用户名: 密码: 验证码:
中国东北主要造林树种细根寿命及影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树木细根(直径<2 mm)的生产和死亡过程(即周转),对森林生态系统碳(C)分配格局和养分循环过程具有重要影响。细根的寿命(从出生至死亡的时间),是准确估计细根周转的重要参数。然而,由于概念与研究方法的限制,导致人们对细根寿命与周转过程及影响因素,还缺乏全面的了解。中国东北部的温带森林,分别占全国森林总面积和蓄积量的35.3%和34.5%,在区域和全球尺度的C平衡中发挥着重要的作用。因此,在该地区开展树木细根周转及影响因素的深入研究,对于准确估计区域水平上的森林C储存与释放,具有重要的意义。为此,本研究以中国东北5个典型造林树种的人工同龄纯林(1986年造林),即胡桃楸(Juglans mandshurica)、黄波罗(Phellodendron amurense)、红松(Pinus koraiensis)、樟子松(Pinus sylvestris var. mongolica)、和红皮云杉(Picea koraiensis)为研究对象,在2年的时间里(2008-2009年),采用微根管(Minirhizotron)技术定量研究了细根的生产和死亡过程,估计了细根的寿命,同期测定了相关环境因子与细根的结构与生理特征。主要目的是:(1)揭示5树种人工林细根的生产和死亡的季节格局,确定哪些环境因子对中国东北温带森林细根周转过程具有重要的影响;(2)估计和比较不同树种细根寿命的差异,探索细根直径、根序(个体根在根系分支中的位置)、细根出生的季节和土壤深度对细根寿命的影响和潜在的机制;(3)结合同期水曲柳(Fraxinus mandshurica)和兴安落叶松(Larix gmelinii)的研究结果,选取生理功能一致、具有种间可比性的1级根为研究单元,探索细根寿命与其他根系结构、生理特征在树种之间的关联性。研究结果表明:
     1、细根总根长的生产量在种间存在明显差异。5树种细根生产均表现为春、秋季低,夏季高的季节格局。云杉年根长生产量最大,2年平均生产量为1.41 mm cm-2a-1,而黄波罗生产量最低(0.23 mm cm-2 a-1),其余树种根长生产的大小顺序为红松<胡桃楸<樟子松。细根的死亡与生产过程是同时发生的。但与生产不同,总根长的死亡量高峰存在树种及年际间的差异。不同直径大小(0-0.5 mm,0.5-1.0 mm,>1 mm)细根类群的生产过程与总根长的季节的动态类似,但是细根的死亡动态随直径大小出现差异。回归分析显示,细根总根长的生产量与大气温度、土壤温度(10 cm深度)和降雨量存在不同程度的相关性,大气温度对根长生产量的影响最强,而降雨量的影响最弱。在不同直径细根类群中,以直径0-0.5 mm根群同环境变量的关系最密切,表现出与环境变量之间的普遍相关(出现相关性的频次高),以及较高的回归方程决定系数。但是,总根长及不同直径根长的死亡量与环境变量的联系均很弱。
     2、不同树种细根寿命存在着显著的差异。其中红松寿命最长(平均寿命=434天),而黄波罗寿命最短(平均寿命=279天),但常绿针叶树种(红松、樟子松和云杉)与落叶阔叶树种(胡桃楸和黄波罗)之间并没有恒定的区别。多变量回归(Cox比例风险回归)分析显示,不同生活型树木细根的寿命也没有明显的区别。存活分析显示,随着直径增加、根序增高、出生土壤深度增大,细根寿命普遍有延长的趋势,而且夏、秋季出生的细根倾向于比春季细根寿命长(Log-rank test方法)。但在控制其他因素影响条件下,Cox比例风险回归分析表明,仅针叶树细根寿命随着直径增加而显著地延长;根序对树种细根寿命增加的作用仅在云杉中是显著的;而出生季节和土壤深度的影响相对普遍,5个树种中,有3个树种的夏、秋季节出生细根比春季具有更长的寿命,有4个树种细根寿命随着土壤深度增加而延长。
     3、种间1级根寿命、形态、组织化学和生理特征分析显示,常绿针叶树种(红松、樟子松和云杉)并没有比落叶阔叶(水曲柳、胡桃楸和黄波罗)或落叶针叶树种(落叶松)的根系寿命长。所有针叶树种均具有较高的组织密度,低的N含量、N:C比和维持呼吸速率。各根系特征在树种之间的变异程度不同,单根长度的变异系数最大(CV=0.701),而N:C比则具有最小的变异(CV=0.156)。种间1级根寿命与其他形态、组织化学和生理特征之间均不存在显著的相关性。但是,比根长(1 g根干生物量的长度)与分支比之间,N含量与N:C比和维持呼吸速率三者之间,均显示出显著的正相关根系(p<0.05);而组织密度与N含量、N:C比或维持呼吸速率之间,直径与比根长、分支比之间,均表现出显著的负相关关系。
     总之,本研究证实,温带地区树木细根生产与死亡过程具有明显的季节动态。相比较,细根的生产受到环境因素,特别是大气温度的强烈影响,而死亡受环境因素影响较弱。直径细小、以吸收功能为主的细根组分对环境变化最为敏感。树种水平上,细根的寿命受内在与外在因素的共同影响。各树种低级根(前2或3级)之间寿命差异较小暗示了这些细根个体倾向于作为一个整体同时死亡,因此具有模块(module)特征。季节和土壤深度对细根寿命具有普遍影响,但是细根结构及个体的发育与寿命的联系仍然值得深入探索。种间细根寿命的变异具有一定的独立性。根系不同结构特征之间的紧密相关,则显示了树木根系在养分获取与器官维持之间的权衡,以及树种间资源利用策略的差异。这些研究结果,将为了解树种水平上的细根动态机制,准确估计我国东北地区森林地下C分配和养分循环过程提供必要的参考。
Fine root (diameter<2 mm) production and mortality are defined as turnover. Fine root turnover plays a key role in regulating carbon (C) allocation and nutrients cycles in forest ecosystem. Fine root longevity is the important parameter for the precise estimate of fine root turnover. However, conceptual and methodological constraints may have limited our understanding of fine root longevity. The temperate forest in northeastern China accounts for 35.3% and 34.5% of national total area and stocking volume, respectively, thus play a key role in C budgets at regional level and global scale. However, to date, little information about fine root dynamics and longevity of Chinese temperate tree species has been reported. In this study, the minirhizotron approach was used in five temperate tree species in northeastern China to determine the dynamics of fine root production and mortality, and to estimate the root longevity during two growth seasons from 2008 and 2009. Climate factors including air temperature, soil temperature at 10 cm depth and precipitation, and some root structural and physiological traits were measured concurrently. The five species include two deciduous hardwoods Juglans mandshurica and Phellodendron amurense; and three evergreen conifers Pinus koraiensis, Pinus sylvestris var. mongolica, and Picea koraiensis. The aims of this study were:(1) to quantify the seasonal patterns of fine root production and mortality in five tree species, and determine what climate factors may have strong effects on root dynamics; (2) to estimate and compare root longevity across species, and determine how fine root diameter, branch order, season and soil depth of root birth would influence the longevity; (3) to investigate the potential correlation between longevity of the first order root and root structural or physiological traits, as well as the potential correlation between root structural or physiological traits. Our results show that:
     (1) Total root length production differed markedly among species. The seasonal patterns of root production were similar across tree species, with the peaks consistently occurring in summer in two years. Picea koraiensis had the largest production on the annual basis (1.41 mm cm-2 a-1), while P. amurense was lowest (0.23 mm cm-2 a-1), leaving Pinus koraiensis, J. mandshurica and P. sylvestris var. mongolica in the mediate. Fine root mortality occurred simultaneously with production, but which peaks differed among species and years. Three diameter classes root population, i.e.0-0.5 mm,0.5-1.0 mm and>1 mm, showed similar seasonal pattern in production with total roots, but their mortalities are different between each other. Regression analysis showed that there were positive correlations between total root length production and air temperature, soil temperature at 10 cm depth and rainfall, in which air temperature had the strongest but precipitation weakest impacts. Roots with 0-0.5 mm diameter size showed the most sensitivity to environmental variables, exhibiting the consistant and close correlation with environmental variables. However, there were weak correlations between length mortality of total roots or differed diameter size roots and climate factors.
     (2) During two growth seasons from 2008 to 2009, median root longevity differed significantly among species, ranging from 276 d (P. amurense) to>430 d(Pinus koraiensis). However, conifers did not consistently have longer root longevity than hardwoods, and Cox proportional hazards regression analysis showed the similar results when controlling for other covariates (factors). Survival analysis (Log-rank test) showed that the longevity tend to be larger in roots with greater diameter, and higher branch order or born in deeper soil depth across species. In comparison, roots born in summer or autumn, more often had longer longevity than those born in spring. However, when controlling for other covariates, Cox analysis showed that only coniferous root longevity significantly increased with diameter increasing, and just root longevity in Picea koraiensis shifted with branch order. In contrast, influences of season and soil depth of root birth were more general. Three out of 5 species displayed significant longer root longevity in summer or autumn, and root longevities in 4 out of 5 species significantly increased with soil depth increasing. (3) Incorporating previous results from Fraxinus mandshurica and Larix gmelinii, the present study showed that even the first order roots, the evergreen confers did not have longer longevity than deciduous hardwoods or conifers. In comparison with three hardwood species, four coniferous species all had higher tissue density, lower nitrogen (N) content, N:C ratio, and maintaining root respiration rate. There were differed extents of the variation of root traits, with the largest CV (coefficient of variation,0.701) in root length and the lowest in N:C ratio (CV=0.156). We did not find the significant correlation between root longevity and any other root traits. In comparison, there were significant positive correlations between specific root length (SRL) and branching ratio (BR), so did to N, and N:C ratio or maintaining root respiration rate. However, there were significant negative correlation between tissue density and N content, N:C ratio or root respiration rate, and between diameter and SRL or BR.
     In sum, this study reveals the strong seasonality of fine root production and mortality in temperate tree species. In comparison with root length mortality, production of root length is strongly affected by climate factors, especially by air temperature. The thinnest root population (diameter in 0-0.5 mm) primarily with uptakes function, were more sensitive to environmental change. At species level, tree root longevity is controlled by both endogenous and exogenous factors. The lower distal order roots may incline to die as an intact braches with similar and short longevity, indicating these roots may constitute the mainbody of ephemeral portion within tree root branching systems. Season and soil depth of root birth had general impacts on root survivorship across species, but the relationship between the ontogeny of individual roots and longevity still deserved further study. The longevity of the first order root tended to vary independently among tree species. However, the close correlations between root structural traits demonstrated the general trade-off between resource acquisition and conservation in tree root, as well as the difference in resource acquisition in roots among tree species. These findings may improve our understanding on the mechanism of fine root dynamics at species level, and estimation of the belowground C and nutrients cycles in forest ecosystems in northeastern China.
