拉伸载荷下的力学响应,希望本文的结果能够为更进一步的研究与复合材料的设计及工程应用提供一定的参考和帮助。
Nowadays composites play a very important role in engineering from aerospacetechnology and nuclear devices to microelectronics or structural engineering applications.Considering this fact and the growing role of numerical experiments in the designing ofstructures and industrial processes, one of the most important purposes of computationalmechanics research and direction of progress appeared to be precise numerical modelling ofthese materials. Modern computational mechanics of composite materials follows manyvarious ways through different science domains from experimental materials science toadvanced computational techniques and applied mathematics. Commercial computerprograms (such as ABAQUS and ANSYS) based on the Finite Element Method enable nowvisualisation of the multifield, multiphase and non-stationary physical and mechanicalproblems and even introducing uncertainty into computer simulation using random variables.Based on mesomechanics, the mechanical properties and relationship between the constitutematerials of two typical composites (unidirectional fiber reinforced composite and nano rolledstainless steel laminated composites) have been analysed. The following aspects have beenresearched in detail:
     1. In order to obtain the geometric properties of micro-structural of the fiber (such asarea, eccentricity, spatial distribution and orientation) in the cross section, the transverse SEMpicture of unidirectional fiber reinforced composites is digital processed. Then, script isdeveloped using Python language, which will be called by ABAQUS comfortably. Two typesof fiber random distribution RVE generation method are carried out in the script. One is hardcore algorithm which will be used for low volume content, and the other is two disturbingalgorithm which will be used for high volume content. The transverse stiffness and ultimateload of unidirectional fiber reinforced composites is analysed by using the RVE modelgenerated using two disturbing algorithm.
     2. The mechanical behaviors of unidirectional fiber reinforced composites consideringinterphase under tensile load are simulated. The interphase is represented by cohesive elementwhich obeys the linear traction-separation law. The effect of thickness, modulus, Poisson rateand strength of interphase on transverse properties of composites is discussed. The resultsindicate that with the decrease of the interphase thickness, the effect of interphase on stiffnessis weak while the effect of interphase on Poisson rateν is strong. The larger the interphasemodulus is, the larger the overall modulus of composites is. The transverse strengt h ofcomposites increases with the increase of interphase strength.
     3. The tensile damage process of single fiber composite system is simulated bycombination of subroutine USDFLD and UMAT in ABAQUS. Cohesive element is used fordebonding process between fiber and matrix. The results indicate that degradation factor d=0.01is efficient for this type simulation. The effects of constituent materials on the failureof material are significant.
     4. The cohesive finite element mode l of nano rolled stainless steel laminated compositesis generated by inserting cohesive element in the finite element mesh. The effects of cohesivestrength and energy release rate of nanocrystal material and coarse crystal material on thefailure strain of the composites are studied. The law of microcrack number and damagedisperse energy is realized. In addition, the effect of volume content of nanocrystal materialunder two distribution types on the overall failure of the composites is initially studied.
     In conclusion, the finite models of two typical composites are generated in the paper.The mechanical response of these materials under tensile load is studied which hopefullywould provide useful reference to the study and design of composites and engineeringapp lication.
引文
[1]杜善义,王彪.复合材料细观力学.科学出版社.1998.
    [2]王维新,王剑,赵志忠.复合材料及其发展现状.辽宁工学院学报.1996,16(3):24-28P
    [3]沈观林,胡更开.复合材料力学.清华大学出版社.2006.
    [4] Jones R M. Mechanics of Composite Materials. USA Philadelphia: Taylor&Francis,Inc.,1998.
    [5] Lee JY, Baljon ARC, Loring RF, Panagiotopoulos AZ. Simulation of polymer meltintercalation in layered nanocompo sites. J Chem Phys.1998,109:10321–10330P
    [6] Smith GD, Bedrov D, Li LW, Byutner O. A molecular dynamics simulation study ofthe viscoelastic properties of polymer nanocomposites. J Chem Phys.2002,117:9478-89P
    [7] Zeng QH, Yu AB, Lu GQ, Standish RK. Molecular dynamics simulation of organic-inorganic nanocomposites: layering behavior and interlayer structure of organoclays.Chem Mater.2003,15:4732–4738P
    [8] Thompson RB, Ginzburg VV, Matsen MW, Balazs AC. Block copolymer-directedassembly of nanoparticles: forming mesoscopically ordered hybrid materials.Macromolecules.2002,35:1060-1071P
    [9] Zeng QH, Yu AB, Lu GQ. Interfacial interactions and structure of po lyurethaneintercalated nanocomposite. Nanotechnology.2005,16:2757-2763P
    [10]吴佰建,李兆霞,汤可可.大型土木结构多尺度模拟与损伤分析——从材料多尺度力学到结构多尺度力学.力学进展.2007,37(3):321-336P
    [11] Panin, V.(Ed.)(1998), Physical Mesomechanics of Heterogeneous Media andComputer-Aided Design of Materials, Cambrige International Science Publishing,Cambridge.
