用户名: 密码: 验证码:
海水处理下菊芋盐肥效应及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种植抗盐耐海水植物是合理利用和开发海涂资源的有效措施之一。本研究由温室试验和田间海水灌溉菊芋盐肥耦合效应试验两大平行部分组成:温室试验通过砂培和水培法研究了不同浓度海水处理下菊芋(Helianthus tuberosus L.)苗期生长发育、保护性酶的活性、渗透物质的积累、膜透性、光合特性、离子吸收分布等与菊芋耐盐性有关的多项指标及N、P素对其影响,深层次、多角度地探索海水灌溉下菊芋盐肥效应机制;田间小区海水灌溉菊芋盐肥耦合效应试验于2003年和2004年在山东莱州试验基地进行,分别利用淡水、25%、50%和75%海水灌溉,同时结合N、P肥处理,研究其对菊芋株高、茎秆直径、体内离子分布规律、生物产量构成,研究大田生产条件下海水灌溉菊芋的生长发育特点,为半干旱地区海水灌溉提供科学依据。结果表明:
     温室试验研究表明:
     (1) 在不同浓度海水处理下,菊芋地上部、地下部、总鲜重及干物质重从CK到25%海水处理没有明显变化,在50%海水胁迫下显著下降,而干物质百分比以50%海水处理的最高。随着胁迫时间延长,10%海水处理下菊芋幼苗茎叶和根鲜重与对照没有显著差异,25%海水处理生长速率较对照低,而50%海水处理下根鲜重和干重都降低。
     (2) 随着胁迫时间延长与海水浓度增加,菊芋幼苗叶片保护性酶系SOD、POD、CAT的活性呈上升趋势,10%海水处理下菊芋叶片膜脂过氧化物MDA含量甚至低于对照,而50%海水处理下其MDA含量在试验期间较其他处理高,在10%和25%海水处理处理下菊芋叶片膜透性较对照变化不显著,而50%海水处理下膜透性明显增加,随时间延长更显著。
     (3) 菊芋幼苗叶片脯氨酸和可溶性糖含量随海水浓度增高而显著增加。海水胁迫期间,10%和25%海水处理下菊芋叶片脯氨酸含量先增加后降低,而50%海水处理下,其脯氨酸含量一直在升高,在50%海水浓度范围内,菊芋叶片可溶性糖含量先增加后降低。随海水浓度增高菊芋幼苗地上部单位干重积累的Na~+和Cl~-依次增大,随着时间延长,10%、25%和50%海水处理下地上部Na~+和Cl~-含量均增大;而K~+与Na~+积累情况不同,K~+在25%海水胁迫下地上部单位干重积累的最多随着时间延长,25%和50%海水处理下地上部K~+含量均降低,50%海水处理下降低幅度更大;地下部单位干重积累的Na~+、Cl~-和K~+情况与地上部单位干重积累的各离子趋势相似。
     (4) 在同一浓度海水处理下,随着N素及P素含量的增加,菊芋幼苗地上部和根鲜重较不施N、P处理均增加,不同处理下菊芋幼苗地上部和根干重与鲜重情况类似。在N_1及P_1水平下,10%海水处理下的净光合速率与对照无差异,但随着海水浓度的增加,净光合速率、蒸腾速率、水分利用效率、气孔导度显著和气孔限制值均降低,但在同一海水水平下,随着N、P素含量的增加,菊芋
Growing plants that are tolerant to seawater is one of options for exploitation of mudflats along the coast. The studies were included pot experiments in the greenhouse and field experiments in Laizhou sea-beach, Shandong Province. Pot experiments using hydroponic culture were carried out to study the effects of seawater and fertilizer on growth, osmotica accumulation, antioxidant enzyme, electrolytic leakage, photosynthetic characteristics and ion distributions of Helianthus tuberosus seedlings. The field experiments were carried out to study the coupling effects of salt and fertilizer application on Helianthus tuberosus irrigated with 0%, 25%, 50% and 75% seawater in 2003 and 2004. The results were showed as below:Pot experiments in the greenhouse:(1) Compared with the control, there were slight changes of FW (fresh weight) and D W (dry weight) of roots and aerial parts of Helianthus tuberosus seedlings treated with 10% and 25% seawater, whereas a significant decrease in both FW and DW occurred after 50% seawater treatment. But the contents of water in aerial parts and roots were the lowest under 50% seawater stress.(2) The activities of SOD (superoxide dismutase), POD (peroxidase) and CAT (catalase) in leaves of seawater-stressed plants were stimulated significantly compared to controlled plants, and the activities increased with seawater concentrations increasing and time lasting. The MDA (malondialdehyde) contents in leaves with 10% seawater were even lower than control, and they with 50% seawater treatment were highest in the term of experiments. Compared with the control, there were slight changes of ELP (electrolytic leakage percentage) in leaves of Helianthus tuberosus seedlings treated with 10% and 25% seawater, whereas ELP increased significantly with the treatment of 50% seawater. With time lasting, the ELP increased more under the stress of 50% seawater.