引文
[1]张小全,吴可红.细根生产和周转研究.林业科学,2001,37(3):126~138
    [2]Vogt K.A., Grier C.C., Vogt D.J. Production, Turnover, and Nutrient Dynamics of Above-and Belowground Detritus of World Forests. Advance of Ecological Research,1986,15: 303-377
    [3]Nadelhoffer K.J., Raich J.W. Fine Root Production Estimates and Belowground Carbon Allocation in Forest Ecosystems. Ecology,1992,1139-1147
    [4]Hendrick R.L., Pregitzer K.S. The Dynamics of Fine-Root Length, Biomass, and Nitronge-Content in Two Northern Hardwood Ecosystems. Canadian Journal of Forest Research, 1993,23(12):2507-2520
    [5]Gill R.A., Jackson R.B. Global Patterns of Root Turnover for Terrestrial Ecosystems. New Phytologist,2000,147(1):13-31
    [6]Majdi H., Pregitzer K., Moren A.S., Nylund J.E., Agren G.I. Measuring Fine Root Turnover in Forest Ecosystems. Plant and Soil,2005,276(1-2):1-8
    [7]Jackson R.B., Mooney H.A., Schulze E.D. A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents. Proceedings of the National Academy of Sciences of the United States of America,1997,94(14):7362-7366
    [8]Hanson P.J., Edwards N.T., Garten C.T., Andrews J.A. Separating Root and Soil Microbial Contributions to Soil Respiration:A Review of Methods and Observations. Biogeochemistry,2000,48:115-146
    [9]杨玉盛,董彬,谢锦升,陈光水,高人,李灵,王小国,郭剑.森林土壤呼吸及其对全球变化的影响.生态学报,2005,24(3):583~59
    [10]Mcclaugherty C.A., Aber J.D., Melillo J.M. The Role of Fine Roots in the Organic Matter and Nitrogen Budgets of Two Forested Ecosystems. Ecology,1982,1481-1490
    [11]Raich J., Nadelhoffer K. Belowground Carbon Allocation in Forest Ecosystems:Global Trends. Ecology,1989,70(5):1346-1354
    [12]Eissenstat D.M., Wells C.E., Yanai R.D., Whitbeck J.L. Building Roots in a Changing Environment:Implications for Root Longevity. New Phytologist,2000,147(1):33-42
    [13]Norby R.J., Jackson R.B. Root Dynamics and Global Change:Seeking an Ecosystem Perspective. New Phytologist,2000,147(1):3-12
    [14]王政权,郭大立.根系生态学.植物生态学报,2008,32:1213~1216
    [15]廖兰玉,丁明懋,张祝平,等.鼎湖山某些植物群落根系生物量及其氮素动态.植物生态学与地植物学报,1993,17(1):56~60
    [16]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究.应用生态学报, 1998,9(4):337-340
    [17]杨丽韫,李文华.长白山不同生态系统地下部分生物量及地下C贮量的调查.自然资源学报,2003,18(2):204-209
    [18]王向荣,王政权,韩有志,谷加存,郭大立,梅莉.水曲柳和落叶松不同根序之间细根直径的变异研究.植物生态学报,2005,29(6):871-877
    [19]Wang Z., Guo D., Wang X., Gu J., Mei L. Fine Root Architecture, Morphology, and Biomass of Different Branch Orders of Two Chinese Temperate Tree Species. Plant and Soil, 2006,288(1):155-171
    [20]常文静,郭大立.中国温带、亚热带和热带森林45个常见树种细根直径变异.植物生态学报,2008,32(6):1248-1257
    [21]廖利平,杨跃军,汪思龙,高洪.杉木(Cunninghamia lanceolata)、火力楠(Micheliamacclurei)纯林及其混交林细根分布、分解与养分归还.生态学报,1999,19(3):342-346
    [22]廖利平,邓仕坚,于小军,韩士杰.不同连栽代数杉木人工林细根生长、分布与营养物质分泌特征.生态学报,2001,21(4):569-573
    [23]梅莉,王政权,韩有志,谷加存,王向荣,程云环,张秀娟.水曲柳根系生物量、比根长和根长密度的分布格局.应用生态学报,2006,17(1):1-4
    [24]荣丽,李守剑,李贤伟,范川.华西雨屏区不同退耕模式细根(包括草根)分解过程中土壤酶动态.植物生态学报,2010,34(6):642-650
    [25]廖利平,陈楚莹,张家武,高洪.杉木、火力楠纯林及混交林细根周转的研究.应用生态学报,1995,6(1):7-10
    [26]杨玉盛,陈光水,何宗明,陈银秀,谢锦升.杉木观光木混交林群落细根净生产力及周转.林业科学,2001,S(1):35-41
    [27]陈光水,何宗明,谢锦升,杨玉盛,蒋宗垲.福建柏和杉木人工林细根生产力、分布及周转的比较.林业科学,2004,40(4):15-21
    [28]张秀娟,吴楚,梅莉,韩有志,王政权.水曲柳和落叶松人工林根系分解与养分释放.应用生态学报,2006,17(8):1370-1376
    [29]史建伟,王政权,于水强,全先奎,孙玥,贾淑霞,梅莉.落叶松和水曲柳人工林细根生长、死亡和周转研究.植物生态学报,2007,31(2):333-342
    [30]张志山,李新荣,张景光,王新平,赵金龙,陈应武.用minirhizotrons观测柠条根系生长动态.植物生态学报,2008,30(3):457-464
    [31]于水强,王政权,史建伟,全先奎,梅莉,孙玥,贾淑霞,于立忠.水曲柳和落叶松细根寿命的估计.植物生态学报,2007,31:102-109
    [32]Huang G, Zhao X., Zhao H., Huang Y., Zuo X. Linking Root Morphology, Longevity and Function to Root Branch Order:A Case Study in Three Shrubs. Plant and Soil,2010, 336(1-2):397-208
    [33]邱俊,谷加存,姜红英,王政权.樟子松人工林细根寿命估计及影响因子研究.植物生态学报,2010,34(9):1066-1074
    [34]凌华,袁一丁,杨智杰,黄锦学,陈光水,杨玉盛.杉木人工林细根寿命的影响因素.生态学报,2011,31(4):1130-1138
    [35]温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转.植物生态学报,1999,23(4):361-369
    [36]范世华,李培芝,王力华,许思明.杨树人工林下根系的氮素循环与动态特征.应用生态学报,2004,115(3):387-390
    [37]Gaudinski J., Trumbore S., Davidson E., Cook A., Markewitz D., Richter D. The Age of Fine-Root Carbon in Three Forests of the Eastern United States Measured by Radiocarbon. Oecologia,2001,129(3):420-429
    [38]Matamala R., Gonzalez-Meler M.A., Jastrow J.D., Norby R.J., Schlesinger W.H. Impacts of Fine Root Turnover on Forest Npp and Soil C Sequestration Potential. Science,2003, 302(5649):1385-1387
    [39]Moran C., Pierret A., Stevenson A. X-Ray Absorption and Phase Contrast Imaging to Study the Interplay between Plant Roots and Soil Structure. Plant and Soil,2000,223(1): 101-117
    [40]Pierret A., Moran C.J., Doussan C. Conventional Detection Methodology Is Limiting Our Ability to Understand the Roles and Functions of Fine Roots. New Phytologist,2005, 166(3):967-980
    [41]Pregitzer K.S., Deforest J.L., Burton A.J., Allen M.F., Ruess R.W., Hendrick R.L. Fine Root Architecture of Nine North American Trees. Ecological Monographs,2002,72(2): 293-309
    [42]Pregitzer K.S. Tree Root Architecture-Form and Function. New Phytologist,2008,180(3): 562-564
    [43]Xia M., Guo D., Pregitzer K.S. Ephemeral Root Modules in Fraxinus mandshurica. New Phytologist,2010,188(4):1065-1074
    [44]Pregitzer K.S., Kubiske M.E., Yu C.K., Hendrick R.L. Relationships among Root Branch Order, Carbon, and Nitrogen in Four Temperate Species. Oecologia,1997,111(3): 302-308
    [45]Fitter A. Characteristics and Functions of Roots. In:Weisel, Y., Eshel A., and Kafkafi U., eds. Plant Roots, the Hidden Half. Third Edition. New York:Marcel Dekker,2002,15-33.
