用户名: 密码: 验证码:
苹果多胺和脯氨酸合成代谢相关基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多胺不仅调节植物的生长发育,还参与逆境响应,而脯氨酸则是一种重要的渗透保护物质。多胺和脯氨酸的生物合成代谢由一系列酶催化完成,如多胺生物合成途径中的精氨酸脱羧酶(ADC)和精胺合成酶(SPMS),脯氨酸代谢中的重要酶?1-吡咯琳-5-羧酸脱氢酶(P5CDH)等。为研究多胺和脯氨酸合成代谢的分子机理,本研究从‘Gala’苹果中克隆了MdADC、MdACL5、MdSPMS和MdP5CDH基因,其中MdADC编码ADC,MdACL5和MdSPMS均编码SPMS,MdP5CDH编码P5CDH,通过基因表达分析和转基因功能鉴定等方法,鉴定了这些基因的生物学功能。主要研究结果如下:
     1.克隆了MdADC、MdSPMS和MdACL5基因的cDNA全长,构建植物表达载体pBI121-MdADC、pBI121-MdSPMS和pBI121-MdACL5,采用农杆菌介导法,将它们分别导入烟草Nc89,获得了各基因的转基因植株。
     2.半定量RT-PCR分析和高效液相色谱(HPLC)测定表明MdADC、MdSPMS和MdACL5基因的过量表达均导致转基因烟草内源多胺含量增加,转基因烟草表现出植株矮化、节间缩短和叶面积增大等表型。
     3.非生物胁迫抗性分析发现,MdADC、MdSPMS和MdACL5转基因烟草均对PEG、低温和盐等胁迫表现高抗。在三种胁迫下,与非转基因对照相比,各转基因株系均表现出更高的多胺含量、脯氨酸含量、抗氧化酶(SOD、POD和CAT等)活性、根系活力以及更低的MDA含量和相对电导率。同时发现,与MdACL5相比,MdSPMS转基因烟草的相关表型及抗性更明显。
     4.从苹果中克隆分离出了MdP5CDH基因的cDNA全长;半定量RT-PCR分析表明,该基因在苹果各组织器官中组成型表达,开放花中表达最高;同时发现该基因的表达受低温诱导。
     5.构建了MdP5CDH基因标签蛋白大小不同的原核表达载体pET-30a-MdP5CDH和pGEX-MdP5CDH,经IPTG诱导分别得到65.14 kDa和88.44 kDa特异蛋白产物,确定该基因编码蛋白大小为61.74 kD。
     6.构建了MdP5CDH的正义表达载体pJIT166-MdP5CDH和反义抑制载体pBI121-RevMdP5CDH,并利用农杆菌介导法将它们分别导入‘王林’愈伤组织。半定量RT-PCR分析表明,转正义基因的愈伤组织中MdP5CDH过量表达,而转反义基因的愈伤组织中MdP5CDH表达受抑制。
     7. MdP5CDH过量表达导致愈伤组织中脯氨酸含量降低,而抑制表达则使脯氨酸含量升高;各细胞系的生长曲线表明,MdP5CDH过量表达和抑制表达均影响了愈伤组织的生长。
Polyamines not only regulate plant growth and development, but also are involved in the responses to various stresses, while proline is an important osmotic protective substance. The biosynthesis and metabolism of polyamines and proline are catalized by lines of enzymes, such as arginine decarboxylase (ADC) and spermine synthase (SPMS) for polyamines synthesis, while ?1-pyrroline-5-carboxylate dehydrogenase (P5CDH) for proline metabolism. To elucidate the molecular mechanism underlying polyamines and proline biosynthesis and metabolism, MdADC, MdACL5, MdSPMS and MdP5CDH were isolated from apple. Among them, MdADC encoding for ADC, MdACL5 and MdSPMS for SPMS, while MdP5CDH for P5CDH. The functions of those genes were characterized with gene expression analysis and transgenic strategy. The main results are shown as follows.
     1. The full-length cDNAs of MdADC, MdSPMS and MdACL5 genes were isolated from apple‘Gala’tissue cultures. Their expression vectors pBI121-MdADC, pBI121-MdSPMS and pBI121-MdACL5 were constructed and introduced into tobacco Nc89, respectively, with Agrobacterium-mediated transformation. Transgenic tobacco lines harboring MdADC, MdSPMS and MdACL5, respectively, were obtained.