    [12] Needleman, A. Computational mechanics at the mesoscale. Acta Materialia.2000,48:105–124P
    [13]陈少华.在材料研制中的连续介质细观力学有限元建模现状评论.力学进展.2002,32(3):444-466P
    [14]杨卫.细观力学和细观损伤力学.力学进展.1992,22(1):1-9P
    [15] Estrin, Y. Syntheses: playing scales-a brief summary, Modelling and Simulation inMaterials Science and Engineering.1999,7:747–751P
    [16] Mishnaevsky Jr, L. and Schmauder, S. Continuum mesomechanical finite elementmodeling in materials development: a state-of-the-art review. Applied MechanicsReviews.2001,54:49–69P
    [17] Griffith, A. A. The phenomena of rupture and flow in solids, PhilosophicalTransactions of the Royal Soc iety of Londo n, Series A.1920,211:163–198P
    [18] Irwin, G. R. Fracture, in: Handbuch der Physik, Springer Verlag, Berlin,1958,551–594P
    [19] Westergaard, H. M. Bearing pressures and cracks, ASME Journal of AppliedMechanics.1939,6: A49–A53P
    [20] Irwin, G. R. Analysis of stresses and strains near the end of a crack transversing a plate.Journal of Applied Mechanics Transcations.1957,79:361–364P
    [21] Irwin, G. R. Plastic zone near a crack and fracture toughness, in: Selected Papers onFoundations of Linear Elastic Fracture Mechanics, SPIE Milestone Series, Vol. MS137, Ed. R.J. Sanford, SPIE Optical Engineering Press, co-published by Society ofExperimental Mechanics, Bethel, pp.280–285.(1960, republished1997).
    [22] Dugdale, D. S. Yielding of steel sheets containing slits. Journal of the Mechanics andPhysics of Solids.1960,8:100–112P
    [23] Wells A A. Applications of fracture mechanics at/and beyond general yielding [J].British Welding J ournal.1963,10:563-570P
    [24] Needleman, A. A continuum model for void nucleation by inclusion debonding.Journal of Applied Mechanics.1987,54:525–531P
    [25] Tvergaard, V. Material failure by void growth to coalescence. Advanced AppliedMechanics.1990,27:83–151P
    [26] Tvergaard, V. and Hutchinson, J. W. The relation between crack growth resistance andfracture process parameters in elastic-plastic solids. Journal of the Mechanics andPhysics of Solids.1992,40:1377–1397P
    [27] Tvergaard, V. and Hutchinson, J. W. Toughness of an interface along a thin ductilelayer joining e lastic solids. Philosophical Magazine A.1994,70:641P
    [28] Tvergaard, V. and Hutchinson, J. W. On the toughness of ductile adhesive joints.Journal of the Mechanics and Physics of Solids.1996,44:789–800P
    [29] Weibull, W. A statistical theory of the strength of material. The Royal SwedishInstitute for Engineering Research, Proceedings.1939,151:1–45P
    [30] Freudenthal, A. M. Statistical approach to brittle fracture. in: Fracture. An AdvancedTreatise, Ed. H.Liebowitz, Academic Press, New York.1968,592–618P
    [31] Batdorf, S. B. and Crose, J. G. A statistical theory for the fracture of brittle structuressubjected to nonuniform polyaxial stresses. Journal of Applied Mechanics.1974,41:459–464P
    [32]贺福,梁涛,王润娥.用Weibull模数表征碳纤维的力学性能.航空材料学报.1993,13:40-46P
    [33]金宗哲,马眷荣.脆性材料强度统计分析中Weibull模数估计的试样数量的优化.硅酸盐学报.1989,17(3):229-236P
    [34] Chudnovsky, A. I. On fracture of macrobodies, in: Studies in Elasticity and Plasticity,Leningrad University Press, Leningrad.1973,3–43P
    [35] Mishnaevsky Jr, L. Determination for the time to fracture of solids. InternationalJournal Fracture.1996,79:341–350P
    [36] Mishnaevsky Jr, L. Damage and Fracture in Heterogeneous Materials, Balkema,Rotterdam.1998.
