用户名: 密码: 验证码:
白桦木质素合成苯丙氨酸途径相关酶基因的表达和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素为芳香族聚合物,是植物体中含量仅次于纤维素的一类高分子有机物质,主要存在于次生加厚的植物细胞壁中。可为植物提供机械支持,保护植物免受真菌入侵,陆生植物的木质素合成是适应陆地生活的重要特征之一。近几十年的研究已阐明了木质素单体的主要生物合成路线,并证明了木质素含量可被人为调控,并且通过木质素调控能够提高木本植物的制浆率和草料的可消化性等。同时,植物也能适应三种木质素单体(H/G/S) (?)司较大的比例变化。参与木质素生物合成途径的酶有十多种,其中咖啡酰辅酶A 3-O-甲基转移酶(CCoAOMT)是木质素生物合成途径中的一种关键酶,主要催化羟基辅酶A酯的甲基化反应,将咖啡酰辅酶A转化成阿魏酰辅酶A;4-香豆酸:CoA连接酶(4-coumarate:CoA ligase,简称4CL)是连接苯丙酸途径与木质素特异合成途径的关键酶,主要催化肉桂酸生成相应的肉桂酸辅酶A酯,是合成木质素与其它苯丙烷类化合物的代谢流向调控点。
     本论文首先分离了白桦肌动蛋白(Actin)基因的全长cDNA,该基因可作为实时定量表达技术的内参。根据不同植物肌动蛋白基因编码区的保守序列设计引物后进行RT-PCR,并采用RACE技术扩增出actin基因cDNA全长序列。白桦actin基因cDNA全长1785bp,其中5’非编码区157 bp,3’非编码区495 bp,编码区1134 bp,编码377个氨基酸。所得序列与GenBank中注册的其它植物肌动蛋白核苷酸序列的相似性均在80%以上,氨基酸序列的相似性高达96%以上,其高度保守性说明该基因与细胞生命活动密切相关,并对白桦4CL蛋白进行结构分析和同源建模。另外,利用RT-PCR和RACE技术从白桦次生木质部中克隆了编码苯丙氨酸解氨酶(PAL)的cDNA,其2322 bp的ORF编码773个氨基酸,其推导的氨基酸序列包含PAL-HAL和PAL两个功能域以及酶活性中心序列GTITASGDLVPLSYIA。BplPALl基因在各组织中均有不同的转录表达,在次生木质部表达最强,其次是幼叶,在花序中的表达量较低,说明BplPAL1基因在各组织中的调控和表达是不同的。
     其次,在前期已分离白桦的CCoAOMT和4CL全长cDNA(分别命名BplCCoAOMT1和Bpl4CL1)基础上,利用实时荧光定量PCR和Northern技术对BplCCoAOMT1和Bpl4CL1基因进行了mRNA水平的表达分析。Northern分析结果表明BplCCoAOMT1基因在7、8月份呈较高的转录水平表达。另外,利用实时荧光定量PCR分析白桦各器官和次生木质部在各时期的BplCCoAOMT1和Bpl4CL1基因的相对表达,结果显示6月底至7月初期间BplCCoAOMT1基因在次生木质部中的转录水平表达量较高,7月底达到最高峰。Bpl4CL1基因与BplCCoAOMT1基因相似,但Bpl4CL1基因在植物发育不同时期转录水平的表达差异更大。另外,Bpl4CL1基因与BplCCoAOMT1基因均在次生木质部中的表达量最高,其次是叶,而叶柄中最少。
     通过根癌农杆菌介导法将BplCCoAOMT1基因反义分别导入烟草和白桦,利用前期已构建的植物表达载体p121-Bp1CCoAOMT1,对两个烟草品种龙江911和SR-1及白桦进行基因转化,并优化了组培系统。烟草两个品种的转基因程序相同,最终共得到252株卡那霉素抗性的烟草植株。利用外源基因特异引物进行PCR检测,252株中有115株呈阳性。组织化学反应检测结果表明,龙江911转基因植株阳性植株的S型木质素降低。5株转基因烟草的总木质素含量比对照平均降低了39.0%,方差分析显示转基因和非转基因植株的木质素含量差异极其显著。另外,优化了白桦的再生系统和转基因程序,初步推测转基因白桦植株的木质素组分有所改变。这些结果说明反义转化白桦BplCCoAOMT1基因在一定程度影响了了转基因植株木质素的生物合成,初步推测白桦BplCCoAOMT1基因参与木质素合成和S型单体合成。
Lignin is an aromatic polymers and macromolecular organic material second to cellulose inside plant, which is mainly present in the secondary thickened plant cell wall. It provides the mechanic support for plant, protects the plant from pathogen invasion. Therefore, the lignin synthesis of terrestrial plant is the one of important characteristics in adapting to the land life. Several decades of research have indicated the mainly biosynthetic paths of the monolignols and demonstrated that lignin content can be engineered. Lignin engineering can improve the processing efficiency of plant biomass for pulping, forage digestibility and biofuels. Plants can cope with large shifts in phydroxyphenyl/ guaiacyl/ syringyl (H/G/S) lignin compositional ratios. There are many enzymes in lignin biosynthesis path, of these, Caffeoyl-Coenzyme A 3-O-Methyltransferase (CCoAOMT) is one key enzyme in lignin biosynthesis pathway. It is believed to be involved in the methylation of caffeoyl CoA to produce feruloyl CoA, the precursor of G lignin units.4-coumarate:CoA ligase (4CL), as the other key enzyme in linking the pathways of phenylpropanoic acid and lignin peculiar synthesis, mainly is be involved in cinnamic acid to produce cinnamic acid CoA, which is control point of lignin synthesis and other phenylpropanes compound metabolisms.