     2. Semi-quantitative RT-PCR and HPLC assay demonstrated that the overexpression of respective MdADC, MdSPMS and MdACL5 brought about increased polyamines content. As a result, all transgenic tobacco plants exhibited altered phenotypes such as reduced plant height, shortened internode and enlarged leaf area.
     3. Abiotic stresses resistance analysis showed that all transgenic tobaccos harboring MdADC, MdSPMS and MdACL5, respectively, were more resistant to PEG osmotic stress, low temperature and high salinity than the non-transgenic control. Transgenic tobaccos exhibited higher polyamine content, proline content, antioxidant enzyme activity, activity of root system, as well as lower MDA amount and relative conductivity. In addition, MdSPMS overexpression resulted in more significant transgenic phenotypes and enhanced resistance than MdACL5.
     4. The full length cDNA of MdP5CDH was isolated from apple tissue cultures with RT-PCR and RACE amplification. Expression analysis showed that MdP5CDH gene constitutively expressed in various tissues or organs. Also, its expression was induced by low temperature.
     5. The prokaryotic expression vectors pET-30a-MdP5CDH and pGEX-MdP5CDH were constructed. Specific proteins in 65.14 kDa and 88.44 kDa were induced by IPTG. Therefore, the molecular weight of MdP5CDH-encoded protein was 61.74 kDa.
     6. The ORF sense expression vector pJIT166-MdP5CDH and a specific fragment antisense expression vector pBI121-RevMdP5CDH of MdP5CDH gene were constructed and transformed into apple‘Orin’callus, respectively. Semi-quantitative RT-PCR indicated that MdP5CDH overexpression occurred in ORF sense transformant, while suppression in fragment antisense transformant.
     7. MdP5CDH overexpression brought about decreased proline content in transgenic callus, while MdP5CDH suppression increased proline accumulation. The growth curves of apple callus lines showed that either MdP5CDH overexpression or suppression effected callus growth.
引文
白桦,王玉国.外源脯氨酸对盐胁迫下大豆愈伤组织蛋白质含量的影响[J].山西农业大学学报, 2002, 22(3): 193-195.
    曹敏.多胺及其植物生理学作用[J].植物生理学通讯, 1984, 6: 1-5.
    曾华宗,罗利军.植物抗旱、耐盐基因概述[J].植物遗传资源学报, 2003, 4(3): 270-273.
    曾骧,孟昭清,傅玉瑚,李光晨,吴显荣.金冠苹果短枝和叶片在花芽分化期氨基酸变化的初步研究I.花芽大量开始分化期酸碱氨基酸含量和动态变化[J].北京农业大学学报, 1985, 11(1): 59-67.
    曾骧.果树生理学[M].北京:北京农业大学出版社, 1992: 186-201.
    陈迪新,张绍铃.多胺及其合成抑制剂对梨花粉萌发及花粉管生长的影响[J].果树学报, 2002, 19(6): 377-380.
    陈海江,徐继忠,袁小乱,邵建柱,梁金铎.不同时期喷施外源多胺对新红星苹果坐果的影响[J].河北农业大学学报, 1999, 22(2): 47-49.
    陈晖,王敬驹.甘蔗抗轻脯氨酸细胞变异系筛选及其特性的研究[J].植物学报, 1991, 33(10): 739-743.
    陈建勋,王晓峰.植物生理学指导[M].广州:华南理工大学出版社. 2002, 119.
    陈坤明,张承烈.干旱期间春小麦叶片多胺含量与作物抗旱性的关系[J].植物生理学报, 2000, 5: 381-386.
    陈如凯,张木清.甘蔗耐盐生理研究IV. NaCl胁迫对甘蔗多胺代谢影响[J].作物学报, 1995, 4: 479-484.
    陈托兄,张金林,陆妮,王锁民.不同类型抗盐植物整株水平游离脯氨酸的分配[J].草业学报, 2006, 15(1): 36-41.
    陈拓,安黎哲,冯虎元,杨景宏,王勋陵. UV-B辐射对蚕豆叶膜脂过氧化的影响及其机制[J].生态学报, 2001, 4: 579-583.