    [46]Hishi T. Heterogeneity of Individual Roots within the Fine Root Architecture:Causal Links between Physiological and Ecosystem Functions. Journal of Forest Research,2007, 12(2):126-133
    [47]Guo D., Mitchell R.J., Withington J.M., Fan P.P., Hendricks J.J. Endogenous and Exogenous Controls of Root Life Span, Mortality and Nitrogen Flux in a Longleaf Pine Forest:Root Branch Order Predominates. Journal of Ecology,2008,96(4):737-745
    [48]Guo D., Xia M., Wei X., Chang W., Liu Y., Wang Z. Anatomical Traits Associated with Absorption and Mycorrhizal Colonization Are Linked to Root Branch Order in Twenty-Three Chinese Temperate Tree Species. New Phytologist,2008,180(3):673-683
    [49]王向荣,谷加存,王政权,梅莉,韩有志,于水强,史建伟,于立忠.水曲柳和落叶松细根形态及母根与子根比例关系.生态学报,2006,26(6):1686-1692
    [50]Wells C.E., Eissenstat D.M. Marked Differences in Survivorship among Apple Roots of Different Diameters. Ecology,2001,82(3):882-892
    [51]Baddeley J., Watson C. Influences of Root Diameter, Tree Age, Soil Depth and Season on Fine Root Survivorship in Prunus avium. Plant and Soil,2005,276:15-22
    [52]Eissenstat D., Yanai R. The Ecology of Root Lifespan. Advances in Ecological Research, 1997,27:1-60
    [53]梅莉,王政权,程云环,郭大立.林木细根寿命及影响因素研究.植物生态学报,2004,28(5):704-710
    [54]Delucia E.H., Hamilton J.G., Naidu S.L., Thomas R.B., Andrews J.A., Finzi A., Lavine M., Matamala R., Mohan J.E., Hendrey G.R. Net Primary Production of a Forest Ecosystem with Experimental CO2 Enrichment. Science,1999,284(5417):1177-1179
    [55]Allen A., Andrews J., Finzi A., Matamala R., Richter D., Schlesinger W. Effects of Free-Air CO2 Enrichment (Face) on Belowground Processes in a Pinus taeda Forest. Ecological Applications,2000,10(2):437-448
    [56]Burton A., Pregitzer K., Hendrick R. Relationships between Fine Root Dynamics and Nitrogen Availability in Michigan Northern Hardwood Forests. Oecologia,2000,125(3): 389-399
    [57]Nadelhoffer K.J. The Potential Effects of Nitrogen Deposition on Fine Root Production in Forest Ecosystems. New Phytologist,2000,147(1):131-139
    [58]Tingey D.T., Phillips D.L., Johnson M.G. Elevated CO2 and Conifer Roots:Effects on Growth, Life Span and Turnover. New Phytologist,2000,147(1):87-103
    [59]Ostertag R. Effects of Nitrogen and Phosphorus Availability on Fine-Root Dynamics in Hawaiian Montane Forests. Ecology,2001,82(2):485-499
    [60]Espeleta J., Clark D.A. Multi-Scale Variation in Fine-Root Biomass in a Tropical Rain Forest:A Seven-Year Study. Ecological Monographs,2007,77(3):377-404
    [61]Neill C. Comparison of Soil Coring and Ingrowth Methods for Measuring Belowground Production. Ecology,1992,73(5):1918-1921
    [62]Ostonen I., Lohmus K., Pajuste K. Fine Root Biomass, Production and Its Proportion of Npp in a Fertile Middle-Aged Norway Spruce Forest:Comparison of Soil Core and Ingrowth Core Methods. Forest ecology and management,2005,212(1-3):264-277
    [63]Johnson M., Tingey D., Phillips D., Storm M. Advancing Fine Root Research with Minirhizotrons. Environmental and Experimental Botany,2001,45(3):263-289
    [64]Lopez B., S. S., Gracia C. Fine Root Longevity of Quercus ilex. New Phytologist,2001, 151(2):437-441
    [65]Tingey D.T., Phillips D.L., Johnson M.G., Rygiewicz P.T., Beedlow P.A., Hogsett W.E. Estimates of Douglas-Fir Fine Root Production and Mortality from Minirhizotrons. Forest Ecology and Management,2005,204(2-3):359-370
    [66]Aber J.D., Melillo J.M., Nadelhoffer K.J., Mcclaugherty C.A., Pastor J. Fine Root Turnover in Forest Ecosystems in Relation to Quantity and Form of Nitrogen Availability: A Comparison of Two Methods. Oecologia,1985,66(3):317-321
    [67]Vogt K.A., Vogt D.J., Bloomfield J. Analysis of Some Direct and Indirect Methods for Estimating Root Biomass and Production of Forests at an Ecosystem Level. Plant and Soil, 1998,200(1):71-89
    [68]张小全,吴可红,Murach D.树木细根生产与周转研究方法评述.生态学报,2000,20(5):875-883
    [69]黄建辉,韩兴国.森林生态系统根系生物量研究进展.林业科学,1999,19(2):270-277
    [70]Sala O., Biondini M., Lauenroth W. Bias in Estimates of Primary Production:An Analytical Solution. Ecological Modelling,1988,44(1-2):43-55
    [71]Santantonio D., Grace J. Estimating Fine-Root Production and Turnover from Biomass and Decomposition Data:A Compartment-Flow Model. Canadian Journal of Forest Research,1987,17(8):900-908
    [72]Friend A.L., Eide M.R., Hinckley T.M. Nitrogen Stress Alters Root Proliferation in Douglas-Fir Seedlings. Canadian Journal of Forest Research,1990,20(9):1524-1529
    [73]Vogt K.A., Persson H. Root Methods. In Techiques and Approaches in Forest Tree Ecophysiology, Eds JP Lassoie and TM Hinckley,1991, CRC Press, Boca Raton, Florida: 477-502
    [74]Giardina C.P., Ryan M.G. Total Belowground Carbon Allocation in a Fast-Growing Eucalyptus Plantation Estimated Using a Carbon Balance Approach. Ecosystems,2002, 5(5):487-499