     The study isolated the full length cDNA of birch actin gene firstly, which is the basis of real-time PCR. The degenerate primers were designed according to the conserved sequence of gene encoding region in different plant actin, RT-PCR was carried out, and the full length cDNA of birch actin gene was amplified by RACE. The full length of birch actin gene is 1785 bp, which encodes 377 amino acids, with a 5'-non coding region of 157 bp,3'-non coding region of 495 bp, and coding region of 1134 bp. The similarity of actin gene sequence of birch with other plant registered in GenBank is over 80%, those of their amino acids sequences is up to 96%, the highly conservation showed that the actin gene was closely correlative to cell life, and the construction analysis and homology modeling were conducted. The cDNA (BplPALl) encoding phenylalanine ammonia-lyase (PAL) were cloned from B. platyphylla by reverse transcription polymerase chain reaction (RT-PCR) and 5'and 3'rapid amplification of cDNA ends (RACE), which contains an open reading frame (ORF) (2322 bp) encoding 773 amino acids. The amino acids sequences contain two functional domains of PAL-HAL and PAL, and the sequence of enzyme active site (GTITASGDLVPLSYIA). Semi-quantitative RT-PCR analysis indicated that the expression of BplPALl genes was different in tissues, of these was higher in xylem than in young leaves and inflorescences. The results suggest that BplPALl genes are differently regulated and expressed in tissues.
     Secondly, on the basis of the isolations for full length cDNA of CCoAOMT and 4CL of birch(BplCCoAOMT1 and Bpl4CLl), the expression analysis of BplCCoAOMTl and Bpl4CL1 genes of birch was carried out in the level of mRNA by Q-RT-PCR and Northern blot. The result of Northern blot showed that BplCCoAOMT1 gene also had a higher transcription level expression in July and August. Otherwise, the relative expression of BplCCoAOMT1 and Bpl4CL1 genes in various phases of organs and secondary xylem of birch was carried out by Q-RT-PCR. The result showed that the BplCCoAOMT1 gene had a higher expression in secondary xylem from the end of June to the early of July, and reached the peak at the end of July. Just as BplCCoAOMTl gene, the transcription level of Bpl4CL1 gene had a significantly difference at the various development phases. Moreover, the BplCCoAOMTl and Bpl4CL1 genes also had a high expression into the secondary xylem, next to leave, and the lowest in leafstalk.
     Thirdly, antisense BplCCoAOMT1 cDNA was separately transformed into tobacco (Longjiang911 and SR-1) and birch mediated by Agrobacterium tumefaciens and the constructed vector of p121-BplCCoAOMT1. Tissue culture systems and the program of gene transformation of two varieties of tobaccos (Longjiang 911 and SR-1) were compared. The gene transformation processes of the two varieties of tobaccos were basically the same, which also adopt the disc-leaf transformation by mediated A. tumefaciens. At last, we totally acquired 252 seedlings resisting kanamycin. By the PCR detection of specific primers, there were 115 positive plants of 252. The detection result of histochemistry showed that the S-lignin contents of transgenic positive plants of Longjiang911 decreased. The contents of total lignin of positive plants were lower 39.0% than that of the control in average. The results of analysis of variance showed there is a significant difference between the transgenic plants and the control. In addition, the regeneration system and transgenic program of B. platyphylla were optimized, and we initially inferred that the lignin component of transgenic birch plant made a change. Therefore we can conclude that antisense BplCCoAOMT1 cDNA transformation can affect the lignin biosynthesis of transgenic plant in a sense, and BplCCoAOMT1 gene was engaged in the synthesis of lignin and S-monocase.