    陈伟,吕柳新,叶陈亮,叶明志.荔枝胚胎败育与胚珠内源激素关系的研究[J].热带作物学报, 2000, 21(3): 34-38.
    陈因.外源脯氨酸对受NaCl胁迫的蓝藻固氮活性的影响[J].植物生理学通讯, 1992, (4): 254-258.
    段咏新,李松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理[J].杂交水稻, 1997, 12(6): 23-25.
    范华,冯双庆,赵玉梅.黄瓜、番茄冷害以及黄瓜温度预处理与多胺的相关性[J].中国农业大学学报, 1996, 1: 108-112.
    郭岩,张耕耘,陈受宜.水稻愈伤组织抗羟脯氨酸变异系的筛选及其特性研究[J].实验生物学报, 1993, 26: 101-107.
    韩晓玲.小冠花抗L-羟基脯氨酸(Hyp)变异系离体筛选及其耐盐性研究[D].西安:西北大学生命科学学院, 2006.
    郝再彬,苞晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社, 2004, 110.
    黄碧光,叶明志,吕柳新.蕉柑幼果内源激素和多胺的消长与种子败育的关系[J].福建农业大学学报, 1997, 26(4): 411-415.
    黄久常,王辉,夏景光.渗透胁迫和水淹对不同抗旱性小麦品种幼苗叶片多胺含量的影响[J].华中师范大学学报(自然科学版), 1999, 2: 259-262.
    黄维玉,王亚来,袁林江.多胺对小麦离体叶片衰老影响的调节[J].植物学报, 1990, 32(2): 125-132.
    季作梁,张昭其,王燕,李雪萍.芒果低温贮藏及其冷害研究[J].园艺学报, 1994, 21(2): 111-116.
    江行玉,宋杰,范海,赵可夫.外源钙和亚精胺对NaCl胁迫条件下玉米幼苗体内离子平衡和多胺水平的调节[J].植物生理学报, 2000, 6: 539-544.
    蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报, 1997, 23(4): 347-352.
    金勇丰,李载龙,陈大明.湖北海棠实生树阶段转变过程中多胺、RNA/DNA和蛋白质含量的变化[J].浙江农业学报, 1998, 10(5): 264-267.
    李冠.瓜类刺盘孢诱导物对新疆甜瓜抗病相关酶活性的影响[J].植物学报, 1993, 35(4): 300-303.
    李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000, 260.
    李洪连,王守正,王金生,张学君.诱抗菌激发子诱导黄瓜产生对炭疽病的抗性[J].植物生理学报, 1993, 19(4): 320-324.
    李玲,余光辉,曾富华.水分胁迫下植物脯氨酸累积的分子机理[J].华南师范大学学报(自然科学版), 2003, (1): 126-134.
    李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002, 22(4): 503-507.
    李如铁,沈惠娟,李梅枝.酸胁迫对几种林木体内脯氨酸及腐胺含量的影响[J].南京林业大学学报, 1995, 3: 88-93.
    李子银,陈受宜.水稻盐胁迫应答基因的克隆、表达分析及染色体定位[J].云南大学学报(自然科学版), 1999, 21: 33-34.
    林定波,刘祖祺,张石城.多胺对柑桔抗寒力的效应[J].园艺学报, 1994, 21(3): 222-226.
    林文雄,吴杏春,梁康迳,郭玉春,何华勤,陈芳育,梁义元. UV-B辐射增强对水稻多胺代谢及内源激素含量的影响[J].应用生态学报, 2002, 7: 807-813.
    林植芳,李双顺,林桂珠,孙谷畴,郭俊彦.水稻叶片的衰老与超氧化物酶活性及脂质过氧化作用的关系[J].植物学报, 1984, 26: 605-615.
    刘道宏.果蔬采后生理[M].北京:中国农业出版社, 1995, 38-42.
    刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法[J].植物生理学通讯, 2002, 38(6): 596-598.
    刘俊,张艳艳,章文华,刘友良.大麦根中多胺含量和转化与耐盐性的关系[J].南京农业大学学报, 2005, 28(2): 7-11.