    [75]Giardina C.P., Binkley D., Ryan M.G., Fownes J.H., Senock R.S. Belowground Carbon Cycling in a Humid Tropical Forest Decreases with Fertilization. Oecologia,2004,139(4): 545-550
    [76]史建伟,于水强,于立忠,韩有志,王政权,郭大立.微根管在细根研究中的应用.应用生态学报,2006,17(4):715-719
    [77]Crocker T.L., Hendrick R.L., Ruess R.W., Pregitzer K.S., Burton A.J., Allen M.F., Shan J., Morris L.A. Substituting Root Numbers for Length:Improving the Use of Minirhizotrons to Study Fine Root Dynamics. Applied Soil Ecology,2003,23(2):127-135
    [78]Hendricks J.J., Hendrick R.L., Wilson C.A., Mitchell R.J., Pecot S.D., Guo D. Assessing the Patterns and Controls of Fine Root Dynamics:An Empirical Test and Methodological Review. Journal of Ecology,2006,94(1):40-57
    [79]Gaul D., Hertel D., Leuschner C. Estimating Fine Root Longevity in a Temperate Norway Spruce Forest Using Three Independent Methods. Functional Plant Biology,2009,36(1): 11-19
    [80]白文明,程维信,李凌浩.微根窗技术及其在植物根系研究中的应用.生态学报,2005,25(11):3076-3081
    [81]郭大立.植物根系:结构、功能及在生态系统物质循环中的地位.邬建国主编:现代生态学讲座(Ⅲ学科进展与热点论题).北京:高等教育出版社,2005:92-109
    [82]King J.S., Albaugh T.J., Allen H.L., Buford M., Strain B.R., Dougherty P. Below Ground Carbon Input to Soil Is Controlled by Nutrient Availability and Fine Root Dynamics in Loblolly Pine. New Phytologist,2002,154(2):389-398
    [83]Johnson M.G, Rygiewicz P.T., Tingey D.T., Phillips D.L. Elevated CO2 and Elevated Temperature Have No Effect on Douglas-Fir Fine-Root Dynamics in Nitrogen-Poor Soil. New Phytologist,2006,170(2):345-356
    [84]Tierney G, Fahey T. Fine Root Turnover in a Northern Hardwood Forest:A Direct Comparison of the Radiocarbon and Minirhizotron Methods. Canadian Journal of Forest Research,2002,32(9):1692-1697
    [85]Guo D., Li H., Mitchell R.J., Han W., Hendricks J.J., Fahey T.J., Hendrick R.L. Fine Root Heterogeneity by Branch Order:Exploring the Discrepancy in Root Turnover Estimates between Minirhizotron and Carbon Isotopic Methods. New Phytologist,2008,177(2): 443-456
    [86]Strand A.E., Pritchard S.G., Mccormack M.L., Davis M.A., Oren R. Irreconcilable Differences:Fine-Root Life Spans and Soil Carbon Persistence. Science,2008,319(5862): 456-458
    [87]Brassard B.W., Chen H.Y.H., Bergeron Y. Influence of Environmental Variability on Root Dynamics in Northern Forests. Critical Reviews in Plant Sciences,2009,28(3):179-197
    [88]Hendrick R.L., Pregitzer K.S. The Demography of Fine Roots in a Northern Hardwood Forest. Ecology,1992,73(3):1094-1104
    [89]Burke M.K., Raynal D.J. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem. Plant and Soil,1994,162(1):135-146
    [90]Steele S.J., Gower S.T., Vogel J.G., Norman J.M. Root Mass, Net Primary Production and Turnover in Aspen, Jack Pine and Black Spruce Forests in Saskatchewan and Manitoba, Canada. Tree Physiology,1997,17(8-9):577-587
    [91]West J., Espeleta J., Donovan L. Fine Root Production and Turnover Across a Complex Edaphic Gradient of a Pinus palustris-Aristida stricta Savanna Ecosystems. Forest Ecology and Management,2004,189:397-406
    [92]Hendrick R.L., Pregitzer K.S. Temporal and Depth-Related Patterns of Fine Root Dynamics in Northern Hardwood Forests. Journal of Ecology,1996,84(2):167-176
    [93]Quan X., Wang C., Zhang Q., Wang X., Luo Y, Bond-Lamberty B. Dynamics of Fine Roots in Five Chinese Temperate Forests. Journal of Plant Research,2010,123(4): 497-507
    [94]Hendrick R.L., Pregitzer K. The Relationship between Fine Root Demography and the Soil Environment in Northern Hardwood Forests. Ecoscience Sainte-Foy,1997,4(1): 99-105
    [95]Joslin J., Wolfe M., Hanson P. Factors Controlling the Timing of Root Elongation Intensity in a Mature Upland Oak Stand. Plant and Soil,2001,228(2):201-212
    [96]Price J.S., Hendrick R.L. Fine Root Length Production, Mortality and Standing Root Crop Dynamics in an Intensively Managed Sweetgum (Liquidambar styraciflua L.) Coppice. Plant and Soil,1998,205(2):193-201
    [97]Cote B., Hendershot W.H., Fyles J.W., Roy A.G., Bradley R., Biron P.M., Courchesne F. The Phenology of Fine Root Growth in a Maple-Dominated Ecosystem:Relationships with Some Soil Properties. Plant and Soil,1998,201(1):59-69
    [98]Tierney G., Fahey T., Groffman P., Hardy J., Fitzhugh R., Driscoll C., Yavitt J. Environmental Control of Fine Root Dynamics in a Northern Hardwood Forest. Global Change Biology,2003,9(5):670-679
    [99]Mainiero R., Kazda M. Depth-Related Fine Root Dynamics of Fagus sylvatica During Exceptional Drought. Forest ecology and management,2006,237(1-3):135-142
    [100]Anderson L.J., Comas L.H., Lakso A.N., Eissenstat D.M. Multiple Risk Factors in Root Survivorship:a 4-Year Study in Concord Grape. New Phytologist,2003,158(3):489-501
