用户名: 密码: 验证码:
芥菜胰蛋白酶抑制剂基因mti2转化拟南芥菜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虫害是影响农作物产量和品质的重要因素,因此培育出抗虫品种在生产上具有重要意义。但常规抗虫育种由于育种周期长,种质资源有限,加上抗虫机制不太明了等原因,其利用受到极大的限制。植物基因工程的快速发展为抗性育种提供了一条崭新而有效的途径。芥菜胰蛋白酶抑制剂2(MTI2)是从白芥的种子中分离出来的,它对鳞翅目幼虫中肠内的蛋白酶具有较强抑制作用。因此,芥菜胰蛋白酶抑制剂基冈mti2可作为一种很好的提高植物抗虫性的铒选基因。
     本研究通过原化渗入转化法,将构建在质粒载体PKYLX-71上的mtj2基因编码的cDNA序列导入拟南芥菜,以进一步研究该基因在寄主植物体内的表达特点和抗虫性。主要实验结果如下:
     1 利用原位渗入法将mti2基因转入拟南芥菜,最终的转化频率为0.2~2.8%。在转化的过程中用0.02%的表面活性剂Tween 20替代常用的silwet L-77。
     2 对部分通过卡那霉素筛选的抗性植株进行了PCR和PCR-Southern检测,其中PCR检测的阳性率为98.9%,PCR-Southern检测的阳性率为100%。可以初步确定目的基因已经整合到寄主植物的基因组中。
     3 对部分通过PCR检测的植株进行一步法RT-PCR检测,在80个被检测单株中,每个单株都获得了特异的扩增条带,所以初步确定目的基因在寄主植物体内得到表达。
The pests is a main factor that restrain the yield and quality of crops, so it is great importance for agriculture production that breeding new cullivars which can resistance to pest, but the common methods of pest-resistance breeding are restrained greatly because the breeding week is too long or resource is limited and the pest-resistance mechanism are not clear. But the quickly development of plant genetic engineering provides a new and powerful method for breeding pest-resistance cultivars. Mustar trypsin inhibitor has been isolated from white mustar seeds, it can significantly affected the activity of overall digestive protease in the gut of Lepidopteran pest larvals.Therefore, mti2 is thought to be a good candidate for enhancing pest resitancc in plant.
    In this reaserch,the mti2 encoding cDNA sequence that recombinated in PKYLX-71 vector has been transfer into arabidopsis by in planta infiltration to study the character of expression and pest resistance in transgenic plants. The main results in this experiment were as follows:
    1. The mti2 gene has been transferred into arabidopsis thaliana(Columbia ecotype)by in planta infiltration, the final transformation frequency is about 0.2%~2.8%. in the course of this transformation, the surfactants Tween 20 has been used as effective substitutes for Silwet L-77.the final Tween 20 concentration is 0.02%.
    2. The kanamycin-resist plants had been test by PCR and PCR-Southern bloting, the positive frequency of PCR test is about 98.9% and the positive frequency of PCR-Southern bloting is 100%.it can be confirmed that the target gene has recombinated into the genomic of arabidopsis plants.
    3. One-step RT-PCR test had been done in 80 plants that have passed the PCR test, a special bind had been acquired in every plant, it can be confirmed that the target gene which recombinated into the genomic of plant had expressed in plant.
引文
1.王关林,方宏筠主编.植物基因工程原理与技术.北京:科学出版社,1998
    2.王镜岩,朱圣庚,徐长法.生物化学.第三版.北京:高等教育出版社,2002
    3.萨姆布鲁克等著,金冬雁,黎孟枫等译.分子克隆实验指南(第三版),科学出版社,2003
    4.曹鸣庆,刘凡,姚磊.通过农杆菌原位真空渗入法获得转基因小白菜.林忠平等编著:《走向21世纪的植物分子生物学》,科学出版社,2000
    5.王文全,孟玲,许键.苦豆子胰蛋白酶抑制剂对几种害虫的抑制作用.中国生物防治,1997,13(4):176~178
    6.傅荣昭,孙勇如,贾士荣主编.《植物遗传转化技术手册》北京:中国科学技术出版社,1994
    7.苏军.蛋白酶抑制剂基因的杀虫机理及其应用.福建果树,1998,100:19~20
    8.秦新民等.小白菜苏云金芽抱杆菌CryIB基因的遗传转化.广西师范大学学报(自然科学版),1999,17:77~82
    9.杨广东,朱祯,李燕娥等.转修饰豇豆胰蛋白酶抑制剂基因(sck)抗虫甜椒植株的获得.应用与环境生物学报.2002,8(3):239~244
    10.张智奇,周音,钟维瑾等.慈姑蛋白酶抑制剂基因转化小白菜获抗虫转基因植株.上海农业学报,1999,15(4):4~9
    11.李慧芬,李旭刚,吴茜等.转修饰豇豆胰蛋白酶抑制剂基因(sck)玉米(Zea mays L.)植株的获得及其抗虫性分析.高技术通讯,2001,10:7~12
    12.许耀,贾敬芬,郑国倡等.酚类化合物促进根癌农杆菌对植物离体外植体的高效转化.科学通报,1988,22:45~48
    13.郭凤英.沙广乐.蛋白酶抑制剂研究进展.河南职技师院学报,1997,25(4):5-7
    14.张光辉,巩振辉,薛万新等.大白菜和油菜真空渗入遗传转化法初报.西北农业大学学报,1998,26(4)
    15.卢小风,夏玉先,裴炎.植物蛋白酶抑制剂在植物抗虫与抗病中的作用.生物化学与生物物理进展,1998,25(4):328-333
    16.赵荣敏.生物工程学报,1995,11(1):1
    17.刘凡,姚磊,李岩,曹鸣庆.利用结球白菜小抱子胚状体获得抗除草剂转基因植株.华北农学报,1998,13(4):93~98
    
    
    18.张扬勇.雪花莲凝集素基因转化小白菜和菜心的研究.华中农业大学硕士学位论文,2002年
    19.戴大鹏.白菜类蔬菜转基因技术研究:农杆菌介导的离体转化和植株渗入转化.首都师范大学硕士学位论文,2001年
    20.吴贤婷.重组基因Lat52-DTA的构建及其对拟南芥和烟草的转化.首都师范大学硕士学位论文,2001年