    刘林德,姚敦义.植物激素的概念及其新成员[J].生物学通报, 2002, 37(8):18-19.
    刘顺枝,王泽槐,李建国,罗诗,尹金华.花前喷施腐胺对荔枝子房乙烯释放量与雌蕊寿命的影响[J].果树学报, 2003, 20(4): 313-315.
    潘东明,邱栋梁,林义章,施木田,谢厚钗.贮藏温度对橄榄果实多胺与保护酶活性的影响[J].福建农业大学学报, 1999, 28(3): 284-288.
    潘瑞炽,董愚得.植物生理学(第三版)[M].北京:高等教育出版社, 2001, 326: 326-328.
    潘瑞炽.多胺是植物生长发育的调节物质[J].植物生理学通讯, 1985, 6: 63-68.
    任小林.亚精胺对李果实乙烯产生与呼吸速率的影响[J].植物生理学通讯, 1995, 31(3): 186-188.
    萨姆布鲁克J.,弗里奇E. F.,曼尼阿蒂斯T.分子克隆实验指南[M].第2版.北京:科学出版社,1996.
    沈惠娟,谢寅峰.多胺(PAs)与植物的几种胁迫反应[J].南京林业大学学报, 1997, 21(4): 26-29.
    沈惠娟,曾斌,李梅枝.渗透胁迫下多效唑对刺槐幼苗体内多胺、脯氨酸和保护酶系统的影响[J].植物生理学报, 1993, 19(1): 53-60.
    沈义国,阎冬青.榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性[J].植物学报, 2002, 44(8): 956-962.
    孙文全.苹果幼苗侧根形成与内源多胺关系的通径分析[J].植物生理学报, 1989, 15(4): 388-392.
    汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯, 1984, (1): 15-21.
    王广鹏,张新忠,常瑞峰,李春敏,束怀瑞.葡萄实生树阶段转变过程中的内源多胺含量的变化[J].植物生理学通讯, 2005, 41(2): 181-182.
    王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报, 2001, 18(4): 459-465.
    汪沛洪.植物多胺代谢的酶类与胁迫反应[J].植物生理学通讯, 1990, 1: 1-7.
    王庆莲,刘礼仕,吴少华.福建柑桔种质的RAPD分析[J].亚热带农业研究, 2006, 2(4): 309-312.
    王玮,李德全,李春香,邹琦.水分胁迫对抗旱性不同的玉米品种根、叶渗透调节能力及渗透调节物质的影响[J].华北农学报, 2000, 15(增刊): 8-15.
    王瑛,牛炳韬,贾敬芬.苜蓿培养细胞抗羟脯氨酸变异体的筛选和特性分析[J].应用与环境生物学报, 1998, 4(4): 340-344.
    韦军,田边贤二.温度对采后梨果实多胺、ACC含量、EFE活性和乙烯生成量的影响[J]. 园艺学报, 1994, 21(2): 139-144.
    吴亮其,范战民,郭蕾,李勇青,张文静,瞿礼嘉,陈章良.通过转基因获得抗盐抗旱水稻[J].科学通报, 2003, 48(19): 2050-2056.
    吴能表,何风,杨丽萍,肖文娟. NaCl对萝卜幼苗逆境指标及蛋白激酶活性的影响[J].西南师范大学学报(自然科学版), 2004, 29(4): 651-654.
    吴岳轩,曾富华,王荣臣.杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究[J].植物病理学报, 1996, 26(2): 127-131.
    徐昌杰,陈昆松,张波,王钱洁,叶薇佳.柑橘组织RNA提取方法研究[J].果树学报, 2004, 21(2): 136-140.
    徐春波,米福贵,王勇.转基因冰草植株耐盐性研究[J].草地学报, 2006, 14(1): 20-23.
    徐继忠,陈海江,李晓东,张志华,王艳辉.外源多胺对核桃雌雄花芽分化及叶片内源多胺含量的影响[J].园艺学报, 2004, 34(4): 437-440.
    徐继忠,陈海江,马宝焜,章文才.外源多胺对富士苹果和幼果内源多胺与激素的影响[J].园艺学报, 2001, 28(3): 206-210.
    许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报, 2000, 17(6): 536-542.