    [37] Yokobori, T. The Scientific Basis of Strength and Fracture of Materials. Nauko vaDumka, Kiev.1978.
    [38] Xing, X.S. On theoretical framework of nonequilibrium statistical fracture mechanics.Engineering Fracture Mechanics.1996,55:699–716P
    [39]刑修三.非平衡统计断裂力学基础.力学进展.1991,21(2):153-168P
    [40] Mishnaevsky Jr, L. and Schmauder S. Damage evolution and localization inheterogeneous materials under dyna mical loading: stochastic mode ling. ComputationalMechanics.1997,20:89–94P
    [41] Dolinski, K. Stochastic modeling of fatigue crack growth in metals, in: Probamat-21stCentury: Probabilities and Materials, Ed. G. Frantziskonis, NATO ASI Series, Kluwer,Rordecit.1998,46:511–531P
    [42] Mishnaevsky Jr, L. and Schmauder, S. Damage evolution and heterogeneity ofmaterials: model based on fuzzy set theory. Engineering Fracture Mechanics.1997,57:625–636P
    [43] Daniels, H. E. The statistical theory of the strength of bundles of threads. Proceedingsof the Royal Soc iety of Londo n.1945,183:405–435P
    [44] Zok, F. W. Fracture and fatigue of continuous fiber-reinforced metal matrix composites.in: Comprehensive Composite Materials, Eds A. Kelly and C. Zweben, Pergamon,Oxford.2000,3:189–220P
    [45]高玉华.受拉纤维束力学模型变形破坏分析.安徽工学院学报.1993,12(4):79-84P
    [46]曾庆敦,苏敬源.低温下纤维束及束增强复合材料的应力集中.华南理工大学学报.2003,31(11):45-52P
    [47]王剑,朱卫中,钮长仁.负温高强混凝土冻结损伤纤维束模型研究.低温建筑技术.2001,2:4-6P
    [48] Kachnov, L. M. The time to fracture under creep conditions. Izv. Akad. Nauk SSSR,Otdel, Tekh. Nauk.1958,8:28-31P
    [49] Rabotnov, Yu. N. Creep rupture. Proc.12th Int. Cong. Appl. Mech. IUTAM.1968:342p
    [50] Becker,W. and Gross, D. A one-dimensional micromechanical mode l of elastic-microplastic damage evolution. Acta Mechanica.1987,70:221–233P
    [51] Lemaitre, J. A Course on Damage Mechanics, Springer, Berlin.1992
    [52] Lemaitre, J. and Chaboche, J. L. Mecanique des materiaux solides, Dunod, Paris.1985.
    [53] Krajcinovic, D. Damage Mechanics, North-Holland, Amsterdam.1996
    [54] Kachanov, M. Continuum model of medium with cracks. Journal of the EngineeringMechanics Division.1980,106:1039–1051P
    [55] Kachanov, M. On modelling of anisotropic damage in elastic-brittle materials–A briefreview, in: Damage mechanics in composites, Eds A. S. D. Wang and G. K.Haritos,ASCE, New York.1987,99–105P
    [56] Kachanov, M. Elastic solids with many cracks: a simple method of analysis.International Journal of Solids and S tructures.1987.23:23–43P
    [57] Horii, H. and Nemat-Nasser, S. Brittle failure in compression: splitting, faulting andbr ittle-ductile transition. Philosophical Transactions of the Royal Society.1986,319:337–374P
    [58] Kemeny, J. M. and Tang, F. F. A numerical damage model for rock based onmicrocrack growth, interaction and coalescence. in: Damage Mechanics in EngineeringMaterials, Eds J. W. Ju, D.Krajcinovic and H. L.Shreyer, ASME, New York.1990,103–111P
    [59] Hornby, P. G.,Mühlhaus, H. B. and Dyskin, A. B. Bifurcations in a dipole asymptoticmod el of crack arrays, a closer look, in: Proceedings of4th International Conference onComputer-aided Assessment and Control, Eds H. Nisitani, M. H. Aliabadi, S. I. Nisidaand D. J. Cartwright, Computational Mechanics, Ashurst.1996,693–700P
    [60] Dong, Y. F. and Denda, M. Computational modeling of elastic and plastic multiplecracks by the fundamental solution. Finite Elements in Analysis and Design.1996,23:115–132P
    [61] Denda, M. and Dong, Y. F. Complex variable approach to the BEM for multiple crackproblems. Computer Methods in Applied Mechanics and Engineering.1997,141:247–264P
    [62] Kachanov, L. M. Introduction to Continuum Damage Mechanics. Nijhoff, Dordrecht.1968
    [63] Rabotnov, Yu. N. Creep in Elements of Constructions, Nauka, Moscow.1966
    [64] Damage in composite materials. ASTM STP775.1980
    [65] Shen Zhen. The D criterion theory in notched composite materials. J. ReinforcedPlastics&Composites.1983,212:98-110P
    [66] Petit, C., Vergne A. and Zhang, X. A comparative numerical review of crackedmaterials. Engineering Fracture Mechanics.1996,54:423–439P
