用户名: 密码: 验证码:
玉米氮高效品种选育及根系形态对低氮反应的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田氮肥大量投入易造成环境污染、经济效益低及氮肥利用率下降。选育低氮下得到较高产量的氮高效品种是缓解这一问题的重要途径之一。有关氮效率基因差异的报道较多,但氮高效育种实践较少。根系在氮素吸收中起重要作用,对田间全生育期中的动态研究较少,对根系性状的遗传研究相对不足。在本课题组前期氮高效基因型筛选工作的基础上,本研究开展了氮高效杂交种选育工作,利用不同氮效率杂交种在田间研究根系与氮吸收及氮效率的关系。同时,利用有根系显著差异的自交系及其组合,在温室进行砂培试验,研究玉米根系对低氮胁迫的反应基因型差异及其遗传规律,以评价根系在氮高效育种中的重要性及可行性。
     通过两个氮水平下的多年多点田间选育,以农大108为对照,得到了一个绿熟型双高效的杂交组合NE1。通过连续4年多点试验,无论在低氮条件下(不施氮肥),还是在高氮条件下,增产幅度在5~11%左右,显著提高了玉米新品种的耐低氮能力和氮肥利用率,为我国玉米氮营养高效育种开辟了一条切实可行的途径。同时获得一些以NE2为代表的氮低效杂交组合,还鉴定出3个在氮高效性状上有高配合力的自交系。
     以NE1(高效)、NE2(低效)及另外两个杂交种农大108(ND108,高效)和四单19(SD19,低效)为材料,研究探讨了NE1等氮高效品种的干物质累积、氮素累积、根系特点及不同氮水平对它们的影响。结果表明,在生长前期,氮高效品种的干物质及氮素累积并未表现出优势。氮高效品种高产的主要原因在于其生长后期对氮素的吸收。两个氮高效基因型又各有特点,ND108主要依靠其较高的后期氮素吸收能力;NE1后期的氮吸收也较强,同是具有较高的氮转移率。与此相对应,氮高效品种在根系的生物量及根系长度方面具有一定的优势,而优势主要体现在生长后期。
     玉米对缺氮的一致反应为根冠比的增加,但根系性状本身的变化存在显著基因型差异。总体来看,短期低氮导致根重、总根长的增加。根长的增加是以侧根长的增加为主,轴根总长度变化不大,但轴根数减少,平均轴根长增加。杂交组合的根系反应普遍较自交系敏感,根系的调节能力强于自交系,但是具体的反应与其亲本具有很大的关系,亲本间基因互作会使杂交组合的根系对低氮的反应呈现截然不同的变化。
     苗期玉米根系对低氮反应的一般配合力、特殊配合力都存在显著的基因型差异,而且不同的基因型在氮胁迫下的反应也不尽相同。氮胁迫可以影响根系的遗传,表现为根系性状的广义遗传力下降,狭义遗传力上升。高氮下根干重、总根长、侧根长和轴根数和茎叶干重等性状以非加性遗传为主。在低氮胁迫下,根干重、总根长、侧根长和轴根长等性状以加性遗传为主。
     综合以上研究,在氮高效育种中,应该注重对根系性状的选择,特别是生长后期根系的生物量、根长等性状可以作为田间筛选的参考指标。选择具有较大根重、总根长、侧根长等性状的自交系作为亲本,可能得到这些性状具有优势的杂交种。
Excessive nitrogen (N) fertilizer input in arable land may result in environmental pollutions, low income for farmers and low N use efficiency. Development of N efficient cultivars may be one of the ways to resolve such problems. Genotypic difference in N efficiency has been reported in many references, but breeding for N-efficient cultivar is still rare. Roots are important for N uptake, but few studies on the role of root in N uptake have been conducted in field conditions. And, less is known about how root traits are inherited at N stress. On the basis of selection for N-efficient inbred lines, the current study concentrated on breeding N-efficient maize hybrids. The role of roots in N uptake and yield formation of selected hybrids in the field was investigated in two N levels. Furthermore, response to low N stress of roots of both hybrids and their parent lines was compared to understand the physiological and genetic basis for root response to low N stress and possibility for root as a trait to breed for
     N-cfficient hybrids.