    杨成民,王宏芝,孙振元,魏建华.利用基因枪共转化法获得转bar与P5CS基因黑麦草[J].草地学报, 2005, 13(1): 34-38.
    杨洪强,黄天栋,束怀瑞.苹果新根内源多胺周年形成动态研究[J].园艺学报, 1994, 21(2): 145-149.
    杨洪强,黄天栋.水分胁迫对苹果新根多胺和脯氨酸含量的影响[J].园艺学报, 1994, 3: 295-296.
    杨洪强.春夏之交苹果叶内多胺核酸的代谢变化[A].园艺学进展[C].北京:中国农业出版社, 1994: 406-407.
    杨洪强,夏国海,接玉玲,黄天栋,束怀瑞. 2,4-D和环割对苹果根系活力及多胺含量的影响[J].中国农业大学学报, 1998, 3(5):106-109.
    杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学报, 2001, 21: 215-220.
    余光辉,刘正辉,曾富华.脯氨酸累积与其合成关键酶活性的关系[J].湛江师范学院学报, 2002, 23(6): 57-60.
    余光辉.水分胁迫下假俭草脯氨酸累积的ABA, Ca~(2+)调节[D].广州:华南师范大学, 2003.
    余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社, 1998.
    余舜武,李荣田,章荣德,宋运淳,张忠明,张端品. (?)~1吡咯啉-5-羧酸合成酶(P5CS)基因在水稻上的荧光原位杂交(英文)[J].华中农业大学学报, 2002, 21(1): 1-4.
    赵玲玲.苹果MdSAMDC2和MdICE1基因的功能鉴定以及抗逆性研究[D].泰安:山东农业大学, 2007.
    张俊龙.杏品种部分抗寒指标间的关系及其对测定抗寒力的因子分析[J].甘肃科技, 2005, 21(4): 159-160.
    张满效,王邦锡,黄久常.水分胁迫对小麦叶片内源多胺的累积和乙烯产生的影响[J]. 甘肃科学学报, 1995, 4: 33-36.
    张秋明,郑玉生,魏岳荣,刘昆玉,谢深喜.柑桔多胺代谢及其对生长结果调控的研究II.果实成熟期多胺与水杨酸含量变化及其对耐贮性的影响[J].湖南农业大学学报, 2000,26(4): 271-273.
    张昭其,李雪萍,洪汉君,季作梁.外源腐胺减轻芒果冷害的研究[J].福建农业学报, 2000, 15(2): 32-36.
    张昭其.间隙升温处理对芒果内源多胺和ACC含量的影响[J].华南农业大学学报, 1997, 18(3): 77-80.
    张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社, 2003: 206-233.
    张志良.过氧化物酶活性测定(比色法)[A].见:张志良.植物生理学实验指导(第二版)[M].北京:高等教育出版社, 1991: 154-155.
    赵福庚,刘友良.精氨酸脱羧酶和谷酰胺转移酶活性的测定方法[J].植物生理学通讯, 2000, (5):442-445.
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报, 1999, 16(5): 540-546.
    赵福庚,刘友良.盐胁迫激活大麦幼苗脯氨酸合成的鸟氨酸途径(英文)[J].植物生理学报, 2001, 43 (1): 36-40.
    赵瑞雪,朱慧森,程钰宏,董宽虎.植物脯氨酸及其合成酶系研究进展[J].草业科学, 2008, 25(2): 90-97.
    赵世杰,刘华山,董新纯.植物生理学实验指导[M]. 1998.北京:中国农业科技出版社.
    郑永华,李三玉,席芳,苏新国,易云波.多胺与枇杷果实冷害的关系[J].植物学报, 2000, 42(8): 824-827.
    郑玉生,张秋明, Lovatt C. J.柑橘花期多胺类代谢及其对坐果的影响[J].果树科学, 1997, 14(4): 216-219.
    钟晓红.三种多胺在沙田柚开花及坐果初期的生理作用[J].湖南农业大学学报, 2000, 26(6): 453-456.
    朱广廉,曹宗巽.花粉中的游离脯氨酸及其生理功能[J].植物生理学通讯, 1985, 4: 7-12.
    朱祝军,喻景权.氮素形态和光照强度对烟草生长和H2O2清除酶活性的影响[J].植物营养与肥料学报, 1998, 4(4): 379-385.