    [67] Mirzaei, M. Lecture Notes on Fracture Mechanics. Tarbiat Modares University, Tehran.2006
    [68] Parks, D. M. A stiffness derivative finite element technique for determination of cracktip stress intensity factors. International Journal of Fracture.1974,10:487–502P
    [69]肖涛,左正兴,刘栋,龙凯.基于虚拟裂纹闭合法计算裂纹扩展的能量释放率.北京理工大学学报.2010,30(1):37-41P
    [70]谢伟,黄其青, Masanori Kikuchi.应用改进的虚拟裂纹闭合方法求解三维裂纹应力强度因子.机械科学与技术.2008,27(1):41-44P
    [71] Shih, C., Moran, B. and Nakamura, T. Energy release rate along a three-dimensionalcrack front in a thermally stress bod y. International Journal of Fracture.1986,30:79–102P
    [72] Tracey, D. M. Finite elements for determination of crack tip elastic stress intensityfactor s. Engineering Fracture Mechanics.1971,3:255–265P
    [73] Barsoum, R. S. On the use of isopa rametric finite elements in linear fracture mechanics.International Journal of Numerical Methods in Engineering.1976,10:25–37P
    [74] Ingraffea, A. R. Computational fracture mechanics, in: The Encyclopedia ofComputational Mechanics, Eds E. Stein, R. de Borst and T. Hughes, John Wiley&Sons, Ltd, Chichester,.2006,2:375–402P
    [75]贾超,张树壮.三维裂纹扩展仿真.系统仿真学报.2006,18(12):3399-3402P
    [76] Mishnaevsky Jr, L. Three-dimensional numerical testing of microstructures of particlereinforced composites. Acta Materialia.2004,52:4177–4188P
    [77] Mishnaevsky Jr, L. Werkstoffoptimierung auf dem Mesoniveau. Report for the GermanResearch Council (DFG). MPA Stuttgart.2004
    [78]赵吉坤.工程材料破坏数值模拟方法.中国力学学会学术大会2009. CCTAM2009-003302
    [79] Wulf, J. Neue Finite-Elemente-Methode zur Simulation des Duktilbruchs in Al/SiC.Dissertation MPI für Metallforschung. Stuttgart.1985
    [80] Patrick J. McAllen, Pat Phelan. Comparison of ductile failure mode ls using a simpleelastic-plastic based degradation model. Journal of Materials Processing Technology.2004,155-156:1214-1219P
    [81] Ingraffea, A. R. and Wawrzynek, P. A. Computational fracture mechanics: a survey ofthe field, in: Proceedings of the European Congress on Computational Methods inApplied Sciences and Engineering, ECCOMAS2004, Eds P. Neittaanm ki, T. Rossi, S.Korotov, E. O ate, J. Périaux and D. Kn rzer, University of Jyv skyl, Jyv skyl.2004
    [82] Andersson, H. Analysis of a model for void growth and coalescence ahead of a movingcrack tip. Journal of Mechanics and Physics of Solids.1977,25:217–233P
    [83] Xia, L. and Shih, C. F. Ductile crack growth–II. Void nucleation and geometry effectson macroscopic fracture behavior. Journal of the Mechanics and Physics of Solids.1995,43:1953–1981P
    [84] Xia, L. and Shih, C. F. A fracture mode l applied to the ductile/brittle regime Journal dePhysique IV.1996,6:363–372P
    [85] Xia, L., Shih, C. F. and Hutchinson, J. W. A computational approach to ductile crackgrowth under large scale yielding conditions. Journal of the Mechanics and Physics ofSolids.1995,43:389–413P
    [86] Broberg, K. B. The cell mode l of materials. Computational Mechanics.1997,19:47–452P
    [87] Moorthy, S. and Ghosh, S. A Voronoi cell finite element model for particle cracking inelastic-plastic composite materials. Computer Methods in Applied Mechanics andEngineering.1998,151:377–400P
    [88] Xiangting Su, Zhenjun Yang, Guohua Liu. Finite element modeling of complex3Dstatic and dynamic crack propagation by embedding cohesive elements in ABAQUS.Acta Mechanica Solida Sinica.2010,23(3):271-282P
    [89] Babuska, I. and Melenk, J. M. The partition of unity finite element method: basictheory and applications. Computer Methods in Applied Mechanics and Engineering.1996,139:289–314P
    [90] Babuska, I., Banerjee, U. and Osborn, J. E. Generalized finite element method: mainideas, results, and perspective. International Journa l of Computational Methods.2004,1:67–103P
    [91] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimalremeshing[J]. International Journal for Numerical Method in Engineering.1999,45(5):601-620P
    [92] Sukumar, N., Moes, N., Moran, B. and Belytschko, T. Extended finite element methodfor three-dimensional crack mode ling. International Jour nal of Numerical Methods inEngineering.2000,48:1549–1570P