    Taking ND108 as a check, some N-efficient hybrids were developed among which NE1 is the most efficient one. Some other hybrids were proven to be N-inefficient. Three inbred lines with high combining ability in N efficiency were identified.
    Taking NE1 (N-efficient), ND108 (N-efficient), NE1 (N-inefficient) and SD19 (N-inefficient) as materials, biomass accumulation, N accumulation, root dry weight and root length were investigated under two N levels to understand the basis of N efficiency. It was found that N efficient hybrids did not show any advantages in N uptake and biomass accumulation at the early stage before silking. Efficient N uptake after silking was the charateristic of N-efficient hybrids. Between the two N-efficient hybrids, ND108 accumulated large portion of N after silking, with less translocation of pre-silking N into grains. While in NE1, both N uptake after silking and translocation of pre-silking N uptake contributed to its high N accumulation and yield. N-efficient hybrids had higher root biomass and root length, which might be the reason for its efficient N uptake.
    Although the large genotypic difference, low N generally suppresses shoot growth, increases root to shoot ratio with or without increasing root biomass of maize. Maize plants respond to N deficiency by increasing total root length and altering root architecture by increasing the elongation of individual axial roots, enhancing lateral root growth, but reducing the number of axial root. Inbreds showed weaker responses in root biomass and other root parameters than their crosses. Interaction between two parent inbreds had strong influence on the response of their cross to N stress.
    The genotypic variations of general combining ability (GCA) and specific combining ability (SCA) on root traits were observed under high and low nitrogen levels (HN and LN). N stress exerted an influence on the genetic ability of root traits, with decreasing of broad genetic ability and increasing of narrow genetic ability. The genetic of most root traits such as root weight, total root length and lateral root length were controlled by non-additive effect at HN, but by additive effect at LN.
    It is suggested that the root traits at later growth stage might be one of the selection criteria in selection for N-efficient cultivars. A big root system in a cross can be obtained by selecting parents lines
    
    
    with large root weight, total root length, total length of lateral roots.
引文
边秀芝,阎晓艳,张大光.1997.玉米自交系的干物重积累与氮磷钾吸收.吉林农业大学学报,19(3):29-34
    伯姆 W.1985.根系研究法.(薛德榕,谭协麟,译).北京:科学出版社
    陈范骏,米国华,刘向生,刘建安,王艳,张福锁.2003.玉米氮效率性状的配合力分析.中国农业科学,36(2):134-139
    陈范骏.2001.氮高效玉米基因型筛选及杂种优势分析.[中国农业大学博士学位论文].北京:中国农业大学
    春亮,陈范骏,米国华,张福锁.2004.玉米苗期根系对氮胁迫反应的配合力分析.作物学报(待刊),
    戴景瑞.1998a.我国玉米生产发展的前景及对策.作物杂志,(5):6-11
    戴景瑞.1998b.发展玉米育种科学,迎接21世纪的挑战.作物杂志,(5):1-4
    鄂玉江、戴俊英、顾慰连.1988.玉米根系的生长规律及其产量关系的研究.Ⅰ.玉米根系的生长和吸收能力与地上部分的关系.作物学报,14(2):149-154
    方萍,陶勤南,吴平.2001.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析.植物营养与肥料学报,7(2):159-165
    高炳德,李江遐,周燕辉,赵利梅.2000.内蒙古平原灌区公顷产量13.7t~15.9t不同品种春玉米氮、磷、钾吸收规律研究.内蒙古农业大学学报,21(增刊):62-71
    郭景伦,张智猛,李伯航.1997.不同高产夏玉米品种养分吸收特性的研究.玉米科学,5(4):50-53
    郭亚芬,米国华,陈范骏,张福锁.2004.硝酸盐对玉米侧根生长影响及其与地上部硝酸盐浓度的关系.植物生理与分子生物学学报(接收)
    胡昌浩.1995.玉米栽培生理.北京:中国农业出版社
    胡田田,肖玲,李岗,魏永东.1999.施肥对春玉米养分吸收和产量形成的影响.西北农业大学学报27(5):11-16
    金镛,曹祖波,宁家林,王作英,鲁宝良,于兵.1997.通过辽宁省玉米品种试验评估其亲本自交系.国外农学—杂粮作物,2:4-8
    巨晓棠,张福锁.2002.我国氮肥施用状况与环境问题.见:张福锁.编著.养分资源综合管理.北京:中国农业大学出版社,179-186
    廖晓勇,张扬珠,刘学军,陈新平,张福锁.2001.农田生态系统中土壤氮素行为的研究现状与展望.西南农业学报,14(3):94-99
    李登海.2000.从事紧凑型玉米育种的回顾与展望.作物杂志,(5):1-5
    李庆逵,朱兆良,于天仁.1999.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社
    李燕婷.1999.两个基因型玉米耐低氮的差异性及其生理基础的研究.山东农业大学硕士学位论文
    李燕婷,米国华,陈范骏,劳秀荣,张福锁.2001.玉米幼苗地上部/根间氮的循环及其基因型差
    
    异.植物生理学报,27(3):226-230
    刘建安,米国华,张福锁.1999.不同基因型玉米氮效率差异的比较研究.农业生物技术导报,7(3):248-254.
