用户名: 密码: 验证码:
结合水稻生长及氮环境影响的施氮优化模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过研究2003年余杭、2004富阳不同施氮水平对水稻生长变化、器
    官氮含量、水稻产量、土壤氮累计、渗漏水氮素污染、氮素利用率、最佳经济
    施氮量影响的基础上,对水稻施氮优化模拟模型(Rice fertilizer-N Optimization
    Simulation Model,RNOSM)进行了验证和应用,确定了两地较合理的施氮量和
    施氮时间。最后对RNOSM 模型的网络化进行探索,建立了模型参数的网络化
    计算。
    研究结果如下:
    1.施氮量与水稻叶面积指数、各器官干物质和植株总重有明显的相关性,随着
    施氮量的增加,叶面积指数、各器官干物质和植株总重相应增加。在施氮量小
    于225kghm~-2 时,随着施氮量的增加LAI、绿叶干重、穗重增长明显,但是施
    氮量高于225kghm~-2之后,增长效果迅速减弱。
    2.叶N、茎N、根N、穗N含量和施氮量之间都表现为极显著的正相关,相
    关系数分别为0.9273,0.9374,0.8278,0.9220。
    3.研究表明一定范围内增施氮肥能够增加水稻产量,但过多施肥会适得其反,
    导致产量下降。余杭试验表明,施氮量超过225kghm~-2之后水稻产量开始下降。
    4.通过对两地不同施氮水平下O-20cm土壤全氮含量分析发现,<75kghm~-2的
    施氮量对土壤氮补充是不够的,过量施肥会引起土壤中氮严重积累,导致环境
    污染。
     从分次施氮的效果看,施肥时间对土壤氮累计影响明显,第一次施肥(基
    肥)后土壤中氮大量累积,而第二、三、四次间土壤的含氮量变化却不大,因
    此,从分次施氮的优化考虑,占总施氮量50%的基肥相对偏多,而其后的施肥
    量有待增加。
     从渗漏水与施氮水平的关系看,施氮量大于225 kghm~-2后,地下水含氮
    量快速增加,从施氮时间看,第一次施肥后渗漏水含氮量很高,适当控制施氮
    量和减少基肥量对地下水的保护起到积极的作用。
    5 通过对2003年余杭植株吸氮量、氮肥吸收利用率、氮收获指数、氮盈余等
    氮素利用指标分析表明,225kghm~-2作为余杭合理施氮量是个较好的选择。
The effects of nitrogen fertilizer on the dynamic development of weight and nitrogen of rice organs, yield, N accumulation dynamic in the soil and rice-soil-leakage water system under different N application levels in paddy rice field were conducted inYuhang in 2003 and in Fuhang, 2004. Based on former experiments and our results, a established Rice fertilizer-N Optimization Simulation Model(RNOSM) was used to optimize the nitrogen application amount and time. Furthermore, a web-based simulation module for calculating parameter of RNOSM in Internet was also developed.The experimental and simulated results are shown as follows:1. There was significant correlation between applied nitrogen amount with LAI, dry weights of rice organs. Dry weight of green leaf, panicle and LAI increased quickly with the N application up to 225 kghm~(-2), but declined when N supply exceeded 225 kghm~(-2) .2. There was significant correlation between nitrogen applied levels with N content in leaf, stem, root, panicle and the coefficient are 0.9273, 0.9374, 0.8278, 0.9220 respectively.3. The yield was increased with N application added among proper range. Extra N application will reduce rice yield. The result inYuhang showed that yield reduced when N application amount exceeded 225 kghm~(-2)4. Nitrogen accumulation dynamic in soil showed that the long-term fertility for rice crop growth could not be sustained when 75 kghm~(-2) N applied each year, but when N supply exceeded 225 kghm~(-2), surplus nitrogen was accumulated in soil. N accumulation in soil increased quickly and the peak of N content in leakage water appeared after basal nitrogen applied, which implied that basal nitrogen fertilizer being more than 50% of the total applied amount may be the main reason leading to soil nitrogen accumulation and water pollution.5. We suggested 225kghm~(-2)may be better N application inYuhang considering the N use efficiency6. The optimal economic yield of rice indicated that 199 kghm~(-2) , 173kghm~(-2) was the reasonable N application to rice variety Bing 9363, Bing 9652 in Yuhang, while 235 kghm~(-2) was better N application to Bing 9363 in Fuyang.7. RNOSM simulation showed there was significant correlation between the observed and simulated biomass biomass, N in leaf, N in plant, they accord to "y=x".8. The result of RNOSM optimization showed that at low N application level (75kghm~(-2)),nitrogen fertilizer should be applied within 40 days after transplanting; at moderate N application level(150 kghm~(-2)),it should be applied within 55 days after transplanting ;at high N application (>150 kghm~(-2)),it should be applied within 70 days.9. Based on optimization of 150kghm~(-2) in Yuhang , 225kghm~(-2)in Fuyang ,wesuggested N application should be applied at 10,20,30,45 days after transplanting with the fraction of 20:30:30:20 respectively.10. We developed web-based simulation module for calculating parameter ofRNOSM in Internet, it offered calculating online.