    [93] Jirasek, M. and Belytschko, T. Computational resolution of strong discontinuities, in:Proceedings of5th World Congress on Computational Mechanics. Eds H. A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner, Vienna University of Technology, Austria.2002
    [94]杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报.1997,14(4):407-412P
    [95] Askes, H., Pamin, J. and de Borst, R. Dispersion analysis and element-free Galerkinsolutions of second-and fourth-order gradient-enhanced damage mod els. InternationalJournal of Numerical Methods in Engineering.2000,49:811–832P.
    [96] Shan Z, Gok hale AM. Representative volume element for non-uniform microstructure.Comput Mater Sci.2002,24(3):361–79P
    [97] Brockenbrough JR, Suresh S, Wienecke HA. Deformation of metal–matrix compositeswith continuous fibers: geometrical effects of fiber distribution and shape. Acta MetallMater.1991,39(5):735–52P
    [98] Pyrz R. Correlation of microstructure variability and local stress field in two-phasematerials. Mater Sci Eng A.1994,177(1–2):253–9P
    [99] Pyrz R. Quantitative description of the microstructure of composites. Part I:morphology of unidirectional composite systems. Compos Sci Technol.1994,50(2):197–208P
    [100] Matsuda T, Ohno N, Tanaka H, Shimizu T. Effects of fibre distribution on elastic–viscoplastic behaviour of long fibre-reinforced laminates. Int. J. Mech. Sci.2003,45(10):1583–98P
    [101] Buryachenko VA, Pagano NJ, Kim RY, Spowart JE. Quantitative description andnumerical simulation of random microstructures of composites and their effectiveelastic moduli. Int J Solids Struct.2003,40(1):47–72P
    [102] Feder J. Random sequential adsorption. J Theoret Biol.1980,87(2):237–54P
    [103] Wang J-S. Rando m sequential adsorption series expa nsion and Monte Carlo simulation.Phys A: Stat Theoret Phys.1998,254(1–2):179–84P
    [104] Wongsto A, Li S. Micromechanical finite element analysis of unidirectional fibre-reinforced composites with fibres distributed at random over the transverse cross-section. C ompo sites: Part A.2005,36(9):1246–66P
    [105] Jodrey WS, Tory EM. Computer simulation of close random packing of equal spheres.Phys Rev A.1985,32(4):2347P
    [106] Oh JH, Jin KK, Ha SK. Interfacial strain distribution of a unidirectional composite withrandomly distributed fibers under transverse loading. J Compos Mater.2006,40(9):759–78P
    [107] Yang S, Tewari A, Gokhale AM. Modeling of non-uniform spatial arrangement offibers in a ceramic matrix composite. Acta Mater.1997,45(7):3059–69P
    [108] Maligno AR, Warrior NA, Long AC. Effects of inter-fibre spacing on damageevolution in unidirectional (UD) fibre-reinforced composites. Eur J Mech A Solids.2009,28(4):768–76P
    [109] Huang Y, Jin KK, Ha SK. Effects of fiber arrangement on mechanical behavior ofunidirectional composites. J Compos Mater.2008,42(18):1851–71P
    [110] Asp LE, Berglund LA, Talreja R. A criterion for crack initiation in glassy polymerssubjected to a composite like stress state. Compos Sci Technol.1996,56(11):1291–301P
    [111] Altenbach H, Tushtev K. A new static failure criterion for isotropic polymers. MechCompos Mater.2001,37(5–6):475–82P
    [112] Wang, Xiaohong Zhang, Boming Du, Shanyi Wu, Yufen Sun, Xinyang. Numericalsimulation of the fiber fragmentation process in single-fiber composites. Materials&Design.2010,31(5):2464-2470P
    [113] Blackketter D, Walrath DE, Hansen AC. Modeling damage in a plain weave fabricreinforced composite materials. J Compos Technol Res.1993,15(2):136–42P
    [114] Patrick J, McAllen PJ, Phelan Pat. Comparison of ductile failure mode ls using a simpleelastic–plastic based degradation model. J Mater Process Technol.2004,155–156(1–3):1214–9P
    [115] Hai Qing, Mishnaevsky Jr Leon. Unidirectional high fiber content composites:automatic3D FE model generation and damage simulation. Comput Mater Sci.2009,47(2):548–55P
    [116] Hibb itt Karlsson Sorensen Inc. ABAQUS/Standard User’s Manual, version6.8.