    刘建安.2000.玉米氮效率基因型差异及遗传分析.[中国农业大学博士学位论文].北京:中国农业大学
    刘建安,米国华,陈范骏,张福锁.2002.玉米杂交种氮效率基因型差异.植物营养与肥料学报,8(3):276-281
    刘纪麟.2003.玉米育种的策略.玉米科学(专刊):54-57
    刘来福,毛盛贤,黄远樟.1984.作物数量遗传.北京:农业出版社
    卢庆善,孙毅,华泽田.2002.农作物杂种优势.北京:中国农业科技出版社
    米国华.1997.玉米杂交种氮营养效率的基因型差异研究.中国农业大学博士后工作研究报告
    米国华,刘建安,张福锁.1998.玉米杂交种氮农学效率及其构成因素剖析.中国农业大学学报,3(增刊):97-104
    米国华,张福锁.2000.玉米氮营养高效生理、遗传与育种.见:冯锋,张福锁,杨新泉,编著.植物营养研究—进展与展望.北京:中国农业大学出版社,42-56
    南京农业大学.1979.田间试验和统计方法(第二版).北京:中国农业出版社
    裴喜春,薛河儒.1998.SAS及应用.北京:中国农业出版社
    孙本喆,郭新平,曾苏明,孔晓民,孙雷明.2003.我国玉米生产现状及发展对策.玉米科学(专刊):32-33
    孙世贤.2003.2002年美国玉米高产竞赛简况.玉米科学,11(3):102
    孙羲.1990.作物营养与施肥.北京:中国农业出版社
    佟屏亚.2004.玉米高产是一个永恒的课题.作物杂志,1:10-12
    同延安.2000.氮肥与环境.见:冯锋,张福锁,杨新泉,编著.植物营养研究—进展与展望.北京:中国农业大学出版社,207-215
    王秀全,陈光明,何丹,余先驹,刘昌明.2000.玉米根系性状的遗传及相关分析.中国农业科学,33(增刊):119-123
    王艳.2001.玉米根系生长对硝酸盐反应的基因型差异及生理机制.[中国农业大学博士学位论文].北京:中国农业大学
    王艳,米国华,陈范骏,张福锁.2003.玉米氮素吸收的基因型差异及其与根系形态的相关性.生态学报,23(2):297-302
    王忠孝.1999.山东玉米.北京:中国农业出版社,1-4
    王章奎,倪中福,孟凡荣,吴利民,谢晓东,孙其信.2003.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究.中国农业科学,36(5):473-479
    汪黎明,郭庆法,张发军,刘铁山,孟昭东,刘治先,丁照华.2003.加入WTO后对我国玉米育种的影响及对策分析.玉米科学(专刊):68-69
    温振民.2002.多抗、高产、稳产、优质、高配合力玉米自交系育种的途径与方法探讨.玉米科学,10(1):3-5
    
    
    吴景锋.1995.我国玉米杂交种发展的主要历程、差距和对策.玉米科学,3(1):1-5
    杨新泉,冯锋,宋长青,冷疏影.2003.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,9(3):373-376
    杨际朝.1991.不同基因型玉米氮代谢类型及遗传研究.[北京农业大学硕士论文]北京:北京农业大学
    杨文钰,屠乃美.2003.作物栽培学各论(南方本).北京:中国农业出版社,114-115
    翟虎渠.2001.应用数量遗传.北京:中国农业出版社
    张福锁.2000.肥投入水平与养分资源高效利用的关系.土壤与环境,9(2):154-157
    张福锁,米国华,刘建安.1997.玉米氮效率遗传改良及其应用.农业生物技术学报,5(2):112-117
    张福锁,王兴仁,巨晓棠,马文奇,王秋杰,寇长林.2002.农田氮、磷、钾养分时空变异和施肥调控.见:张福锁.编著.养分资源综合管理.北京:中国农业大学出版社,79-87
    张福锁,王兴仁,王敬国.2002.提高作物养分资源利用效率的生物学途径.见:张福锁.编著.养分资源综合管理.北京:中国农业大学出版社,附录
    张世煌,胡瑞法.2000.玉米育种目标的诱导创新因素.玉米科学,8(3):3-7
    张维理,田哲旭,张宁,李晓齐.1995.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1(2):80-87
    张颖.1996.北方春玉米不同生育期干物质累积与氮、磷、钾含量变化.玉米科学,4(1):63-65
    张宪政.1992.作物生理研究法.北京:农业出版社
    赵久然,郭强,郭景伦,尉德铭,王长武,刘友,凌昆.1997.北京郊区粮田化肥投入和产量现状的调查分析.北京农业科学,15(2):36-38
    朱兆良.2000.农田中的氮肥损失与对策.土壤与环境,9(1):1-6
    朱献玳、陈学留、刘益同、王忠孝、张建华.1991.玉米根系的生长及其在土壤中的分布.莱阳农学院学报,8(1):15-19
    Agrama H. A. S., A. G. Zakaria, F. B. Said, M. Tuinstra. 1999. Identification of quantitative trait loci for nitrogen use efficiency in maize. Molecular Breeding, 5:197-195
    Alika J. E and J. O. Ojomo. 1996. Combining ability and reciprocal effects for physico-chamical grain quality characteristics in maize. Food Chemistry, 57(3): 371-375
    Andrew K. Borrell and Graeme L. Hammer. 2000. Nireogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci., 40:1295-1307
    Bnziger M., F. J. Betran, H. R. Lafitte. 1997. Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci., 37:1103-1109
    Bnziger M. and H. R. Lafitte. 1997. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci., 37:1110-1117