    [101]Pregitzer K.S., Hendrick R.L., Fogel R. The Demography of Fine Roots in Response to Patches of Water and Nitrogen. New Phytologist,1993,125(3):575-580
    [102]Wells C.E., Glenn D.M., Eissenstat D.M. Changes in the Risk of Fine-Root Mortality with Age:A Case Study in Peach, Prunus persica (Rosaceae). American Journal of Botany, 2002,89(1):79-87
    [103]Hishi T., Takeda H. Life Cycles of Individual Roots in Fine Root System of Chamaecyparis obtusa Sieb. Et Zucc. Journal of Forest Research,2005,10(3):181-187
    [104]Hishi T., Takeda H. Dynamics of Heterorhizic Root Systems:Protoxylem Groups within the Fine Root System of Chamaecyparis obtusa. New Phytologist,2005,167(2): 509-521
    [105]卫星,刘颖,陈海波.黄波罗不同根序的解剖结构及其功能异质性.植物生态学报,2008,32(6):1238-1247
    [106]Eissenstat D.M., Yanai R.D. Root Life Span, Efficiency, and Turnover. In:Weisel, Y., Eshel A., and Kafkafi U., eds. Plant Roots, the Hidden Half. Third Edition. New York: Marcel Dekker,2002,221-238
    [107]Comas L.H., Anderson L., Dunst R., Lakso A., Eissenstat D. Canopy and Environmental Control of Root Dynamics in a Long Term Study of Concord Grape. New Phytologist,2005,167(3):829-840
    [108]Pregitzer K.S. Woody Plants, Carbon Allocation and Fine Roots. New Phytologist,2003, 158(3):421-424
    [109]Landhausser S.M., Lieffers V.J. Seasonal Changes in Carbohydrate Reserves in Mature Northern Populus tremuloides Clones. Trees-Structure and Function,2003,17(6): 471-476
    [110]Guo D.L., Mitchell R.J., Hendricks J.J. Fine Root Branch Orders Respond Differentially to Carbon Source-Sink Manipulations in a Longleaf Pine Forest. Oecologia, 2004,140:450-457
    [111]Pregitzer K., Hendrick R., Fogel R. The Demography of Fine Roots in Response to Patches of Water and Nitrogen. New Phytologist,1993,125:575-580
    [112]Pregitzer K.S., Zak D.R., Curtis P.S., Kubiske M.E., Teeri J.A., Vogel C.S. Atmospheric CO2, Soil-Nitrogen and Turnover of Fine Roots. New Phytologist,1995,129(4):579-585
    [113]Majdi H., Kangas P. Demography of Fine Roots in Response to Nutrient Applications in a Norway Spruce Stand in Southwestern Sweden. Ecoscience Sainte-Foy,1997,4(2): 199-205
    [114]于水强,王政权,史建伟,于立忠,全先奎.氮肥对水曲柳和落叶松细根的影响.应用生态学报,2009,20(10):2332~2338
    [115]Hendricks J.J., Nadelhoffer K.J., Aber J.D. Assessing the Role of Fine Roots in Carbon and Nutrient Cycling. Trends in Ecology & Evolution,1993,8(5):174-178
    [116]Nadelhoffer K.J., Aber J.D., Melillo J.M. Fine Roots, Net Primary Production, and Soil Nitrogen Availability:A New Hypothesis. Ecology,1985,66(4):1377-1390
    [117]Hendrick R.L., Pregitzer K.S. Patterns of Fine Root Mortality in Two Sugar Maple Forests. Nature,1993,361(6407):59-61
    [118]Pregitzer K.S., King J.S., Burton A.J., Brown S.E. Responses of Tree Fine Roots to Temperature. New Phytologist,2000,147(1):105-115
    [119]Zeleznik J., Dickmann D. Effects of High Temperatures on Fine Roots of Mature Red Pine (Pinus resinosa) Trees. Forest Ecology and Management,2004,199(2-3):395-409
    [120]Alvarez-Uria P., K ner C. Low Temperature Limits of Root Growth in Deciduous and Evergreen Temperate Tree Species. Functional Ecology,2007,21(2):211-218
    [121]Joslin J., Wolfe M., Hanson P. Effects of Altered Water Regimes on Forest Root Systems. New Phytologist,2000,147(1):117-129
    [122]Leuschner C., Hertel D., Schmid I., Koch O., Muhs A., Hoscher D. Stand Fine Root Biomass and Fine Root Morphology in Old-Growth Beech Forests as a Function of Precipitation and Soil Fertility. Plant and Soil,2004,258(1):43-56
    [123]Hooker J., Black K., Perry R., Atkinson D. Arbuscular Mycorrhizal Fungi Induced Alteration to Root Longevity of Poplar. Plant and Soil,1995,172(2):327-329
    [124]Espeleta J.F., Eissenstat D.M., Graham J.H. Citrus Root Responses to Localized Drying Soil:A New Approach to Studying Mycorrhizal Effects on the Roots of Mature Trees. Plant and Soil,1999,206(1):1-10
    [125]Stevens G.N., Jones R.H., Mitchell R.J. Rapid Fine Root Disappearance in a Pine Woodland:A Substantial Carbon Flux. Canadian Journal of Forest Research,2002,32(12): 2225-2230
    [126]Stevens G.N., Jones R.H. Patterns in Soil Fertility and Root Herbivory Interact to Influence Fine-Root Dynamics. Ecology,2006,87(3):616-624
    [127]Black K.E., Harbron C.G., Franklin M., Atkinson D., Hooker J.E. Differences in Root Longevity of Some Tree Species. Tree Physiol,1998,18(4):259-264
    [128]Coleman M., Dickson R., Isebrands J. Contrasting Fine-Root Production, Survival and Soil Co2 Efflux in Pine and Poplar Plantations. Plant and Soil,2000,225(1):129-139
    [129]Withington J.M., Reich P.B., Oleksyn J., Eissenstat D.M. Comparisons of Structure and Life Span in Roots and Leaves among Temperate Trees. Ecological Monographs,2006, 76(3):381-397