    21. Oerke E C,Dehne H w, Schonbeck F, et al.Crop production and crop protection:Estimated losses in major food and cash crops. 1994,Elsevier, Amesterdam, The Netherlands.
    22. Anderson E J, Stark D M, Nelson R S, et al. Transgenic Plants that expressing the coat protein genes of tobacco mosaic virus or alfalfa mosaic virus interfere with disease development of some nonrelated viruses. phytopathol 1989,79:1283
    23. Barlield D G. Gene transfer in Brassica juucea using Agrobacterium tumefaciens- mediated transformation.plant Cell Rep, 1991, 10:308~314
    24. Bent A F. Arabidopsis in planta transformation. uses, mechanisms and prospects for transformation of other species. plant Physiol, 2000, 124:1540~1547
    25. Betchtold. In planta Agrobectrium-mediated gene transfer by infiltration of adult Arabidopsis thaliana Plants. C R Acad Sci Paris Life Sci, 1993,316:1194~1199
    26. Betchtold N,Benedicte Jaudeau,Sylvie Jolive,et al. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics, 2000, 155: 1875~1887
    27. Shahla N. Sheikholeslam, Donald P.Weeks.Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefacients.Plant Molecular Biology, 1987,8:291~298
    28. Berthomieu P. Transformation of rapid cycling cabbage(Brassica oleracea var capitata)with Agrobacterium rhicogenes. plant Cell Rep, 1992, 11:334~338
    29. Berthomien P. Routine transformatiou of rapid cycling cabbage (Brassica Oleracea) molecnlar evidence for regeneration of chimeras. plant Sci, 1994, 96:223~235
    30. Seok So Chang, Soon Ki Park, Byung Chul Kim, et al. Stable genetic transformation of Arabidopsis thaliana by Agorbacteriurn inoculation in planta. Plant J,1994,5:551~558
    31. Clough S J.Floral dip:a simplified method for Agrobacterium-mediated transformation of
    
    Arabidopsis thaliana,Plant J, 1998, 16:735~743
    32. Desfeux C, Steven J. Clough,Andrew F.Bent. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method Plant Physiol, 2000, 123:895~904
    33. Kenneth A Feldmann, M David Marks. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet, 1987, 208:1~9
    34. David A.Patton, David W.Meinke. Hight-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports,1988,7:233~237
    35. Hu C Y. In planta transformation technologies developed in China: procedure, conifirmation and field performance. In Vitro Cell Dev Biol-plant,1999, 35:417~420
    36. Katavic V. In planta transformation of Arabidopsis thaliana. Mol Gen Genet, 1994, 245: 363~370
    37. Liu F. In Planta transfonnation of Pakchoi(Brassica campestris L.ssp. Chinensis)by infiltration of adult plants with Agrobacterium.Acta Hort,1998,467:187~192
    38. Mengiste T. High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by theT-DNA 1'Promoter. Plant J,1997, 12:945~948
    39. Ming HC. Floral spray transformation can efficiently generate arabidopsis transgenic Plants.Transgenic Research,2000, 9:471~476
    40. Richardson K et al. T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis.Aust.J. Plant PhysioL, 1998,25:125~130
    41. She jianming. Acquirement of insect~resistant transgenic plants of brassica campestris ssp.chinesis L.by agrobacterium~mediated transformation。Internatiouai symposim on biotechnology application in horticultural crops, September, 4~8, 2000, Beijing, China:106
    42. Trieu AT. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium.Plant J,2000,22:531~541
    43. Guang-Ning Ye, Deborah Stone,Sheng-Zhi Pang, et al. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation.Plant J, 1999,19:249~257
    44. Cao M Q. Transformation of pakchoi(Brassica campestris L.ssp. Chinensis) by Agrobacterium infiltration.Mol Breeding,2000, 6:67~72
    
    