    Bnziger M., G. O. Edmeades, D. Beck and M. Bellon. 2000. Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. Mexico, D. F. CIMMYT.
    Beauchamp E. G., L. W. Kannenberg and R. B. Hunter. 1976. Nitrogen accumulation and translocation in corn genotypes following silking. Agron. J., 68:418-422
    
    
    Below F. E. 1996. Growth and productivity of maize under nitrogen stress. In: G. O. Edmeades, M. Banziger, H. R. Mickelson and C. B. Pena-Valdivia (Eds.) Developing drought-and low N-tolerant maize, Proceedings of a Symposium, March 25-29, 1996. CIMMYT, 235-240
    Below F. E., P. S. Brandau, R. J. Lambert, and R. H. Teyker. 1996. Combining ability for nitrogen use in maize, in: Edmeades G. O., Banziger M., Mickelson H. R. and Pena-Valdivia C. B. (Eds,) Developing drought and low N-tolerant maize, Proceedings of a Symposium, March 25-29, 1996. CIMMYT, 316-319
    Bertin P. and A. Gallais. 2000. Genetic variation for nitrogen use efficiency in a set of recombiniant maize inbred lines. I. Agrophysiological results. Maydica, 45:53-66
    Bertin P., A. Gallais. 2001. Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines. Ⅱ. QTL detection and coincidences. Maydica, 46:53-68
    Betran F. J., J. M. Ribaut, D. Beck, D. G. de Leon. 2003a. Genetic diversity, specific ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci., 43:797-806
    Betran F. J., D. Beck, M Banziger and G. O. Edmeads. 2003b. Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci., 43:807-817
    Betran F. J., D. Beck, M. Banziger and G. O. Edmeads. 2003c. Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res., 83:51-65
    Birchler J. A., D. L. Auger, N. C. Riddle. 2003. In search of the molecular basis of heterosis. Plant Cell, 15:2236-2239
    Bosemark N. O. 1954. The influence of nitrogen on root development. Physiol. Plant., 7:497-502
    Crawford N. M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell, 7:859-868
    Crow J. F. 1998.90 years ago: the beginning of hybrid maize. Genetics, 148:923-928
    Chevalier P. and L E Schrader. 1977. Genotypic differences in nitrate absorption and partitioning of N among plant parts in maize. Crop Sci., 17:897-901
    Cacco G., M. Saccomani and G. Ferrari 1983 Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975. Physiol. Plant., 58:171-174
    Caradus J. R. 1995. Genetic contril of phosphourus uptake and phosphorus ststus in plants. In: C. Johansen, K. K. Lee, K. K. Sharma et al. (Eds), Genetic Manipulation of Crop Plant to Enhance Integrated Nutrient Managenment in Cropping System. ICRISAT. India. 1995, 55-74
    Chunliang, G. Mi, F. Chen, F. Zhang. 2004. Roots morphological response of maize inbreds and their crosses to low nitrogen availability. Plant Soil (Submitted after review and revision).