    [117]刘易卓.大飞机用国产复合材料裂纹扩展与断裂模式的研究.哈尔滨工程大学.2009,硕士
    [118] M der E, Gao S-L, Plonka R. Enhancing the properties of composites by controllingtheir interphase parameters. Adv Mater Eng.2004,6(3):147–50P
    [119] Podgaiz RH, Williams RJJ. Effects of fiber coatings on mechanical properties ofunidirectional glass-reinforced composites. Compos Sci Technol.1997,57(8):1071–6P
    [120] Gao S-L, M der E. Characterisation of interphase nanoscale property variations inglass fibre reinforced polypropylene and epoxy resin composites. Composites Part A.2002,33(4):559–76P
    [121] Matzenmiller A, Gerlach S. Parameter identification of elastic interphase properties infiber composites. Composites Part B.2005,37(2–3):117–26P
    [122] Asp LE, Berglund LA, Talreja R. Effects of fiber and interphase on matrix-initiatedtransverse failure in polymer composites. Compos Sci Technol.1996,56(6):657–65P
    [123] Aghdam MM, Falahatgar SR. Micromechanical modeling of interface damage of metalmatrix composites subjected to transverse loading. Compos Struct.2004,66(1–4):415–20P
    [124]刘千立,顾轶卓,李敏,刘宁,张佐光.基于动态模量成像的碳纤维复合材料界面结构表征.第十六届全国复合材料学术会议.中国湖南长沙.2010.
    [125] G. Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture. Adv.Appl. Mech.1962,7:55–129P
    [126] A. Hillerborg, M. Modéer and P.E. Petersson, Analysis of crack formation and crackgrowth in concrete by means of fracture mechanics and finite elements. Cement Concr.Res.1976,6:773–782P
    [127] O. Allix, P. Ladeveze and A. Corigliano. Damage analysis of interlaminar fracturespecimens. Compos. Struct.1995,31:66–74P
    [128] O. Allix and A. Corigliano, Modelling and simulation of crack propagation in mixed-mod es interlaminar fracture specimens. Int. J. Fract.1996,77:111–140P
    [129] J.C.J. Schellekens and R. de Borst. A nonlinear finite-element approach for the analysisof mode-I free edge delamination in composites. Int. J. Solids Struct.1993,30(9):1239–1253P
    [130] J.L. Chaboche, R. Girard and A. Schaff. Numerical analysis of composite systems byusing interphase/interface models. Comput. Mech.1997,20:3–11P
    [131] U. Mi, M.A. Crisfield and G.A.O. Davies. Progressive delamination using interfaceelements. J. Compos. Mater.1998,32:1246–1272P
    [132] J. Chen, M.A. Crisfield, A.J. Kinloch, E.P. Busso, F.L. Matthews and Y. Qiu.Predicting progressive delamination of composite material specimens via interfaceelements. Mech. Compos. Mater. Struct.1999,6:301–317P
    [133] G. Alfano and M.A. Crisfield. Finite element interface mod els forthe delamination analysis of laminated composites: mechanical and computationalissues. Int. J. Numer. Methods Eng.2001,77(2):111–170P
    [134] P.P. Camanho, C.G. Dávila and M.F. de Moura. Numerical simulation of mixed-mod e progressive delamination in composite materials. J. Compos. Mater.2003,37(16):1415–1438P