    45. Cheel. Transformaion of soybean(Glycine max)via Agrobecterium inoculadon and analysis of transformed plants.In KMA Gartland,MR Daveyeds, Agrobcctrium Protocols:Methods in Molecular Biology, Vol 44.Humana Press,Totowa,Nj,1995,101~119
    46. Chowrira G M. Eelectroporation~mediated gene transfer into intact nodal meristems in planta:generating transgenic plants without in vitro tissue culture,Mol Biotechnol, 1995, 3:17~23
    47. Steven.J.Clough and Andrew F, Bent.Floral dip:a simplified methods for Agrobacteriurn-mediated transformation of Arabidopsis thaliana The Plant Jounal, 1998, 16(6):745~743
    48. Abe K. J bio Chem, 1987, 262(35):16793
    49. Abe M. European J Biochem,1992,209:933
    50. Broadway R M, Duffey S S.Plaut proteinase inhibitors:mechanism of action and effect on the growth and digestive physiology of larval Heliolhis zea and Spodoptera exigua, J Insect physiol, 1986,32:827~833
    51. Broadway R M. Are insect Resitant to plant proteinase inhibitor?.J Insect physiol, 1995, 41(2):107~116
    52. Confalonieri M. Molecular Breeding, 1998,4:137
    53. Duan X Li., X Xue Q., Abo-El-saad M., et al. Transgenic rice plants harboring an introduced polato proteinase inhibitor Ⅱ gene are insect resistant. Nature Biotechnology, 1996, 14:494~498
    54. Hilder V A, Gatehouse A M R,Sheerman S E et al.A novel mechanism of insect resistance engineered into tobacco.Nature,1987,300:160
    55. Johnson R, Narraez J,An G et al.Expression of proteinase inhibitor Ⅰ and Ⅱ in transgenic tobacco plants.effects on natural defense against Manduca sexta larvae.Proc Natl Acad Sci USA, 1989,86:9871~9875
    56. Jongsma M.A.,Bakker P.L.,Peters J., et al. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of proteinase activity insensitive of inhibitor. Proc Natl Acad Sci USA, 1995,92:8041~8045
    57. Rchardson M.Seed storage proteins:the enzyme inhibitors.In:Methods in Plant Biochemistry, Vol.5.,Academic Press, New York, pp259~305
    
    
    58. Ryan C.A.Protease inhibitor in plant:genes for improving defenses against insects and pathogens. Annn Rev phytopathol, 1990,28:425~449
    59. Schuler T H, Poppy G M,Kerry BR,et al.Insect resistant transgenic plants. Trends Biotechnol, 1998,16:168~175
    60. Thomas J C, Adams D G., Keppenne V D,Wasmann C.C et al.Protease inhibitors of Manduca sexta expressed in transgenic cotton.Plant Cell Reports, 1995,14:758~762
    61. Thomas J C, Wasmann C C., Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa(Medicago sativa L).plant Cell Reports, 1994, 14: 31~36
    62. Wu Y., Llewellyn D,Matthews A,et al.Adaptation of Helicoverpa armigera (Lepidoptera: Noctuidae) to a proteinase inhibitor expressed in transgenic tobacco.Molecular Breeding, 1997,3:371~380
    63. Xu D., Xue Q., McWlrot D et al.Constitutive expression of a cowpea trypsin inhibitor gene,CPTI,in trabsgebic rice plants confers resistance to two major rice insect pests.Molecular Breeding, 1996, 2:167~173
    64. Xue Q Z. Proceedings of 2nd Asia-pacific Conference on plant Cell and Tissue Culture, China Forestry publishing House, 219
    65. Xue Q z. Rice Genetics 111, IRRI PO Box933, Manila, philipines, 1996, 239
    66. A M R Gathehouse, V A Hilder, D.Boulter.Plant Genetic Manipulation for Crop Protection.CAB internitonal, 1992, PP155~181
    67. J C heng, J A Saunders, S L Sinden. In Vitro Cell Dev Biol,1995,31:90~95
    68. L Jouanin, M Bonade-Bottino, et al. Plant Science, 1998, 131: 1~11
    69. Vander S T, bosch D, Hones G, et al. Insect resietance of transgenic plants that express modified Bacillus thuringiensis Cry IA(b) and CryIC genes, a resistance management styategy.plant Mol Biol,1994,26(1):51~59
    70. Maarten A.Jongsma,Caroline Bolter.The Adaptation of Insects to Plant Protease Inhibitors. Insect Physiol, 1997, 43(10): 885~895