    Comfort S. D., G. L. Malzer, and R. H. Busch. 1988. Nitrogen fertilization of spring wheat genotypes: Influence on root growth and soil water depletion. Agron J., 80:114-120
    Costa C., L. M. Dwyer, X. Zhou, P. Dutilleul, C. Hamel, L. M. Reid and D. L. Smith. 2002. Root morphology of contrasting maize genotypes. Agron. J., 94: 96-101
    Cox M. C., C. O. Qualset, and D. W. Rains. 1985. Genetic variation for nitrogen assimilation and
    
    translocation in wheat. I. Dry matter and nitrogen accumulation. Crop Sci., 25:430-435
    Czyzewicz J. R. and F. E. Below. 1994. Genotypic variation for nitrogen uptake by maize kernels grown in vitro. Crop Sci., 34:1003-1008
    Djordjevic J. S. and M. R. Ivanovic. 1996. Genetic analysis for stalk lodging resistance in narrow-base maize synthetic population ZPS14. Crop Sci., 36:909-913
    Drew M. C. 1975. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot in barley. New Phytol., 75: 479-490
    Drew M. C, L. R. Saker, and T. W. Ashley. 1973. Nutrient supply and the growth of the seminal root system in barley. Ⅰ. The effect of nitrite concentration on growth of axes and laterals. J. Exp. Bot., 24(83): 1189-1202
    Drew M. C. and L. R. Saker. 1975. Nutrient supply and the growth of the seminal root system in barley. Ⅱ. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrite supply is restricted to only par of the root system. J. Exp. Bot., 26(90): 79-90
    Drew M. C. and L. R. Saker. 1978. Nutrient supply and the growth of the seminal root system in barley. Ⅲ. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Bot., 29(109): 435-451
    Eghball B., J. W. Maranville 1993. Root development and nitrogen influx of corn genotypes grown under combined drought and N stress. Agron. J., 85:147-152
    Feil B., R. Thiraporn, G. Geisler and P. Stamp. 1990. Root traits of maize seedlings---indicators of nitrogen efficiency? Plant Soil, 123: 155-159
    Forde B., H. Lorenzo. 2001. The nutritional control of root development. Plant soil, 232:51-68
    Francis D. D., J. S. Schepers, M. F. Vigil. 1993. Post-anthesis nitrogen loss from corn. Agron. J., 85: 659-663
    Harper L. A., R. R. Sharpe, G. W. Langdale, J. E. Evans. 1987. Nitrogen cycling in a wheat crop: soil, plant, and aerial nitrogen transport. Agron. J., 79:965-973
    Hay R. E., E. B. Earley and E. E. De Turk. 1953. Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Plant Physiol., 28:606-621
    Heuberger H. 1998. Nitrogen efficiency in tropical maize(Zea may L.)- indirect selection criteria within special emphasis on morphological root characteristics, Ph. D. Dissertation, University of Hannover, Germany
    Heuberger H. T, J. G Kling, W. J Horst. 2000. Contribution of N uptake and morphological root characteristics to N efficiency in tropical maize cultivars. Deutscher Tropentag International Agricultural Research: A contribution to crisis prevention. 2000. University of Hohenheim. 155-158
    Hochholdinger F., K. Woll, M. Sauer, D. Dembinsky. 2004. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann. Bot., 93:359-368
    
    
    Horst W. J. and R. Hardter. 1994. Rotation of maize with cowpea improves yield and nutrient use of maize compared to maize monocropping in an alfisol in the northem Guinea Savanna of Ghana. Plant Soil, 160:171-183
    Hua J., Y. Xing, W. Wu, C. Xu, X. Sun, S. Yu, Q. Zhang. 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS, 100(5): 2574-2579
    Kamara A. Y., J. G. Kling, S. O., Ajala A. Menkir. 2002. The relationship between vertical root-pulling resistance and nitrogen uptake and utilization in maize breeding lines. Maydica, 47:135-140
    Karlen D. L., R. L. Flannery and E. J. Sadler. 1988. Aerial accumulation and partitioning of nutrients by corn. Agron. J., 80:232-242