(3) The contents of proline and soluble sugar increased with the seawater concentrations increasing. The contents of proline increased on Day 8 and decreased on Day 12 with the treatments of 10% and 25% seawater. But they increased significantly on Day 8 and onward under 50% seawater stress. The contents of soluble-sugar on Day 8 increased compared to those on Day 4 and decreased on Day 12 with
    the treatments of 10%, 25% and 50% seawater. The contents of Na+ and Cl- in the aerial parts increased with the enhancement of seawater concentration. Compared with Na+, the K+ contents were the highest under 25% seawater stress. And the tendencies of Na+, Cl- and K+ in roots were similar with them in the aerial parts.(4) Under the same concentration of seawater, the fresh weight of roots and aerial parts increased with the concentration of nitrogen and phosphorus increasing. The trends of dry weight of roots and aerial parts resembled the trends of fresh weight with the same treatments. Compared with the control, the photosynthetic rates, transpiration rates, water use efficiencies, stomatal conductances and stomatal limitations treated with 10% seawater changed slightly, while they all decreased with the increase of seawater concentration under the concentration of N1 (7.5 mmol L-1) and P1 (1 mmol L-1). The photosynthetic rates, transpiration rates, stomatal conductances and stomatal limitations all increased with the increase of the concentration of nitrogen and phosphorus under the same seawater concentration. The catabatic effects were more significative when the seawater concentration increased. The water use efficiencies decreased with the treatments of control and 10% seawater, while they increased with the treatments of 25% and 50% seawater with the concentration of nitrogen and phosphorus increasing. Compared with the control, the internal CO2 concentrations treated with 10% seawater under the concentration of N1 (7.5 mmol L-1) and P1 (1 mmol L-1) changed slightly. And they increased with seawater concentration increasing. With the concentration of nitrogen and phosphorus increasing, they decreased with the treatments of the same seawater concentration.(5)
引文
[1] Ahi SM, Powers WL. Salt tolerance of plants at various temperature. Plant Physiol, 1988, 12: 767~789.
    [2] Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Sicence, 1999, 285.
    [3] Banuls J, Legaz F, Primo M. Salinity-calcium interactions on growth and ionic concentration of cirtrus plants. Plant and soil, 1991: 133: 39~46.
    [4] Bertnstein L, Ayers AD. Salt tolerance of six varieties of green beans. Am. Soc. Hort Sci Proc, 1951, 57: 243~248.
    [5] Bethke PC, Drew MC. Stomatal and nonstomtal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol, 1992, 99: 219~226.
    [6] Blits KC, Gallagher JL. Salinity tolerance of Kosteletzkya virginca. I. Shoot growth, ion and water relations. Plant Cell viron, 1990 (13) : 409~418.