    Abed S. and Moshe T. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli. Physiologia Plantarum. 2002, 104(2):169-174.
    Adams E., Frank L. Metabolism of proline and the hydroxyprolines[J]. Ann. Rev. of biochem., 1980, 49: 1005-1061.
    Ahl-Goy P., Felix G., Metraux J. P. and Meins-Jr F. Resistance to disease in the hybrid Nicotiana glutinosa×Nicotiana debneyi is associated with high constitutive levels ofβ-1, 3-glucanase, chitinase, peroxidase and polyphenoloxidase[J]. Physiol. Mol. Plant Pathol., 1992, 41: 11-21.
    Akiyama T. and Jin S. Molecular cloning and characterization of an arginine decarboxylase gene up-regulated by chilling stress in rice seedlings[J]. J. Plant Physiol. 2007, 164: 645-654.
    AlabadíD. and Carbonell J. Differential expression of two spermidine synthase genes during early fruit development and invegetative tissues of pea[J]. Plant Mol. Biol., 1999a, 39: 933-943.
    AlabadíD. and Carbonell J. Molecular cloning and characterization of a tomato spermidine synthase cDNA (accessionNo.AJ006414) [J]. Plant Physiol., 1999b, 120: 935.
    Alcázar R., Cuevas J. C., Patron M., Altabella T. and Tiburcio AF. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana[J]. Physiol. Plant, 2006, 128 (3): 448-455.
    Ali A. G. and Lovatt C. J. Low-termperature stressed induced flowering of the‘Washington’navel orange (Citrus sinensis L. Osbeck) was increased by application of putrescine or spermidine to the foliage[J]. HortSci., 1994, 29(5): 516.
    Andersen S. C., Bastola D. R. and Minocha S.C. Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA[J]. Plant Physiol., 1998, 116: 299-307.
    Apelbaum A. Ploymine involvement and ripening of avocado fruit[J]. Acta Hort., 1986, 179: 779-785.
    Arif S. A. M., Taylor M. A., George L. A., Butler A. R., Burch L. R., Davies H. V., Staark M. J. and Kumar A. Characterisation of the S-adenosylmethionine decarboxylase (SAMDC) gene of potato[J]. Plant Mol. Biol., 1994, 26: 327-338.
    Armengaud P., Thiery L., Buhot N., Grenier-De March G. and SavouréA. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features[J]. Physiol. Plantarum, 2004, 120: 442-450.
    Aziz A. Spermidine and related-metabolic inhibitors modulate sugar and amino acid levels in Vitis vinifera L.: possible relationships with initial fruitlet abscission[J]. J. Exp. Bot., 2003, 54: 355-363.
    Bagni N. The function and metabolism of polymines in plants[J]. Acta Hort., 1986, 179: 95-103.
    Bais H. P., Ravishankar G. A. Role of polyamines in the ontogeny of plants and their biotechnological applications[J]. Plant Cell Tiss. Org. Cult., 2002, 69: 1-34.
    Ballester A., San-Jose M. C., Vidal N., Fernandez-Lorenzo J. L. and Vieitez A. M. Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut[J]. Ann. Bot., 1999, 83: 619-629.
    Bassie L., Zhu C. F., Romagosa I., Christou P. and Capell T. Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds[J]. Mol. Breeding, 2008, 22: 39-50.
    Bastola D. R. and Minocha S. C. Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis[J]. Plant Physiol., 1995, 109: 63-71.
    Bell E. and Malmberg R. L. Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing[J]. Mol. Gen. Genet., 1990, 224(3): 431-436.
    Bertin D. and Michael J. Overexpression of arginine decarboxylase in trangeneic plants[J].
    Biochem. J., 1997, 34: 331-337.
    Bhatnagar P., Glasheen B. M., Bains S. K., Long S. L., Minocha R., Walter C. and Minocha S.C. Transgenic manipulation of the metabolism of polyamines in poplar cells[J]. Plant Physiol., 2001, 125, 2139-2153.
    Bhavna W. and Manchikatla V. R. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene[J]. Plant Sci., 2003, 164(5): 727-734.