    Kamprath E. J., R. H. Moll and N. Rodrigues. 1982. Effects of nitrogen fertilization and recurrent selection on the performance of hybrid populations of corn. Agron. J., 74:955-958
    Katsantonis N., A. Gagianas, N. Fotiadis. 1988. Genetic control of nitrogen uptake, reduction and partitioning in maize (Zea mays L.). Maydica, 33:99-108
    Lafitte H. R. and G. O. Edmeades. 1994a. Improvement for tolerance to low soil nitrogen in tropical maize. I. Selection criteria Field Crops Res., 39:1-14
    Lafitte H. R. and G. O. Edmeades. 1994b. Improvement for tolerance to low soil nitrogen in tropical maize. Ⅱ. Grain yield, biomass production, and N accumulation. Field Crops Res., 39:15-25
    Lawlor D. W. 2002. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production system. J. Exp. Bot., 53:773-787
    Linkohr B. I., L. C. Williamson, A. H. Fitter and H. M. O. Leyser. 2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751-760.
    Lynch J. P. 1995. Root architecture and plant productivity. Plant Physiol., 109:7-13
    Mackay A. D. and S. A. Barber. 1986. Effect of nitrogen on root growth of two corn genotypes in the field. Agron. J., 77:699-703
    Maizlish N. A., D. D. Fritton, W. A. Kendall. 1980. Root morphology and early development of maize at varying levels of nitrogen. Agron. J., 72, 5-31.
    Marschner H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, New York
    Mi G., J. Liu, F. Chen, F. Zhang, Z. Cui, and X. Liu. 2003. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J. Plant Nutri., 26 (1): 237-247
    Moll R. H., E. J. Kamprath and W. A. Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J., 74:562-568
    Moll R. H., E. J. Kamprath and W. A. Jackson. 1987. Development of nitrogen-efficient prolific hybrids of maize. Crop Sci., 27:181-186
    Muruli B. I. and G. M. Paulsen. 1981. Improvement of nitrogen use efficiency and its relationship to other traits in maize. Madica 26:63-73
    
    
    Nielsen N. E. and S. A. Barber. 1978. Differences among genotypes of corn in the kinetics of P uptake. Agron. J. 70:695-698
    Pan W. L., E. A. Jackson and R. H. Moll. 1985. Nitrate uptake and partitioning by corn (Zea mays L.) root systems and associated morphological differences among genotypes and stages of root development. J. Exp. Bot., 36(170): 1341-1351
    Pollmer W. G., D. Eberhard, D. Klein and B. S. Dhillon. 1979. Genetic control of nitrogen uptake and translocation in maize. Crop Sci., 19:82-86
    Presterl T., S. Groh, M. Landbeck, G. Seitz, W. Schmidt and H. H. Geiger. 2002. Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input. Plant Breed., 121:480-486
    Presterl T., G. Seitz, M. Landbeck and H. H. Geiger. 1996. Breeding strategies for the improvement if nitrogen efficiency of European maize under low-input conditions. The proceedings of the ⅩⅦth conference on genetics, biotechnology and breeding of maize and sorghum held at the Aristotelian University of Thessaloniki, Greece on 20-25 Oct. 1996.78-82
    Presterl T., G. Seiz, M. Landbeck, E. M. Thiemt, W. Schmidt and H. H. Geiger. 2003. Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Sci., 43:1259-1265
    Qu Laiye, A. M. Quoreshi & T. Koike. 2003. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant Soil, 255:293-302
    Rizzi E., C. Balconi, Morselli and M. Motto. 1995. Genotypic variation and relationships among N-related traits in maize hybrid progenies. Maydica, 40:253-258
    Robinson D., D. J. Linehan and S. Caul. 1991. What limits nitrate uptake from soil? Plant, Cell Environ., 14:77-85
    Romagnoli S., M. Maddaloni, C. Livini, M. Motto. 1990. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 80: 767-775
    SAS Institute Inc. 1989 SAS/STAT user' guide, Version 6.4th ed. Vols. 1 and 2. SAS Institute Inc. Cary NC USA.