    [7] Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochemica et Biophysica Acta, 2000, 1465, 140~151.
    [8] Bohnert HJ, Jensen RG. Strategies for engineering waterstress tolerance in plants. Trends in Biotechnology, 1996, 14: 89~97.
    [9] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248~254.
    [10] Carda A, Bingham FT. Yield, mineral composition anf salt-tolerance of tomato and wheat as affected by NaCl and P nutrition. Agrochimia, 1978, 12: 140~149.
    [11] Chance B, Maehly AC. Assay of catalases and peroxidases. Methods in Enzymology, 1955, 2: 746~755.
    [12] Chu L, Liu DY, Wang YB. Effect of copper pollution on seedling growth and activate oxygen metabolism of Trifolium pratense. Chinese Journal of Applied Ecology, 2004, 15 (1): 119~122.
    [13] Cramer GR. Displacement of Ca~(2+) and Na~+ from the plasmalemma of root cells. Plant Physiology, 1985, 79: 207.
    [14] Demir Y, Kocacaliskan I. Effects of NaCl and proline on polyphenol oxidase activity in bean seedings. Bilogia Plantarum, 2001, 44(4): 607~609.
    [15] Epstein M. Advanced in salt tolerance. Plant Soil, 1987 (99) : 17.
    [16] Ericson MC, Alfinito SH. Proteins produced during salt stress in tobacco cell culture. Plant Physiol, 1984, 74: 504~509.
    [17] FAO,1992:The Use of Saline Waters for Crop Production.Rhoades J.D.(eds).Rome.
    [18] Fedina IS, Georgieva K, Grigoreva I. Light-dark changes in proline content of barley leaves under salt stress. Biologia Plantarum, 2002,45(1): 59-63.
    [19] Feigin A. Fertilization management of crops irrigated with saline water. Plant and Soil, 1985, 89: 285-299.
    [20] Flower TJ, Yeo AR. Ion relation of salt tolerance. In: Baker DD, Hall JL(eds). Solute Transport in Cell and Tissues. New York: John Wiley and Sons, Inc, 1988: 392-416.
    [21] Gale J, Zeroni M.The cost to plants of different strategies of adaption to stress and the alleciation of stress by increasing assimilation. Plant and Soil, 1985, 89: 57-67.
    [22] Giannopolitis CN, Ries SK. Superoxide dismutase in higher plants. Plant Physiol, 1977, 59, 309-314.
    [23] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol, 2000, 51: 463-499.
    [24] Heath RL, Packer L. Photoperoxidation in isolated chloroplast I. Kinetics and stoichemistry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 25, 189-198.
    [25]Hedrich R. Voltage-dependent chloride channels in plant cells: identification, characterization, and regulation of guard cell anion channel. Curr. Topics Membr. 1994, 42: 1-33.
    [26] Jeschke WD. K+-Na+ exchang at celluar membrane, intracellular comparmentation of cations, and salt tolerance. New York:Wiley-Interscience, 1984, 37-66.
    [27] King GJ, Hussey CE, Turner VA. A protein induced by NaCl in suspension cultures of Nicotiana tabacum accumulates in whole plant roots. Plant Mol Biol, 1986, 7: 441-449.
    [28] Krulwich TA. Na+/H+ antiporter. Biochim Biophys Acta, 1983, 726: 245-264.
    [29] Legha PK, Giri G, et al. Influence of nitrogen and sulphur on growth , yield and oil content of sunflower grown in spring season. Indian Journal of Agronomy, 1999(6): 408-412.
    [30] Lin P, Wang WQ. Changes in the caloric values of fkandelia candel seedings under salt stress. Acta Phytoecologica Sinica, 1999, 23(5): 466-470.
    [31] Liu HX, Zeng SX, Wang YR, Li P. The effect of low temperature on Superoxide dismutase in various organelles of cucumber seedling cotyledon with different cold tolerance. Acta Phytophysiol Sinica, 1985, 1:48-57.