引文
[1]蔺占兵,马庆虎,徐洋.木质素的生物合成及其分子调控.自然科学进展,2003,(5):455~461
    [2]陈永忠,谭晓风,DavidClapham本质素生物合成及其基因调控研究综述.江西农业大学学报,2003:614~617
    [3]李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展.西北植物学报,2003:23(4):675~681
    [4]Whetten RW, MacKay JJ, Sederoff RR. Recent Advances in Understanding Lignin Biosynthesis. Annu Rev Plant Physiol Plant Mol Biol,1998,49:585-609
    [5]Whetten R, Sederoff R. Lignin Biosynthesis. Plant Cell,1995,25:1001~1013
    [6]杨家书,吴畏,吴友三,薛应龙.植物苯丙酸类代谢与小麦对白粉病抗性的关系.植物病理学报,1986,16(3):169~172
    [7]石雪晖,王淑英,吴艳纯等.葡萄叶片中单宁、木质素、PPO活性与抗黑痘病的关系.中外葡萄与葡萄酒,1997,4:8-12
    [8]骆桂芬,崔俊涛,张莉.黄瓜叶片中糖和木质素含量与霜霉病诱导抗性的关系.植物病理学报,1997,27(1):65~69
    [9]秋增昌,王海毅.木质素的应用研究现状与进展.西南造纸,2004,33(3):29~34
    [10]Wout B, John R, MB. Lignin Biosynthesis. Annu. Rev. Plant Biol,2003,54(1):519~46
    [11]Rosler J, Krekel F, Amrhein N. Maize Phenylalanine Ammonia-lyase has Tyrosine Ammonia-lyase Activity. Plant Physiol,1997,113:175~179
    [12]Rugger M, Myer K, Casumano JC. Regulation of Ferulate-5-hydroxylase Expression in Arabidopsis in the Context of Sinapate Ester Biosynthesis. Plant Physiol,1999,119: 101~110
    [13]Franke R, McMichael CM, Meyer K. Modified Lignin in Tobacco and Poplar Plants Over-expressing the Arabidopsis Gene Encoding Ferulate 5- hydroxylase. Plant J,2000, 22:223~234
    [14]Pakusch AE, Jbeysek RE, Naterb U. S-Adenosyl-L-methionine 3-0-methyltransferase: Trans-caffeoyl-coenzyme A from Elicitor-treated Parsley Cell Suspension Cultures. Arch Biochem Biophys,1989,271:488~494
    [15]Kuhnl T, Koch U, Heller W. Elicitor induced S-adenosyl-L-methionine:Caffeoyl CoA 3-O-methyltransferase from Carrot cell Suspension Cultures. Plant Sci,1989,60:21~25
    [16]Schmitt D, Pakusch AE, Matern U. Molecular Cloning, Induction and Taxonomic Distribution of Caffeoyl-CoA 3-Omethyltransferase, an Enzyme Involved in Disease Resistance. J Biol Chem,1991,266:17416~17423
    [17]Ye ZhH, Kneusel RE, Matern U. An Alternative Methylation Pathway in Lignin Biosynthesis in Zinnia. Plant Cell,1994,6:1427~1439
    [18]Ye ZhH, Vainer JE. Differential Expression of Two Omethyltransferase in Lignin Biosynthesis in Zinnia Elegans. Plant Physiol,1995,108:459~467
    [19]Zhong RQ, Herbert W, Negrel J. Dual Methylation Pathway in Lignin Biosynthesis. Plant Cell,1998,10:2033~2045
    [20]Li LG, Osakabe YK. Secondary Xylem-specific Expression of Caffeoyl-coenzyme A 3-O-methyltransferase Plays an Important Role in the Methylation Pathway Associated with Lignin Biosynthetic in Loblloly Pine. Plant Mol Biol,1999,40:555-565
    [21]Katsuyoshi H, omoaki N, Kazuchika Y, et al.4-Coumarate:Coenzyme A ligase in Black Locust (Robinia pseudoacacia) Catalyses the Conversion of Sinapate to Sinapoyl-CoA. J Plant Res,2004,117(4):303~310
    [22]Lee D, Meyer K, Chapple C. Down-regulation of 4-eoumarate:CoA ligase (4CL) in Arabidopsis Effect on Lignin Composition and Implication for the Control of Monolignol Biosynthesis. Plant Cell,1997,9:1985~1998
    [23]Kajita S, Hishiyama S, Tomimura Y. Structural Characterization of Modified Lignin in Transgenic Tobacco Plants in Which the Activity of 4-coumarate:Coenzyme A Ligase is Depressed. Plant Physiol.1997,114:871~879
    [24]Kajita S, Katayama Y, Omori S. Alterations in the Biosynthesis of Ligain in Transgenic Plants with Chimeric Genes for 4- Coumarate:Coenzyme A Ligase. Plant Cell Physiol, 1996,37:957-965
    [25]Hu WJ, Harding SA, Lung J. Repression of Lignin Biosynthesis Promotes Cellulose Accumulation and Growth in Transgenic Trees. Nat Biotech,1999,17:808~812
    [26]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展.植物学报,2001,43(8):771~779
    [27]Li L, Cheng XF, Leshkevich J, et al. The Last Step of Syringyl Monolignol Biosynthesis in Angiosperms is Regulated by a Novel Gene Encoding Sinapyl Alcohol Dehydrogenase. Plant Cell,2001,13(7):1567~1585
    [28]Sibout R, Eudes A, Pollet B, et al. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants. Plant Physiol,2003,132(2):848~860