    71. Broadway R M,Duffey S S.The effect of dietary protein on the grouth and digestive physiology of Iarval Heliolhis zea and Spodoptera exigua, J Insect physiol, 1986,32:673~680
    72. Broadway R M,Duffey S S.The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitor.T.Insect Physiol,1988,34:1111~1117
    
    
    73. Laskowaki M.Proteiu inhibitors of serine proteinase-mechanism and classification.In Nutritional and Toxicological Significence of Enzyme Inhibitors in foods(Ed.Friedman M.), PP1~17, Plenum Press New York, 1985
    74. Mcmanus M T, White D W R and McGregor P.G.Accumolation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests.Transgen Revs,1994,3:50~58
    75. Mcmanus M T, Burgess E.P J.Effect of the soybean(Kunitz) trypsin inhibitor on growth and digestive proteases of larvae of Spodoptera litura.J Insect Physiol,1995,41(9):721~738
    76. Terry W R and Rerreira C.Insect digestive enzyme:properties,compartimentalization and function. Comp Biochem Physiol, 1994,109B(1): 1~62
    77. Bolter C J,Jongsma M A.Colorado potato beetle(Leptinotarsa dece mlineata) adapt to proteinase inhibitors induced iu potato leaves by methyl jasmonate.J insect physiol, 1995,41(12):1071~1078
    78. Liu Wuge, Xne Qingzhong. Proteinase inhibitors and their application in insect~resistence gene engineering.Biotechnology Information,2000,1:20~25
    79. Francesca De Leo,Michel Bonade-Bottino, Luigi Ruggiero Ceci et al.Effects of a mustar trypsin inhibitor expressed in different plants on three lepidopteran pests.Insect Biochemistry and Molecular Biology,2001,31:593~602
    80. Francesca De Leo, R.Gallerani.The mustar trypsin inhibitor 2 affects the fertility of Spodoptera littoralis larvae fed on transgenic plants. Insect Biochemistry and Molecular Biology,2002,32:489~496
    81. Maarten Jongsma,Jeroen Peters, Willem J et al.Characterization and Partial purification of gut proteinases of Spodoptera exigua Hubner(Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology1996,26(2):185~193
    82. Bown D.P., Wilkinson H.S.,Gatehouse J.A. Differentially regulated inhibitor~sensitive and insensitive proteinase genes from the phytophagous insect pest,Helicoverpa armigera,are member of complex multigene families.Insect Biochem.Mol Biol.27,625~638
    83. Gatehouse,A M R.,Gatehouse,J.A. Indentifying proteins with insecticidal activity:use of encoding genes to produce insect~resistant transgenic crops.Pestic.Sci,52:165~175
    84. L R Ceci,N Spoto,M de Virgilio,et al. The gene coding for the mustar trypsin inhibitor-2 is discontinuous and wound~inducible. FEBS Letters, 1995,364:179~181
    
    
    85. Francesca De Leo,Luigi R.Ceci,Lise Jouanin, et al.Analysis of mustar trypsin inhibitor-2 gene express in response to developmental or environmental induction.Planta,2001,212:710~717
    86. Brown W E, Ryan C.A. Isolation and characterization of wound-inducible trypsin inhibitor from alfalfa leaves.Biochemistry,1984,23:3418~3422
    87. M.Volpicella,A.Schipper, M.A.Jongsma,et al. Characterization of recombinant mustar trypsin inhibitor 2(MTI2) expressd in Pichia pastoris.FEBS Letters,2000,468:137~141
    88. Francesca De Leo, Michel A. Bonade-Bottino, Luigi R.Ceci, et al. Opposite effects on spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants.Plant Physiol,1998,118:997~1004
    89. Menegatti E,Tedeschi G,Ronchi S, et al. Puprification inhibitor proterties and amino acid sequence of a new serine proteinase inhibitor from white mustar(Sinapis alba L.) seeds.FEBS Lett 301:10~14
    90. Jongsma M.A.,Bakker P.L.,Visser B.,et al. Trypsin inhibitor activity in mature tobacco and tomato plantsis mainly induced locally in response ti insect attack, wounding and virus infection.Pianta 195:29~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700