    [32] Ma CL, Liu XH, Chen ZH. Advances in response of fruit trees to salt stress and their salt-tolerance identification. Journal of Fujian Agricultural University, 2000, 29 (2) :161~166.
    [33] McLaurin WJ, Somda ZC, Kays SJ. Jerusalem artichoke growth, development, and field storage. I. Numerical assessment of plant part development and dry matter acquisition and allocation. J. Plant Nutr.
     1999,22: 1303-1313.
    [34] Nuccio JM, Rhodes D, McNeil SD, Hanson AD. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol, 1999, 2: 128-134.
    [35] Pandan E, Schuldiner S. Intracelluler pH and membrane potential as regulator in the prokaryotic cell. J Menbr Biol, 1987, 95: 189-198.
    [36] Peng CL, Lin ZF, Ling GZ. Photosynthesis and Water Use Efficiency in Wheat Varieties Differing in Phosphate Use Efficiency. Acta Agronomica Sinica, 2000, 26 (5) : 543-548.
    [37] Praznik W, Cieslik E, Filipiak-Florkiewicz A. Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Die Nahrung. 2002,46 (3): 151-157.
    [38] Prisco JT, O'leay JW. The effects of humidity and cytokinin on growth and water relations of salt-stressed bean plants. Plant Soil, 1973, 39: 263-276.
    [39] Ramagopol S. Salinity stress induced Tissue-specific proteins in barley seedlings. Plant Physiol, 1987,84:94-98.
    [40] Ren HX, Chen X, Wang YF. Changes in antioxidative enzymes and polyamines in wheat seedings with different drought resistance under drought and salt stress. Acta Phytoecologica Sinica, 2001, 25(6): 709-715.
    [41] Ruizd MC. Demarcating specificion(NaCl,Cl",Na+) and osmotic effects in the response of two citrus rootstocks to salinity. Scientia Horticulturae, 1999, 80: 213-224.
    [42] Sanders D. Plant biology: The salty tale of Arabidopsis. Curr. Biol, 2000, 10, 486-488
    [43] Schittenhelm S. Agronomic performance of root chicory, Jerusalem artichoke, and sugarbeet in stress and non-stress environments. Crop Sci, 1999, 39: 1815-1823.
    [44] Singh NK, Handa AK, Hasegawa PM, et al. Proteins associated with adaptationof cultured tobacco cells to NaCl. Plant Physiol, 1985, 79: 126-137.
    [45] Soja G, Praznik W, Dersch G Harvest dates, fertilizer and varietal effects on yield, concentration and molecular distribution of fructan in Jerusalem artichoke (Helianthus tuberosus L.). Journal of Agronomy & Crop Science, 1990, 165(2): 181-183.
    [46] Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T. Salt tolerance of transgenetic rice overpression yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci, 1998, 148: 131-138.
    [47] Tiwari BS, Belenghi B, Levine A. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mintochondrial permeability trensition, and programmed cell death. Plant Physiol, 2002, 128: 1271-1281.
    [48] Vergauwen R, Van LA. Properties of fructan:fructan 1 -fructosyltransferases from chicory and globe
     thistle, two Asteracean plants storing greatly different types of inulin. Plant physiology. 2003, 133 (1): 391~401.
    [49] Xu LL, Ye MB. A measurement of peroxidase activity using continuous recording method. J Nanjing Agricult Univ, 1989, 12(3): 82~83.
    [50] Yahraus T, Xhandra L, Legendre L, et al. Evidence for a mechanically induced oxidative burst. Plant Physiol, 1995, 109: 1259~1266.
    [51] Yah XX, Zhao TE, Hu YJ. Effect of moderate salt stress on cells in root tips of barley. Acta Agriculter Boreall-Sinica(Supplement), 1994, 9: 61~64.