    [130]Reich P.B., Walters M.B., Tjoelker M.G., Vanderklein D., Buschena C. Photosynthesis and Respiration Rates Depend on Leaf and Root Morphology and Nitrogen Concentration in Nine Boreal Tree Species Differing in Relative Growth Rate. Functional Ecology,1998, 12:395-405
    [131]Comas L.H., Bouma T.J., Eissenstat D.M. Linking Root Traits to Potential Growth Rate in Six Temperate Tree Species. Oecologia,2002,132(1):34-43
    [132]Comas L.H., Eissenstat D.M. Linking Fine Root Traits to Maximum Potential Growth Rate among 11 Mature Temperate Tree Species. Functional Ecology,2004,18(3): 388-397
    [133]Huang X.M., Lakso A.N., Eissenstat D.M. Interactive Effects of Soil Temperature and Moisture on Concord Grape Root Respiration. Journal of Experimental Botany,2005, 56(420):2651-2660
    [134]Iversen C.M., Ledford J., Norby R.J. CO2 Enrichment Increases Carbon and Nitrogen Input from Fine Roots in a Deciduous Forest. New Phytologist,2008,179(3):837-847
    [135]Phillips D.L., Johnson M.G., Tingey D.T., Storm M.J. Elevated CO2 and O3 Effects on Fine-Root Survivorship in Ponderosa Pine Mesocosms. Oecologia,2009,160(4):827-837
    [136]Iversen C.M. Digging Deeper:Fine-Root Responses to Rising Atmospheric CO2 Concentration in Forested Ecosystems. New Phytologist,2010,186(2):346-357
    [137]Burton A.J., Pregitzer K.S., Crawford J.N., Zogg G.P., Zak D.R. Simulated Chronic NO3-Deposition Reduces Soil Respiration in Northern Hardwood Forests. Global Change Biology,2004,10(7):1080-1091
    [138]Zak D.R., Holmes W.E., Burton A.J., Pregitzer K.S., Talhelm A.F. Simulated Atmospheric NO3-Deposition Increases Soil Organic Matter by Slowing Decomposition. Ecological Applications,2008,18(8):2016-2027
    [139]Craine J., Tremmel D. Improvements to the Minirhizotron System.1995,76(4): 234-235
    [140]宋森,谷加存,全先奎,郭大立,王政权.水曲柳和兴安落叶松人工林细根分解研究.植物生态学报,2008,32(6):1227-1237
    [141]刘佳,项文化,徐晓,陈瑞,田大伦,彭长辉,方晰.湖南会同5个亚热带树种的细根构型及功能特征分析.植物生态学报,2010,34(8):938-945
    [142]Burton A., Pregitzer K., Ruess R., Hendrick R., Allen M. Root Respiration in North American Forests:Effects of Nitrogen Concentration and Temperature across Biomes. Oecologia,2002,131(4):559-568
    [143]石碧,狄莹.植物多酚.北京:科学出版社,2000:19-31
    [144]姜红英,谷加存,邱俊,王政权.2004-2008年落叶松人工林细根生产和死亡的季节动态.应用生态学报,2010,21(10):2465-2471
    [145]Fahey T.J., Hughes J.W. Fine Root Dynamics in a Northern Hardwood Forest Ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology,1994,82(3): 533-548
    [146]Steinaker D.F., Wilson S.D. Belowground Litter Contributions to Nitrogen Cycling at a Northern Grassland-Forest Boundary. Ecology,2005,86(10):2825-2833
    [147]Vogt K.A., Vogt D.J., Palmiotto P.A., Boon P., O'hara J., Asbjornsen H. Review of Root Dynamics in Forest Ecosystems Grouped by Climate, Climatic Forest Type and Species. Plant and Soil,1996,187(2):159-219
    [148]Valenzuela-Estrada L.R., Vera-Caraballo V., Ruth L.E., Eissenstat D.M. Root Anatomy, Morphology, and Longevity among Root Orders in Vaccinium corymbosum (Ericaceae). American Journal Botany,2008,95(12):1506-1514
    [149]Teskey R.O., Hinckley T.M. Influence of Temperature and Water Potential on Root Growth of White Oak. Physiologia Plantarum,1981,52(3):363-369
    [150]Farrar J., Jones D. The Control of Carbon Acquisition by Roots. New Phytologist,2000, 147(1):43-53
    [151]Kozlowski T.T., Kramer P.J., Pallardy S.G. The Physiological Ecology of Woody Plants. Academic Press, Inc.,1991
    [152]Trumbore S.E., Gaudinski J.B. The Secret Lives of Roots. Science,2003,302(5649): 1344-1345
    [153]Watson C.A., Ross J.M., Bagnaresi U., Minotta G.F., Roffi F., Atkinson D., Black K.E., Hooker J.E. Environment-Induced Modifications to Root Longevity in Lolium perenne and Trifolium repens. Annals of Botany,2000,85(3):397-401
    [154]Peek M.S., By E., Esser K., Lottge U., Beyschlag W., Murata J. Explaining Variation in Fine Root Life Span. Progress in Botany. Springer Berlin Heidelberg.2007:382-398
    [155]Ruess R.W., Hendrick R.L., Burton A.J., Pregitzer K.S., Sveinbjornsson B., Allen M.F., Maurer G.E. Coupling Fine Root Dynamics with Ecosystem Carbon Cycling in Black Spruce Forests of Interior Alaska. Ecological Monographs,2003,73(4):643-662
    [156]Espeleta J.F., West J.B., Donovan L.A. Tree Species Fine-Root Demography Parallels Habitat Specialization across a Sandhill Soil Resource Gradient. Ecology,2009,90(7): 1773-1787
    [157]Majdi H., Damm E., Nylund J.E. Longevity of Mycorrhizal Roots Depends on Branching Order and Nutrient Availability. New Phytologist,2001,150(1):195-202
    [158]Wang C.K., Yang J.Y., Zhang Q.Z. Soil Respiration in Six Temperate Forests in China. Global Change Biology,2006,12:2103-2114