引文
[1] de Wit, C.T. Photosynthesis of leaf canopies. Agricultural Research Report 663. Pudoc, Wageningen, 1965
    [2] Duncan, W.G., Loomis, R.S., Williams, W.A., et al. A model for simulation photosynthesis in plant communities. Hilgardia, 1967
    [3] Sinclair, T.R., Seligrnan, N.G. Crop modeling: from infancy to maturity. Agronomy Journal,1996, 88 (5): 698~704
    [4] Bouman, B.A.M., van Keulen, H., van Laar, H.H., et al. The 'School of de Wit' crop growth simulation models: a pedigree and historical overview. Agricultural Systems, 1996, 52 (2-3): 171~198
    [5] van Ittersum, M.K., Leffelaar, P.A., van Keulen, H., et al. On approaches and applications of Wageningen crop models. European Journal of Agronomy, 2003, 18 (3-4): 201~234
    [6] de Wit, C.T., Brouwer, R., Penning de Vries, F.W.T. The simulation of photosynthetic systems. In: Setlik I. (Eds). Prediction and measurement of photosynthetic productivity. Proceedings International Biological Program/Plant Production Technical Meeting Trebon. Pudoc, Wageningen, 1970, 47~70
    [7] van Keulen, H. Simulation of water use and herbage growth in arid regions. Simulation Monographs, Pudoc, Wageningen, 1975
    [8] Penning de Vries, F.W.T., Brunsting, A.B., van Laar, H.H. Products, requirements and efficiency of biosynthesis: a quantitative approach. Journal of Theoretical Biology, 1974,45:339~377
    [9] Goudriaan, J. Crop micrometeorology: a simulation study. Simulation Monographs, Pudoc, Wageningen, 1977
    [10] de Wit, C.T., et al. Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs, Pudoc, Wageningen, 1978
    [11] 邹应斌.作物模拟研究与模拟模型.农业现代化研究,1989,10(2):43~46
    [12] 曹永华.美国CERES作物模拟模型及其应用.世界农业,1991,(9):52~55
    [13] 潘学标,韩湘玲.作物生长发育模拟模型研究.世界农业,1993,(9):13~15
    [14] 李春强,刘文平.水稻生长模拟模型研究综述.中国农业气象,1992,13(6):46~50
    [15] Penning de Vries, F.W.T., van Laar, H.H. (Eds). Simulation of plant growth and crop production. Simulation Monographs, Pudoc, Wageningen, 1982
    [16] van Keulen, H., Wolf, J. Modeling of agricultural production: weather, soils and crops. Simulation Monographs, Pudoc, Wageningen, 1986
    [17] Penning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., et al. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs, Pudoc, Wageningen, 1989
    [18] van Laar, H. H., Goudriaan, J., van Keulen, H. (Eds.). Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat). Simulation Report CABO-TT 27, CABO-DLO, Wageningen, 1992
    [19] Kropff, M. J., van Laar, H. H., Matthews, R. B. (Eds). ORYZA1: An ecophysiological model for irrigated rice production. SARP Research Proceedings, AB-DLO, WAU-TPE/Wageningen, IRRI/os Banos, 1994