    [135] V. Goyal-Singhal, E.R. Johnson and C.G. Dávila. Irreversible constitutive law formod eling the delamination process using interfacial surface discontinuities. Compos.Struct.2004,64:91–105P
    [136]庄茁,由小川,廖剑辉等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社.2008:497-499P
    [137] Boming Zhang, Zhong Yang, Xinyang Sun, Zhanwen Tang. A virtual experimentalapproach to estimate composite mechanical prope rties: Mode ling with an exfpnliitceitelement method. Computational Materials Science.2010,49:645–651P
    [138] Zheng-Ming Huang. A bridging model prediction of the ultimate strength of compositelaminates subjected to biaxial loads. Composites Science and Technology.2004,64:395–448P
    [139] Hernánde z-Pérez A, Avilés F. Modeling the influence of interphase on the elasticproperties of carbon nanotube composites. Comput Mater Sci.2010,47(4):926–33P
    [140] Zhang B, Yang Z, Wu Y, Sun H. Hierarchical multiscale modeling of failure inunidirectional fibe r-reinforced plastic matrix composite. Mater Des.2010,31(5):2312–8P
    [141] Vantomme J. A parametric study of material damping in fibre-reinforced plastics.Composites.1995,26(2):147–53P
    [142] Maligno AR, Warrior NA, Long AC. Effects of interphase material properties inunidirectional fibre reinforced composites. Compos Sci Technol.2010,70(1):36–44P
    [143] H.L. Cox. The elasticity and strength of paper and other fibrous materials. Br. J. Appl.Phys.1952,3:72–79P
    [144] J.M. Hedgepeth. Stress concentrations in filamentary structures. NASA Technical NoteD-882.1961.
    [145] J.M. Hedgepeth, P.J. Van Dyke. Local stress concentrations in imperfect filamentarycomposite materials. J. Compos. Mater.1967,1:294–304P
    [146] P. Van Dyke, J.M. Hedgepeth. Stress concentrations from single filament failures incomposite materials. Textile Res. J.1969,39:618–626P
    [147] C.M. Landis, M.A. McGlockton, R.M. McMeeking. An improved shear lag model forbroken fibers in composite materials. J. Compos. Mater.1999,33:667–680P
    [148] Z. Xia, W.A. Curtin, T. Okabe. Green's function vs. shear-lag models of damage andfailure in fiber composites. Compos. Sci. Technol.2002,62:1279–1288P
    [149] D. Hull. An Introduction on Composite Materials. Oxford Press, London,1996.
    [150] J.M. Park, J.W. Kim, K. Goda. A new method of evaluating the interfacial propertiesof composites by means of the gradual multi-fiber fragmentation test. Compos. Sci.Technol.2000,60:439–450P
    [151] Kelly A, Tyson WR. Tensile properties of fiber-reinforced metals copper/tungsten andcopper/molybdenum. J Mech Phys Solids.1965,13:329–50P
    [152] Drzal LT, Rich MJ, Loyd PF. Adhesion of graphite fibers to epoxy matrics: I. The roleof fiber surface treatment. J Adhesion.1983,16:1–30P
    [153] Bascom WD, Jensen RM. Stress transfer in single fiber/resin tensile test. J Adhesion.1986,19:219–39P
    [154] Hinton MJ, Soden PD, Kaddour AS. Failure criteria in fibre reinforced polymercomposites-the world-wide failure exercise. Elsevier Science Publishers.2004.