    Saccomani M., G. Cacco & G. Ferrari. 1981. Efficiency of the first steps of sulfate utiliation by maize hybrids in relation to their productivity. Physiol. Plant. 53:101-104
    Sattelmacher B., J. Gerendas, K. Thoms, H. Bruck and N. H. Bagdady. 1993. Interaction between root growth and mineral nutrition. Environ. Exp. Bot., 33:63-73
    Sattelmacher B. and K. Thoms. 1990. Influence of nitrate placement on morphology and physiology of maize (Zea mays) root system. M. L. van Beusichem (Eds.), Plant nutrition-physiology and applications, Kluwer Academic Publishers 29-32.
    Sattelmacher B., F. Klotz and H. Marschner. 1990. Influence of the nitrogen level on root growth and
    
    morphology of two potato varieties differing in nitrogen acquisition. Plant Soil 123:131-137.
    Sayre J. D. 1948. Mineral accumulation in corn. Plant Physiol., 23 (3): 267-281
    Simith S. N. 1934. Response of inbred lines and crosses in maize to variations of nitrogen and phosphorus supplied as nutrients. J. Am. Soc. Agron., 26:785-804
    Singletary G. W. and F. E. Below. 1990. Nitrogen-induced changes in the growth and metabolism of developing maize kernels grown in vitro. Plant Physiol., 92:160-167
    Stringfield G. H. and R. M. Salter. 1934. Differential response of corn varieties to fertility levels and to seasons. J. Agric. Res., 11(49): 991-1000
    Sattelmacher B.and K. Thoms. 1991. Morphology of maize root system as influenced by a local supply of nitrate or ammonia Mc Michael BL and Persson, H (Eds.) Plant roots and their environment. Elsevier Science Publisher B. V., Amesterdam, The Netherlands, 149-156
    Tennant D. 1976. Root growth of wheat. I. Early patterns of multiplication and extension of wheat roots including effects of levels of nitrogen, phosphorus and potassium. Aust. J. Agric. Res., 27:183-196
    Teyker R. H., R. H. Moll, W. A. Jackson. 1989. Divergent selection among maize seedlings for nitrate uptake. Crop Sci., 29:879-884
    van Beem J. and M. E. Smith. 1996. Variation in nitrogen use efficiency and root system size in temperate maize genotypes. In: G. O. Edmeades, M. Banziger, H. R. Mickelson and C. B. Pena-Valdivia (Eds,) Developing drought and low N-tolerant maize, Proceedings of a Symposium, March 25-29, 1996. CIMMYT, 241-244
    Vamerali T., M. Saccomani, S. Bona, G. Mosca, M. Guarise & A. Ganis. 2003. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil 255:157-167
    Wang G. M. S. Kang, O. Moreno. 1999. Genetic analyses of grain-filling rate and duration in maize. Field Crops Res., 61:211-222
    Wang Y, G. Mi, F. Chen, J. Zhang and F. Zhang. 2004. Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. J. Plant Nutri. in press.
    Wiersum L. K. 1958. Density of root branching as affected by substrate and separate ions. Acta Bot. Neerl., 7:174-190
    Wiesler F. and W. J. Horst. 1994. Root growth and nitrite utilization of maize cultivars under field conditions. Plant Soil, 163:267-277
    Yan X. L. 1999. Phosphorus efficency of cultivated legumes in agroecosystems: the case of South China. In: Lynch J. P., Deikman J. (eds.). Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellar, Organismic and Ecosystem Processes. American society of Plant Physiologists, Maryland, 85-93
    Zhang Y., M. S. Kang, R. Magari. 1996. A diallel analysis of ear moisture loss rate in maize. Crop Sci., 36:1140-1144
    Zhang H. and B. G. Forde. 1998. An Arabidopsis MADS gene that controls nutrient—induced changes in root architecture. Science, 279:407-409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700