    [20] Drenth, H., ten Berge, H. F.M., Riethoven, J. J. M. (Eds). ORYZA simulation modules for potential and nitrogen limited rice production. SARP Research Proceedings, AB-DLO, WAU-TPE/Wageningen, IRRI/Los Banos, 1994
    [21] Wopereis, M. C. S., Bouman, B. A. M., Tuong, T. P., et al. ORYZA_W: Rice growth model for irrigated and rainfed environments. SARP Research Proceedings, AB-DLO, WAU-TPE/Wageningen, IRRI/Los Banos, 1996
    [22] Bouman, B. A. M., Kropff, M. J., Tuong, T. P., et al. ORYZA2000: Modeling lowland rice. IRRI/Los Banos, WU/Wageningen, 2001
    [23] Ahuja, L. R., Rojas, K. W., Hanson, J. D., et al. Root zone water quality model: modeling management efforts on water quality and crop production. Water Resources Publications, LLC, Colorado, USA, 2000
    [24] Pan, X., Hesketh, J. D., Huck, M. G. OWSimu: an object-oriented and Web-based simulator for plant growth. Agricultural systems, 2000, 63 (1): 33~47
    [25] 高亮之,金之庆,黄耀等.水稻栽培计算机模拟优化决策系统(RCSODS).北京:中国农业科技出版社,1992
    [26] 戚昌瀚.水稻生长日历模拟模型研究综合报告.江西农业大学学报,1992,14(3):218~223
    [27] 殷新佑,戚昌瀚.水稻生长日历模拟模型及其应用研究.作物学报,1994,20(3): 339~346
    [28] 戚昌瀚,殷新佑,刘桃菊.RICAM1.3的结构与功能的改进及其应用.江西农业大学学报,1996,18(4):371~375
    [29] 潘学标,龙腾芳.棉花生长发育与产量形成模拟模型(CGSM)研究.棉花学报,1992,4(增刊):11~20
    [30] 董占山,潘学标.棉花生产管理模拟系统CPMSS/CGSM.棉花学报,1992,4(增刊):3~10
    [31] 潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型.棉花学报,1996,8(4):180~188
    [32] 冯利平,高亮之,金之庆等.小麦发育期动态模拟模型的研究.作物学报,1997,23(4):418~424
    [33] 冯利平,韩学信.棉花栽培计算机模拟决策系统(COTSYS).棉花学报,1999,11(5):215~254
    [34] 尚宗波,杨继武,殷红等.玉米生长生理生态学模拟模型.植物学报,2000,42(2):184~194
    [35] 黄冲平.马铃薯生长发育的动态模拟研究.杭州:浙江大学博士学位论文,2003
    [36] 黄冲平,王爱华,胡秉民.马铃薯生育期和干物质积累的动态模拟研究.生物数学学报,2003,18(3):314~320
    [37] 陈杰.水稻氮素行为及施氮优化模拟研究.杭州:浙江大学博士学位论文,2004
    [38] H. Van Keulen & J. Wolf., 农业生长模型、天气、土壤和作物.中国农业科技出版社,1990
    [39] Sligman, N. G. &H. Nan Keulen, PAPRAN:A simulation model of annual pasture production limited by rainfall and nitrogen. Inc. Simulation of nitrogen behaviour of soil-plant system. Eds, M. J. Frissel& J. A. Veen, Pudoc, Wageningen, 192-220, 1981
    [40] 陈振林.氮素影响胁迫与作物生长模拟.气象科技,1993,(4):74~79,88
    [41] Drenth, H., ten Berge, H. F. M., Riethoven, J. J. M. (Eds). ORYZA simulation modules for potential and nitrogen limited rice production. SARP Research Proceedings, AB-DLO, WAU-TPE/Wageningen, IRRI/Los Banos, 1994
    [42] Bouman B A M, Penning de Vries F W T, Riethoven J J M, et al. Application of simulation and systems analysis in rice-based cropping optimization. In:ed. SARP Research Proceeding: Agro-ecology of rice-based cropping systems. Bouman B A M, Van Laar H H, Wang Z Q. 1993