    [29]Sibout R, Eudes A, Mouille G, et al. Cinnamyl Alcohol Dehydrogenase-C and-D are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of Arabidopsis. Plant Cell,2005,17(7):2059~2076
    [30]Takahama U. Oxidation of Hydroxycinnamic Acid and Hydroxycinnamoyl Alchol Derivatives by Lactase and Peroxidase Interactions among P- Hydroxyphenyl, Guaiacyl and Syringyl Groups During the Oxidation Reaction. Plant Physiol,1995,93:61~68
    [31]Takahama U, Oniki T. A Possible Mechanismfor the Oxidation of Sinapyl Alcohol by Peroxidase-Dependent Reaction in the Apoplast Enhancement of the Oxidation by Hydroxycin Namic Acid and Component of the Apoplast. Plant Cell Physiol,1996,37: 499~504
    [32]Ipelcl Z, Ogras T, Altinkut A. Reduced Leaf Peroxidase Activity Is Associated with Reduced Lignin Content in Transgenic Poplar. Plant Biotech,1999,16:381~387
    [33]Christensen JH, Banw G, Welinder KG. Purification and Characterization of Peroxidases Correlated with Lignification in Poplar Xylem. Plant Physiol,1998,118:125~135
    [34]Bugos RC, Vincent LC, Campell WH. cDNA Cloning, Sequence Analysis and Seasonal Expression of Lignin-Bispecific Caffeic Acid 5-Hydroxyferulic Acid O-Methyltransferase of Aspen. Plant Mol Biol,1991,17:1203~1215
    [35]Pellegrini LOC, Geoffroy P, Fritig B. Molecular Cloning and Expression of a New Class of Diphenol-O-Methyltransferases Induced in Tobacco Leaf Infection or Elicitor Treatment. Plant Physiol,1993,103:509~501
    [36]Heath R, Huxley H, Stone B. cDNA Cloning and Differential Expression of Three Caffeic Acid O-Methyltransferase Homologues from Perennial (Lolium perenne). J Plant Physiol, 1998,153:649~657
    [37]Inoue K, Sewalt VJH, Murray BG. Developmental Expression and Substrate Specificities of Alfalfa Caffeic Acid 3-O-Methyltransferase and Coenzyme A 3-O-Methyltransferase In Relation To Lignification. Plant Physiol,1998,117:761~770
    [38]Chen C, Meyermans H, Burggraeve B, et al. Cell-Specific and Conditional Expression of Caffeoyl-Coenzyme A-3-O-Methyltransferase in Poplar. Plant Physiol,2000,123: 853~867
    [39]Maury S, Geoffroy P, Legrand M. Tobacco O-Methyltransferases Involved in Phenylpropanoid Metabolism:The Different Caffeoyl-Coenzyme A/5-Hydroxyferuloyl-Coenzyme A3/ S-O-Methyltransferase Classes Have Distinct Substrate Specificities and Expression Patterns. Plant Physiol,1999,121:215~213
    [40]Cramer CL, Edwards K, Dron M. Phenylalanine Ammonialyase Gene Organization and Structure. Plant Mol Biol,1989,12:367-383
    [41]Ohl S, Hedrick SA, Chory J. Functional Properties of a Phenylalanine Ammonia-Lyase Promoter from Arabidopsis. Plant Cell,1990,2:837~848
    [42]Zhang XH, Vincent LC. Molecular Cloning of 4-Coumarate:Coenzyme A Ligase in Loblolly Pine and the Role of This Enzyme in The Biosynthesis of Lignin in Compression Wood. Plant Physiol,1997,113:65~74
    [43]Lee D, Douglas CJ. Two Divergent Members of a Tobacco 4-Coumarate-Coenzyme A Ligase (4CL) Gene Family, cDNA Structure, Gene Inheritance and Expression, and Properties if Recombinant Protein. Plant Physiol,1996,112:193~205
    [44]Hu WJ, Kawaoka A, Tsai CJ. Compartmentalized Expression of Two Structurally and Functionally Distinct 4-Coumarate:CoA Ligase Gene in Aspen (Fopulus tremuloides). Proc Natl Acad Sci USA,1998,95:5407~5412
    [45]Dixon RA, Lamb CJ, Masoud S. Metabolic Engineering:Prospects for Crop Improvement through the Genetic Manipulation of Phenylpropanoid Biosynthesis and Defense Response a Review. Gene,1996,179:61~71
    [46]胡新生,韩一凡,邱有得.树木木质素含量的遗传变异研究进展.林业科学研究,1999,12(6):563~571
    [47]陈永忠,谭晓风,David Claapham木质素生物合成及其基因调控研究综述.江西农业大学学报,2003,25(4):613~617
    [48]Dougalas C, Hoffmann H, Schulz W, et al. Structure and Elicitor or U. V.-Light-Stimulated Expression of Two 4-Coumarate:CoA Ligase Genes in Parsley. EMBO,1987, 6:1189~1195
    [49]Whetten RW, Sederoff RR. Phenylalnine Ammonia-Lyase from Loblolly Pine. Purification of the Enzyme and Isolation of Complementary DNA Clones. Plant Physiology,1992,98:380~386.