    [52] Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA. Differential expression function for Arabidopsis thaliana NHX Na~+/H~+ antiporters in the salt stress response. Plant J, 2002, 30(5): 529~539.
    [53] Zhang HY, Zhao KF. Effects of salt and water stresss on osmotic adjustment of suaeda salsa seedings. Acta Botanic Sinica, 1998, 40 (1) : 56~51.
    [54] 陈德明,俞仁培.作物相对耐盐性的研究Ⅰ.大麦和小麦不同生育期的耐盐性.土壤学报,1995,32(4):414~422.
    [55] 陈恩凤.采用以水肥为中心的综合措施改良盐渍土.土壤通报,1991,22(1):8.
    [56] 陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质的变化.植物学通报,2001,18(5):587~596.
    [57] 邓力群,刘兆普.不同盐分滨海盐土上油葵(G101-B)的氮磷肥效应研究.中国油料作物学报,2002(4):61~64.
    [58] 邓力群,刘兆普,陈铭达,等.不同盐分滨海盐土上油葵(G101-B)的氮磷肥效应研究.中国油料作物学报,2002,第4期:61~64.
    [59] 丁海媛,张耕耘,郭岩,等.运用RAPD分析标记水稻耐盐突变系的耐盐土效基因.科学通报,1998,43(2):418~421.
    [60] 樊润威,崔志祥.人工种草对盐碱荒地土壤性质的影响.中国草地,1992,2:50-54.
    [61] 冯立田,卢元芳.盐胁迫下灰绿藜叶片光合特性与叶绿体离子调节的研究.曲阜师范大学学报,第24卷,第3期:57~61.
    [62] 龚继明,何平,钱前,等.水稻耐盐性QTL的定位.科学通报,1998,43(17):1847~1850.
    [63] 顾兴友,梅曼彤,严小龙,等.水稻耐盐性数量性状位点的初步检测.中国水稻科学,2000,14(2):65~70.
    [64] 贾英明,田洪涛.发酵菊芋汁生产果糖糖浆的研究.微生物学通报,1998,1:13~16.
    [65] Larcher.植物生态生理学.北京:中国农业大学出版社,1997:93~94.
    [66] 李存东,董海荣,李金才.不同形态氮比例对棉花苗期光合作用及碳水化合物代谢的影响.棉花学报,2003,15(2):87~90.
    [67] 李合生.植物生理生化实验原理和技术.北京:高等教育出版社.2000,195~197.
    [68] 李荣田,张忠明,张启发.RHL基因对粳稻的转化及转基因植株的耐盐性.科学通报,2002,47(8):613~617.
    [69] 李振国,倪君蒂,余叔文.乙烯削减盐渍胁迫对苜蓿种子萌发的抑制作用.植物生理学报,1995,21 (1):50~56.
    [70] 林鸿宣,柳原城司,庄杰云,等.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72~78.
    [71] 刘春.菊芋--治理沙漠化的最佳选择.黑龙江环境通报.,2001,1:93~94.
    [72] 刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987,(4):1~7.
    [73] 刘友良.耐盐性.见:中国农业百科全书(生物学卷).北京:农业出版社,1991,300-301.
    [74] 刘兆普,刘玲,陈铭达等.利用海水资源直接农业灌溉的研究.自然资源学报,2003,18(4):423~429.
    [75] 刘兆普,沈其荣,尹金来等.滨海盐土农业.北京,中国农业科技出版社,1998.
    [76] 刘祖祺,张石城.植物抗性生理学.北京,中国农业出版社,1994,222~285.
    [77] 陆景陵.植物营养学.北京,北京农业大学出版社,1994,18~26.
    [78] 吕殿永,华晓晶,龙锋.种植克沙菊芋治理沙漠.辽宁城乡环境科技,2001,1:9~10.
    [79] 马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展.福建农业大学学报,2000,29(2):161~166.