    [43] Ahuja, L. R., Rojas, K. W., Hanson, J. D., et al. Root zone water quality model: modeling management efforts on water quality and crop production. Water Resources Publications, LLC, Colorado, USA, 2000
    [44] 王强.稻田分次施氮对田面水和渗漏水中氮素变化特征的影响.杭州:浙江大学硕士论文
    [45] enning de Vries, F. W. T., Jansen, D. M., ten Berge, H. F. M., et al. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monograph, Pudoc, 1989, Wageningen and IRRI, Los Banos
    [46] Drenth, H., ten Berge, H. F. M., Riethoven, J. J. M. ORYZA simulation modules for potential and nitrogen limited rice production. SARP research proceedings, 1994. AB-DLO, TPE-WAU, Wageningen, IRRI, Los Banos
    [47] Riethoven, J. J. M., ten Berge, H. F. M., Drenth, H. Software developments in SARP project: a guide to applications and tools. SARP research proceedings, 1995. AB-DLO, TPE-WAU, Wageningen, IRRI, Los Banos
    [48]范柯伦 H.,沃尔夫J.(杨守春等译).农业生产模型—气候、土壤和作物.北京:中国农业科技出版社,1990
    [49] 法朗士 J.,索恩利 J.H.M.(金之庆,高亮之等译).农业中的数学模型—农业及与之有关科学若干问题的数量研究.北京:农业出版社,1991
    [50] 言金刚,彭进展.ASP实例教程.上海:浦东出版社
    [51] 许卫林.Vbscript+ASP动态网页制作.北京:中国电力出版社
    [52] 陈次白.网页设计与制作.江苏:东南大学出版社
    [53] 安海忠.动态Web应用高级开发.北京:人民交通出版社
    [54] 魏洪斌.Dreamweaver MX网页设计.北京:清华大学出版社
    [55] 西蒙.Microsoft Internet Information Server 4.0使用指南.
    [56] Bargar B, Sean J B and Jaynes D. Soil water recharge under uncropped ridges and furrows[J]. Soil Sci. Soc. Am. J. 1999, 63: 1290—1299.
    [57] Jaynes D B, Swan J B. Solute movement in uncropped ridges tilled soil under natural rail fall[J]. Soil Sci. Soc. Am. J. 1999, 63:264—269
    [58] 巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197
    [59] 袁飞编著.农业技术效益学.广州:广东科技出版社,1987
    [60] van Ittersum, M. K., Leffelaar, P. A., van Keulen, H., et al. On approaches and applications of Wageningen crop models. European Journal of Agronomy, 2003, 18(3-4): 201~234
    [61] van Keulen, H. Simulation of water use and herbage growth in arid regions. Simulation Monographs, Pudoc, Wageningen, 1975
    [62] Price, W. L. A controlled random search procedure for global optimisation. The Computer Journal, 1977, 20(4): 367~370
    [63] 李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究.土壤学报,1997,34(1):67~73
    [64] 崔玉亭,程序,韩纯儒等.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2003,14(10):1654-1660
    [65] 王德建,林静慧,孙瑞娟等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响.土壤学报,2003,40(3):426-432
    [66] 高效江,胡雪峰,王少平等.淹水稻田中氮素损失及其对水环境影响的试验研究.2001,20(4):196-198,205
    [67] 傅庆林,陈英旭,俞劲炎.浙中水稻生长适宜施氮量研究.土壤学报,2003,40(5):787—790
    [68] 彭少兵,黄见良,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学.2002,35(9):1095—1103
    [69] 杨京平,姜宁,陈杰.施氮水平对两种水稻产量影响的动态模拟及施肥优化分析[J].应用生态学报,2003,14(10):1654—1660
    [70] 朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700