    [50]Anterola AM, Lewis NG. Trends in Lignin Modification:A Comprehensive Analysis of the Effects of Genetic Anipulations/Mutations on Lignifications and Vascular Integrity. Phytochemistry,2002,61(33):221~294
    [51]Blee KA, Choi JW, O'Connell AP, et al. Antisense and Sense Expression of Cdna Coding For CYP73A15, A Class Ⅱ Cinnamate 4-Hydroxylase, Leads to A Delayed and Reduced Production of Lignin in Tobacco. Phytochemistry,2001,57(7):1159~1166
    [52]Franke R, Humphreys JM, Hemmm MR, et al. The Arabidopsis REF8 Gene Encodes the 3-Hydroxylase of Phenylpropanoid Metabolism. Plant J,2002,30(1):33~45
    [53]Ralph J, Akiyama T, Kim H, et al. Effects of Coumarate 3-Hydroxylase Down-regulation on Lignin Structure. J Biol Chem,2006,281(13):8843~8853
    [54]Rastogi S, Dwivedi UN. Down-regulation of Lignin Biosynthesis in Transgenic Leucaena leucocephala Harboring O-methyltransferase Gene. Biotechnol Prog,2006,22(3): 609~616
    [55]Lu H, Zhao YL, Jiang XN. Stable and Specific Expression of 4-Coumarate:Coenzyme A Ligase Gene (4CL1) Driven by the Xylem-Specific Pto4CLl Promoter in the Transgenic Tobacco. Biotechnol Lett,2004,26(14):1147~1152
    [56]Piquemal J, Chamayou S, Nadaud I, et al. Down-regulation of Caffeic Acid O-Methyltransferase in Maize Revisited Using a Transgenic Approach. Plant Physiol,2002, 130(4):1675~1685
    [57]Lapierre C, Pollet B, Petit-Conil M, et al. Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping. Plant Physiol,1999,119(1):153-164.
    [58]Marita JM, Ralph J, Hatfield RD, et al. NMR Characterization of Lignins in Arabidopsis Altered in the Activity of Ferulate 5-Hydroxylase. Proc Natl Acad Sci USA,1999,96(22): 12328~12332
    [59]Guo D, Chen F, Inoue K, et al. Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin. Plant Cell,2001(1),13: 73~88.
    [60]Sasaki S, Nishida T, Tsutsumi Y, et al. Lignin Dehydrogenative Polymerization Mechanism:a Poplar Cell Wall Peroxidase Directly Oxidizes Polymer Lignin and Produces in Vitro Dehydrogenative Polymer Rich in Beta-O-4 Linkage. FEBS Lett,2004, 562(1-3):197~201.
    [61]Li Y, Kajita S, Kawai S, et al. Down-regulation of an Anionic Peroxidase In Transgenic Aspen And Its Effect On Lignin Characteristics. J Plant Res,2003,116(3):175~82
    [62]Blee KA,Choi JW, O'Connell AP, et al. A Lignin-Specific Peroxidase in Tobacco Whose Antisense Suppression Leads to Vascular Tissue Modification. Phytochemistry,2003, 64(1):163~76
    [63]van der Rest B, Danoun S, Boudet AM, et al. Down-regulation of Cinnamoyl-Coa Reductase in Tomato (Solarium lycopersicum L.) Induces Dramatic Changes in Soluble Phenolic Pools. J Exp Bot (in press),2006
    [64]薛永常.杨树木质素合成酶PAL基因的克隆、鉴定及其表达载体的构建.博士论文.中国林业科学研究院,2001
    [65]刘惠荣,赵华燕,魏建华等.抑制CCoAOMT表达对烟草木质素生物合成的影响.中国农业科学,2002,35(8):921~924
    [66]赵华燕,魏建华,路静等.利用反义CCoAOMT基因培育低木质素含量毛白杨的研究.自然科学进展.2004,14(9):1067~1071
    [67]赵艳玲,陆海,陶霞娟等.GRP1.8融合反义4CL1基因调控烟草木质素生物合成.北京林业大学学报,2003,25(4):16~20
    [68]赵华燕,魏建华,张景昱等.抑制COMT与CCoAOMT调控植物木质素的生物合成.科学通报,2002,47(8):604~607
    [69]Doorsselaere JV, Baucher M, Chognot E. A Novel Lignin on Poplar Trees with a Reduced Caffec Acid/ 5-Hydroxyferulic Acid O-Methyltransferase Activity. Plant J,1995,8: 855~864
    [70]Jouanin L, Goujin T, Lapierre C. Lignification in Transgenic Poplars with Extremely Reduced Caffeic Acid O-Methyltransferase Activity. Plant Physiol,2000,123: 1363~1373
    [71]Falk SP, Gadoury DM, Cortesi P, et al. Parasitism of Uncinula necatar Cleistothecia by the Mycoparasite Ampelomyces Quisqualis. Phytopathology,1995,85(7):794~800
    [72]张西锋,沈伟,潘庆杰等.反义RNA技术原理及其在疾病治疗中的应用.莱阳农学院学报.2004,21(1):20~22
    [73]郑娥香,杨志行,朱治萍等.水稻bicoid反义基因转基因植株胚胎发育的形态变化.植物学通报,2001,18(6):707~713