    [80] 彭长连,林植芳,林桂珠.磷素利用效率不同小麦的光合作用和水分利用效率.作物学报,第26卷,第5期:543~548.
    [81] 曲桂敏,沈向.不同品种苹果树水分利用效率及有关参数的日变化.果树科学,2000,17(1):7~11.
    [82] 沈其荣.有机无机肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响.土壤学报,1994,8(3):87~288.
    [83] 苏培玺,张立新,杜明武,等.胡杨不同叶形光合特性、水分利用效率及其对加富CO_2的响应.植物生态学报,2003,27(1):34~40.
    [84] 汤章城.植物抗逆性生理生化研究的某些进展.植物生理学通讯,1991,27(2):146~148.
    [85] 王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14(增刊):25~30.
    [86] 王洪春,1987:生物膜结构功能和渗透调节.上海科技出版社.
    [87] 王霞,王金满.海水灌溉农业发展状况及其前景.新疆农垦经济,2003,6:48~51.
    [88] 魏文铃,万武光,王世媛.固定化菊粉酶连续降解菊芋果糖糖浆的研究.厦门大学学报(自然科学版),1998,3:436~442.
    [89] 吴传钧.中国经济地理.科学出版社,1998,北京.
    [90] 许长城,邹琦,程炳嵩.干旱条件下大豆叶片H_2O_2代谢变化及其同抗旱性的关系.植物生理学通讯.1993,19(3):216~220.
    [91] 许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379~387.
    [92] 徐云岭,余叔文.植物适应盐逆境过程中的能量消耗.植物生理学通讯,1990(6):119~122.
    [93] 徐质斌.国内外海水灌溉技术的进展及对产业发展的建议.国际技术经济研究,2001,4(3):19~24
    [94] 徐质斌.海水灌溉农业的展望与对策.农业现代化研究,2002,23,(2):89~92.
    [95] 晏斌,戴秋杰.外界K~+水平对水稻幼苗耐盐性的影响.中国水稻科学,1994:8(2):119~122.
    [96] 严少华.滨海盐土覆盖栽培节水抑盐效果定量研究.土壤通报,1998,29(2):52~53.
    [97] 杨明爽.菊芋的饲用价值及栽培利用技术.当代畜牧,1994,6:32.
    [98] 於丙军,罗庆云,刘友良.盐胁迫对野生大豆生长和离子分布的影响.作物学报,2001,27(6):776~780.
    [99] 余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社.1998,752~769.
    [100] 张福锁.植物营养生态生理学和遗传学.中国科学技术出版社.1993,206~230.
    [101] 张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56~51.
    [102] 张美云,钱吉,郑师章.渗透胁迫下野生大豆游离氨基酸和可溶性糖的变化.复旦学报(自然科学版).2001,40(5):558~561.
    [103] 张荃,赵彦修,张慧.海水农业:梦想与现实.山东科学,1999,12(1):1~5.
    [104] 章文华,刘友良.钙对大麦幼苗盐胁迫的缓解效应.植物生理学通讯,1993,3:176~178.
    [105] 张宪政.作物生理研究法.北京,农业出版社,1992,117~205.
    [106] 赵可夫,卢元芳,张玉泽等.Ca对小麦幼苗降低盐害效应的研究.植物学报,1993,35,(1):39~51.
    [107] 赵可夫.植物抗盐生理.北京,中国科学技术出版社,1993,4.
    [108] 赵可夫.植物抗盐生理.北京,中国科学技术出版社,1993,13~20.
    [109] 赵可夫,李法增.中国盐生植物[M].北京:科学出版社,1999,1~2.
    [110] 郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,27(4):325~330.
    [111] 朱广濂,邓兴旺,左卫能.植物体内游离脯氨酸的测定.植物生理学通讯,1983,(11):35~44.
    [112] 朱广廉,钟诲文,张爱琴.植物生理学实验.北京,北京大学出版社,1983,242~248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700