    [155] Blackketter, D., Walrath, D.E., Hansen, A.C. Modelling damage in a plain weavefabric reinforced composite materials. Journal of Composites Technology and Research.1993,15:136–142P
    [156] Tabiei,A., Song,G., Jiang, Y. Strength simulation ofwovenfabriccomposite materialswith material non-linearity using micromechanics based mode l. Journal ThermoplasticComposites.2003,16:5–20P
    [157] M Nishikawa, T Okabe, N Takeda, W A Curtin. Micromechanics of the fragmentationprocess in single-fiber composites. Modelling Simul. Mater. Sci. Eng.2008,16:055009
    [158] Meo, M., Thieulot, M. Delamination mode lling in a double cantilever beam. J. Compos.Struct.2005,71:429–434P
    [159] Wu W, Verpoest I, Varna. A novel axisymmetric variational analysis of stress transferinto fibres through a partially debonded interface. J. Compos. Sci. Technol.1998,58:1863–1877P
    [160] M.W. Hyer, A.M. Waas. Comprehens ive Compo site Materials. Elsevier.2000
    [161] N Lopattananon, AP Kettle, D Tripathi, AJ Beck, E Duval, RM France, RD Short, FRJones. Interface molecular engineering of carbon-fiber composites. Composites: Part A.1999,30:49–57P
    [162] M. Nishikawa, T. Okabe, N. Takeda. Determination of interface prope rties fromexperiments on the fragmentation process in single-fiber composites. Materials Scienceand Engineering A.2008,480:549–557P
    [163] Xiaoqiang Wang, Jifeng Zhang, Zhenqing Wang et. al. Effects of interphase propertiesin unidirectional fiber reinforced compos ite materials. Mater. Design.2011,32:3486-3492P
    [164] Chen, A.Y., Zhang, J.B., Lu, J., Lun, W., Song, H.W. Necking propagated deformationbehavior of layer-structured steel prepared by co-warm rolled surface nanocrystallized304stainless steel. Materials Letters.2007,61(30):5191-5193P
    [165] Chen, A.Y., Li, D.-F., Zhang, J.-B., Song, H.-W., Lu, J. Make nanos tructured metalexceptionally tough by introducing non-localized fracture behaviors. Scripta Materialia.2008,59(6):579-582P
    [166]李成虎,燕瑛. z-pin增强复合材料T型接头层间性能的建模与分析[J].复合材料学报.2010,27(6):152-157P
    [167]朱炜垚,许希武.复合材料层合板低速冲击损伤的有限元模拟[J].复合材料学报.2010,27(6):200-207P
    [168] Lu, J. Proc. the4th Int. Conf. on Residual Stresses.1994,1154P
    [169]崔浩,李玉龙,刘元镛,郭嘉平,许秋莲.基于粘聚区模型的含填充区复合材料接头失效数值模拟[J].复合材料学报.2010,27(2):161-168P
    [170]泮世东,吴林志,孙雨果.含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式[J].复合材料学报.2007,24(6):121-127P
    [171]喻溅鉴,周储伟.复合材料疲劳分层的界面单元模型[J].复合材料学报.2009,26(6):167-172P
    [172]孔斌,叶强,陈普会,柴亚南.复合材料整体加筋板轴压后屈曲失效表征[J].复合材料学报.2010,27(5):150-155P
    [173] J.W. IIIFoulk, G.C. Johnson, P.A. Klein, R.O. Ritchie. On the toughening of brittlematerials by grain bridging: Promoting intergranular fracture through grain angle,strength, and toughness[J]. J. Mech. Phys. Sol.2008,56(6):2381-2400P
    [174] R.C. Yu, G. Ruiz, E.W.V. Chaves. A comparative study between discrete andcontinuum mode ls to simulate concrete fracture[J]. Eng. Fract. Mech.2008,75(1):117-127P
    [175] Z.J. Yang, X.T. Su, J.F. Chen, G.H. Liu. Monte Carlo simulation of complex cohesivefracture in rando m heterogeneous quasi-brittle materials[J]. International Journal ofSolids and Structures.2009,46(17):3222–3234P
    [176] Guo, X., Leung, A.Y.T., Chen, A., Ruan, H., Lu, J. Damage Analysis of TensileDefor mation of Co-rolled SMATed304SS. AIP Conference Proceedings.2010, PART1:65-70P
    [177] Guo, X., Leung, A.Y.T., Chen, A.Y., Ruan, H.H., Lu, J. Investigation of non-localcracking in layered stainless steel with nanostructured interface. ScriptaMaterialia.2010,63(4):403-406P
    [178] Lin, Y., Lu, J., Wang, L., Xu, T., Xue, Q. Surface nanocrystallization by surfacemechanical attrition treatment and its effect on structure and properties of plasmanitrided AISI321s tainless steel. Acta Materialia.2006,54(20):5599-5605P
    [179] Arifvianto, B., Suyitno, Mahardika, M., Dewo, P.,Iswanto, P.T., Salim, U.A. Effect ofsurface mechanical attrition treatment(SMAT) on microhardness, surface roughnessand wettability of AISI316L. Materials Chemistry and Physics.2011,125(3):418-426P
    [180] H.L. Chan, H.H. Ruan, A.Y. Chen, J. Lu. Optimization of the strain rate to achieveexceptional mechanical properties of304stainless steel using high speed ultrasonicsurface mechanical attrition treatment. Acta Materialia.2010,58:5086–5096P
    [181] Wen. M., Liu. G., Gu. J.f., Guan. W.m., Lu. J. The tensile properties of titaniumprocessed by surface mechanical attrition treatment [J]. Surface and CoatingsTechnology.2008,202(19):4728-4733P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700