    [74]Zhang H, Goodman HM, Janssons, et al. Antisense Inhibition of the Photosystem Ⅰ Antenna Protein Lhca4 in Arabidopsis thaliana. Plant Physiol,1997,115:1525~1531
    [75]Bird CR, Ray JA, Fletcher J D, et al. Using Antisense RNA to Study Gene Function: Inhibition of Carotenoid Biosynthesis in Transgenic Tomatoes. BioTechnology,1991, (9): 635~639
    [76]罗云波,郝似平,生吉萍等.反义ACS转基因乙烯缺陷型番茄的生理特性.中国农业大学学报,2000,(3):13~17
    [77]张晓海,鹿廷茂,海燕等.番茄ACC合成酶基因的反义RNA~核酶嵌合基因植物表达载体的构建及对番茄的转化.内蒙古大学学报(自然科学版),2001,2(1):74~78
    [78]Ayub RA, Guis M, Amor MB, et al. Expression of ACC Oxidase Antisense Gene Inhibits Ripening of Cantaloupe Melon Fruits. Nature Biotechnology,1996,14:862~866
    [79]魏玉凝,李暇东,马庆虎等.表达多聚半乳糖醛酸酶反义RNA的转基因番茄分析.植物学报,1996,38(3):245~248
    [80]Visser RCF, Somborst I, Knipers CJ, et al. Inhibition of the expression of the gene for granule-bond slarch synthase in potata by anti-sense constructs. Mol Cen genet,1991,25: 289-296
    [81]Terada R, Nakajima M, Isshiki M, et al. Antisense Waxy Genes with Highly Active Promoters Effectively Suppress Waxy Gene Expression in Transgene Rice. Plant Cell Physiol,2000,41:881~888
    [82]刘巧泉,王兴稳,顾铭洪等.转反义Wx基因糯稻的显性遗传及对稻米粒重的效应分析.中国农业科学,2002,35(2):117~122
    [83]Knutzon DL, Thompson GA, Rsadke SE, et al. Modification of Brassica Seed Oil by Antisense Expression of Stearoylacyl Carrier Protein Desaturase Gene. Proc Natl Acad Sci USA,1992, (89):2624~2628
    [84]陈锦清,郎春秀,胡张华等.反义PEP基因调控油菜籽粒蛋白质P油脂含量比率的研究.农业生物技术学报,1999,7(4):306~310
    [85]石东乔,周奕华,张丽华等.油菜BCNA1启动子与拟南芥Fad2基因的克隆及相关植物表达载体的构建.云南大学学报(自然科学版),1999,(21)增刊:47
    [86]van der Krol AR, Mol JNM, Stuitie AR. Antisense Genes in plants:an Overview. Gene, 1988,72:45~50
    [87]van der Krol AR, Mur LA, de Iange P, et al. Inhibition of Flower Pigmentation by Antisense CHS Genes:Promoter and Minimal Sequence Requirements for the Anisense Effect. Plant. Mol Biol,1990,14(4):457~466
    [88]许本波,张学昆,李加纳.反义RNA技术在现代作物遗传改良中的应用.中国农学通报,2003,19(3):84~89
    [89]Courtney-Gutterson N, Napoli C, Lemienx C, et al. Modification of Flower Color in Florist's Chrysanthemum:Production of a White-Flowering Variety Through Molecular Genetics. Biotechnology,1994,12:268~271
    [90]Savin K W,Baudinette SC, Graham MW, et al. Antisense ACC Oxidase RNA Delays Carnation petal Senescence. HortScience,1995,30(5):970~972
    [91]Aanhane T, Affrs DR, Flrigene BV, et al. First rDNA Flower to Debut in Australia This Summer. Biotechnology News,1995,15(14):339~347
    [92]王伏林,王远山,胡张华.反义RNA在植物基因工程中的应用.生物技术,2003,13(1):34-35
    [93]van der Meer, Stan ME, Tunen AJV, et al. Antisense Inhibition of Flavonoid Biosynthesis in Petunia Anthers Results in Male Sterility. Plant Cell,1992,4:253~262
    [94]Schmulling T, Rohrig H, Pilz S, et al. Restoration of Fertility by Antisense RNA in Genetically Engineered Male Sterile Tobacco Plants. Mol Gen Genet,1993,237:385~394
    [95]Day AG, Bejarano ER, Buck KW, et al. Expression of an Antisense Viralgene in Transgenic Tobacco Resistance to the DNA Virus Tomato Golden Mosaic Virus. Proc Natl Acad Sci USA,1991,88:6721~6725
    [96]Nelson A, Roth DA, Johnson JD. Tobacco Mosaic Virus Infection of Transgenic Nicotiana Plants is Hibited by Antisense Constructs Directed at the 5'Region of Viral RNA. Gene, 1993,127(2):227~232
    [97]刘雪梅.白桦木质素生物合成酶基因分离及遗传转化的研究.博士论文.东北林业大学,2005
    [98]Meyermand H, Morreel K, Lapierre C, et al. Modifications in Lignin and Accumulation of Phenolic Glucosides in Poplar Xylem upon Down-Regulation of Caffeoyl-Coenzyme a O-Methyltransferase, an Enzyme Involved in Lignin Biosynthesis. The Journal of Biological Chemistry,2000,275(47):36899~36909.