    [159]Kern C.C., Friend A.L., Johnson J.M.F., Coleman M.D. Fine Root Dynamics in a Developing Populus deltoides Plantation. Tree Physiology,2004,24(6):651-660
    [160]Lee E.T., Wang J. Statistical Methods for Survival Data Analysis,3rd Edn. Hoboken, New Jersey:John Wiley and Sons,2003:513-514
    [161]陈家鼎,戴中维译,Lee L.T., Wang编著J.生存数据分析的统计方法.北京:中国统计出版社,1998:284-302
    [162]Matamala R., Gonzalez-Meler M.A., Jastrow J.D., Norby R.J., Schlesinger W.H. Impacts of Fine Root Turnover on Forest Npp and Soil C Sequestration Potential. Science, 2003,302(5649):1385-1387
    [163]Tjoelker M.G., Craine J.M., Wedin D., Reich P.B., Tilman D. Linking Leaf and Root Trait Syndromes among 39 Grassland and Savannah Species. New Phytologist,2005, 167(2):493-508
    [164]Wells C., Eissenstat D. Beyond the Roots of Young Seedlings:The Influence of Age and Order on Fine Root Physiology. Journal of Plant Growth Regulation,2003,21(4): 324-334
    [165]Lippu J. Redistribution of 14C-Labelled Reserve Carbon in Pinus Sylvestris Seedlings During Shoot Elongation. Silva Fennica,1998,32(1):3-10
    [166]Bai W.M., Wang Z.W., Chen Q.S., Zhang W.H., Li L.H. Spatial and Temporal Effects of Nitrogen Addition on Root Life Span of Leymus chinensis in a Typical Steppe of Inner Mongolia. Functional Ecology,2008,22(4):583-591
    [167]Lopez B., Sabate S., Gracia C. Fine Roots Dynamics in a Mediterranean Forest:Effects of Drought and Stem Density. Tree Physiol,1998,18(8-9):601-606
    [168]Pregitzer K.S., Laskowski M.J., Burton A.J., Lessard V.C., Zak D.R. Variation in Sugar Maple Root Respiration with Root Diameter and Soil Depth. Tree Physiology,1998, 18(10):665-670
    [169]Hishi T., Tateno R., Takeda H. Anatomical Characteristics of Individual Roots within the Fine-Root Architecture of Chamaecyparis obtusa (Sieb.& Zucc.) in Organic and Mineral Soil Layers. Ecological Research,2006,21(5):754-758
    [170]Westoby M., Falster D.S., Moles A.T., Vesk P.A., Wright I.J. Plant Ecological Strategies: Some Leading Dimensions of Variation between Species. Annual Review of Ecology and Systematics,2002,33(1):125-159
    [171]Westoby M., Wright I.J. Land-Plant Ecology on the Basis of Functional Traits. Trends in Ecology & Evolution,2006,21(5):261-268
    [172]Reich P.B., Walters M.B., Ellsworth D.S. Leaf Life-Span in Relation to Leaf, Plant, and Stand Characteristics among Diverse Ecosystems. Ecological Monographs,1992,62(3): 365-392
    [173]Reich P.B., Walters M.B., Ellsworth D.S. From Tropics to Tundra:Global Convergence in Plant Functioning. Proceedings of the National Academy of Sciences of the United States of America,1997,94(25):13730-13734
    [174]Ryser P. Importance of Tissue Density for Growth and Life Span of Leaves and Roots: A Comparison of Five Ecologically Contrasting Grasses. Fuctional Ecology,1996,10(6): 717-723
    [175]Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Groom P.K., Hikosaka K., Lee W., Lusk C.H., Niinemets U., Oleksyn J., Osada N., Poorter H., Warton D.I., Westoby M. Modulation of Leaf Economic Traits and Trait Relationships by Climate. Global Ecology and Biogeography,2005,14(5):411-421
    [176]Espeleta J.F., Donovan L.A. Fine Root Demography and Morphology in Response to Soil Resources Availability among Xeric and Mesic Sandhill Tree Species. Functional Ecology,2002,16(1):113-121
    [177]徐冰,程雨曦,甘慧洁,周文嘉,贺金生.内蒙古锡林河流域典型草原植物叶片与细根性状种间及种内水平上的关联.植物生态学报,2010,34(1):29-38
    [178]Li A., Guo D., Wang Z., Liu H. Nitrogen and Phosphorus Allocation in Leaves, Twigs, and Fine Roots across 49 Temperate, Subtropical and Tropical Tree Species:A Hierarchical Pattern. Functional Ecology,2010,24(1):224-232
    [179]Hummel I., Vile D., Violle C., Devaux J., Ricci B., Blanchard A., Gamier E., Roumet C. Relating Root Structure and Anatomy to Whole-Plant Functioning in 14 Herbaceous Mediterranean Species. New Phytologist,2007,173(2):313-321
    [180]Hodge A. The Plastic Plant:Root Responses to Heterogeneous Supplies of Nutrients. New Phytologist,2004,162(1):9-24
    [181]Comas L.H., Eissenstat D.M. Patterns in Root Trait Variation among 25 Co-existing North American Forest Species. New Phytologist,2009,182(4):919-928
    [182]Ryser P., Eek L. Consequences of Phenotypic Plasticity Vs. Interspecific Differences in Leaf and Root Traits for Acquisition of Aboveground and Belowground Resources. Ameriacn Journal Botany,2000,87(3):402-411
    [183]Reich P.B., Buschena C., Tjoelker M.G., Wrage K., Knops J., Tilman D., Machado J.L. Variation in Growth Rate and Ecophysiology among 34 Grassland and Savanna Species under Contrasting N Supply:A Test of Functional Group Differences. New Phytologist, 2003,157(3):617-631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700