    [99]John M. Walker (ed). The Proteomics Protocols Handbook. Humana Press,2005. 571~607
    [100]Chien Peter Chen, Burkhard Rost. State-of-the-art in Membrane Protein Prediction. Applied Bioinformatics,2002,1(1):21~35
    [101]Combet C., Blanchet C., Geourjon C. and Deleage G. NPS@:Network Protein Sequence Analysis TIBS,2000,25(3):147~150
    [102]Biocarta Charting Pathways of Life [EB/OL]. http://www. biocarta.com/ gene Cell Signaling, asp,2003,12~01.
    [103]Konstantin Arnold, Lorenza Bordoli, Jurgen Kopp and Torsten Schwede:The SWISS-MODEL Workspace:a Web-based Environment for Protein Structure Homology Modelling, Bioinformatics Advance Access originally published online on November 13, 2005
    [104]李园莉,江元清,赵武玲等.谷子肌动蛋白基因的克隆及序列分析.植物学通报,2002,19(3):310~316.
    [105]高锦明.植物化学.北京:科学出版社,2003:19-50.
    [106]David AC, John DIH, Jan M, et al. Life in the Fast Lane:Actin-based Motility of Plant Peroxisomes. Can J Bot,2002,80(4):430-441.
    [107]Meagher RB, Mckinney EC. Isovariant Dynamics Expand and Buffer the Responses of Complex Systems:the Diverse Plant Actin Gene Family. Plant Cell,1999,11(6): 995~1005.
    [108]欧阳松应,杨冬,欧阳红生.实时荧光定量PCR技术及其应用[J].生命的化学,2004,24(1):74~76.
    [109]马莉,谢秀兰,岳华.鸡β-actin基因实时荧光定量PCR方法的建立.中国畜牧兽医,2007,34(2):73~75.
    [110]贾举庆,胡尚连,孙霞.木质素生物合成影响因素及基因调控.林业科技,2007,32(3):36~38
    [111]Whiting P, Goring D A I. Chemical Characterization of Tissue Fractions from the Middle Lamella and Secondary Wall of Black Spruce Tracheids. Wood Sci Techno,1982,16: 261~267
    [112]Louisa A, Rogers et al. Light, the Circadian Clock, and Sugar Perception in the Control of Lignin Biosynthesis. Journal of Experimental Botany,2005,56:1651~1663
    [113]Meng H, Campbell W H. Cloning of Aspen (Populus tremuloides) Xylem Caffeoyl-CoA Methyltransferase. Plant Physiol,1995,108(4):1749
    [114]赵华燕.毛白杨木质素合成相关基因分离和转基因杨树植株获得.新疆农业大学博士论文,2001
    [115]ZHAO Huayan, SHENG Qingxi, LU Shiyou, et al. Characterization of Three Rice CCoAOMT Genes. Chinese Science Bulletin,2004, (49)15:1602~1606
    [116]范丙友,陆海,蒋湘宁.维管植物4-香豆酸:辅酶A连接酶(4CL)研究进展.林 业科学,2007,43(2):96~103
    [117]Zhao Huayan, Wei Jianhua, Lu Jing, et al.2003. cDNA Cloning and Functional Analysis of 42coumarate:CoA Ligase (4CL) Gene in Chinese White Aspen. Progress in Natural Science,12:895~900
    [118]Allina S M, Pri-Hadash A, Theilmann D A, et al.4-coumarate:Coenzyme A Ligase in Hybrid Poplar:Properties of Native Enzyme, cDNA Cloning, and Analysis of Recombinant Enzymes. Plant Physiol,1998,116:743~754
    [119]Hu Wenjing, Akwaoka A, Tsai C J, et al.1998. Compartmentalized Expression of Two Structurally and Functionally Distinct 4-Coumarate:CoA Ligase Genes in Aspen (Populus tremuloides). PNAS,95:5407~5412
    [120]Ehlting J, Buttner D, Wang Q, et al. Three 42coumarate:Coenzyme A Ligase in Arabidopsis thaliana Represent Two Evolutionarily Divergent Classes in Angiosperms. Plant J,1999,19:9-20
    [121]Arnold K., Bordoli L., Kopp J., and Schwede T. The SWISS-MODEL Workspace:A Web-based Environment for Protein Structure Homology Modelling. Bioinformatics,2006, 22:195~201
    [122]Schwede T, Kopp J, Guex N, and Peitsch MC. SWISS-MODEL:an Automated Protein Homology-modeling Server. Nucleic Acids Research,2003,31:3381~3385
    [123]Guex, N. and Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer:An Environment for Comparative Protein Modelling. Electrophoresis,1997,18:2714~2723
    [124]Bosco K Ho and Robert Brasseur. The Ramachandran Plots of Glycine and Pre-proline. BMC Structural Biology,2005,5:14
    [125]Horsch RB, Fry JE, Hoffmann NL. A simple and General Method for Transferring Genes into Plants. Science,1985,227:1129~1131
    [126]Sambrook J, Fritsch EF, Maniatis TM. Molecular Cloning:A Laboratory Manual.2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, NewY ork,1989
    [127]刘一星.中国东北地区木材性质与用途手册.化学工业出版社,283~287
    [128]韩善华,郑国昌.实验生物学报,1982,15:111~117
    [129]HaggmanH, JokelaA, KrajnakovaJ. JExpBot,1999,50:1769~1778
    [130]Dianjing Guo, Fang Chen, Kentaro Inoue, Jack W. Blount, and Richard A. Dixon. Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa:Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin. The Plant Cell,2001,13,73~88
    [131]Bong-Gyu Kim, Youngshim Lee, Hor-Gil Hur, Yoongho Lim, Joong-Hoon Ahn. Flavonoid 3-O-methyltransferase from rice:cDNA cloning, characterization and functional expression Phytochemistry,2006,67:387-394
    [132]Ruiqin Zhong, W. Herbert Morrison Ⅲ, David S. Himmelsbach, Farris L. Poole Ⅱ, and Zheng-Hua Ye. Essential Role of Caffeoyl Coenzyme a O-Methyltransferase in Lignin Biosynthesis in Woody Poplar Plants. Plant Physiology,2000,124,563~577
    [133]Cao-Trung Do, Brigitte Pollet, Johanne Thevenin, Richard Sibout, Dominique Denoue, Yves Barriere, Catherine Lapierre, Lise Jouanin. Both caffeoyl Coenzyme A 3-0-methyltransferase 1 and Cafeic Acid O-methyltransferase 1 are Involved in Redundant Functions for Lignin, Avonoids and Sinapoyl Malate Biosynthesis in Arabidopsis. Planta, 2007,226:1117-1129
    [134]Qing-Hu Ma and Yang Xu. Characterization of a Caffeic Acid 3-O-methyltransferase from Wheat and its Function in Lignin Biosynthesis. Biochimie,2008,90:515~524
    [135]Lewis, N.G., and Yamamoto, E. Lignin:Occurrence, Biogenesis and Biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1990,41:455~496
    [136]D.J. Guo, F. Chen, K. Inoue, J.W. Blount, R.A. Dixon. Down-regulation of Caffeic Acid 3-O-methyltransferase and Caffeoyl CoA 3-O-methyltransferase in Transgenic Alfalfa: Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin, Plant Cell,2001,13:73~88
    [137]R. Zhong, W.H. Morrison Ⅲ, J. Negrel, Z.H. Ye, Dual Methylation Pathways in Lignin Biosynthesis. Plant Cell,1998,10:2033~2048
    [138]J. Piquemal, S. Chamayou, I. Nadaud, M. Beckert, Y. Barrie're, I. Mila, C. Lapierre, J. Rigau, P. Puigdomenech, A. Jauneau, C. Digonnet, A.M. Boudet, D. Goffner, M. Pichon, Down-regulation of Caffeic Acid O-methyltransferase in Maize Revisited Using a Transgenic Approach. Plant Physiol,2002:130,1675~1685
    [139]L. Chen, C. Auh, P. Dowling, J. Bell, D. Lehmann, Z.Y. Wang, Transgenic Down-regulation of Caffeic acid O-methyltransferase (COMT) Led to Improved Digestibility in Tall Fescue (Festuca arundinacea). Funct. Plant Biol.,2004,31:235~245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700