    Biasi R., Bagni N. and Costa G. Endogenous polyamines in apple and their relationship to fruit set and fruit growth[J]. Physiol. Plantarum, 2006, 73(2): 201-205.
    Billard J. P., Hervieu F., Le Dily F., Shevyakova N. I. and Huault C. Contribution of the ornithine pathway to proline accumulation in Radish cotyledons exposed to salt stress[J]. Russian J. of Plant Physiol., 1997, 44(4): 541-546.
    Boggess S. F. and Stewart C. R. Contribution of arginine to proline accumulation in water-stressed barley leaves[J]. Plant Physiol., 1976, 58: 796-797.
    Bolle C, Herrmann R. G. and Oelmüller R. A spinach cDNA with homologous to S-adenosylmethionine decarboxylase[J]. Plant Physiol., 1995, 107: 1461-1462.
    Borell A., Cabonell L. and Farras R. Polyamine inhibit lipid peroxidation in seneseing oat leaves[J]. Physiol. Plant, 1997, 99: 385-390.
    Borrell A., Culianez-Macia F. A., Altabella T., Besford R. T., Flores D. and Tiburcio A. F.Arginine Decarboxylase Is Localized in Chloroplasts[J]. Plant Physiol., 1995, 109(3): 771-776.
    Bortolotti C., Cordeiro A., Alcazar R., Borrel A., Culia?ez-MaciàF. A., Tiburcio A. F. and Altabella T. Localization of arginine decarboxylase in tobacco plants[J]. Physiol. Plant, 2004, 120: 84-92.
    Breitkreuza K. E., Shelp B. J., Fischera W. N., Schwackea R. and Rentsch D. Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana[J]. FEBS Lett, 1999, 450: 280-284.
    Capell T., Bassie L. and Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress[J]. Proc. Natl. Acad. Sci. USA, 2004, 101: 9909-9914.
    Chang K. S., Nam K. H., Lee M. M., Lee S. H. and Park K.Y. Nucleotide Sequence of cDNA (Accession No. U63832) Encoding Arginine Decarboxylase from Camation Flowers[J]. Plant Physiol., 1996, 112: 863.
    Chert S. Y., Wang G. and Lao W. D. Cloning and identification of gene fragments related to proline biosynthesis in rye and rice[J]. Sci. Sin. (B Series), 1991, 2: 139-145.
    Chiang H. H. and Dandekar A. M. Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh. during development and in response to desiccation[J]. Plant Cell Environ, 1995, 18:1280 -1290.
    Costa G. and Bagni N. Effect of ploymines on fruit-set of apple[J]. HortSci., 1983, 18(1): 59-61.
    Costa G., Baraldi R. and Bagni N. Effect of putreseine on fruiting performance of apple[J]. Acta Hort., 1986, 179: 355-361.
    Crisosto C. H., Lombard P. B., Richardson D., Tetley R. and Vasilakakis M.D. Effect of ethylene inhibitors on fruit set, ovule longevity, and polyamine levels in‘Comice’pear[J]. Acta Hort., 1986, 179: 229-236.
    Crisosto C.H., Lombard P.B., Sugar D. and Polito V.S. Putrescine influences ovule senescence, fertilization time, and fruit set in 'Comice' pear[J]. J. Am. Soc. Hort. Sci., 1988, 113(5): 708-712.
    Csnoka L. N. Physiological and genetic responses of bacteria to osmotic stress[J]. Mcrobiol Rev., 1989, 63: 21-147.
    Csonka L. N., Gelvin S. B., Goodner B. W., Orser C. S., Siemieniak D. and Slightom J. L. Nucleotide sequence of a mutation in the proB gene Escherichia coli that confers proline overproduction and enhanced tolerance of osmotic stress[J]. Gene, 1988, 64: 199-205.
    Delauney A. J. and Uerma D. P. S. Proline biosynthesis and osmoregulation in plants[J]. Plant J., 1993, 4(2): 215-223.
    Delauney A. J. and Verma D. P. S. A soybean ?1-pyrroline-5-carboxylate reductase gene was isolated by functional complementation in Escherichia coli and is found to be osmoregulated[J]. Mol. Gen. Genet., 1990, 221: 299-305.
    Delauney A. J., Hu C. A., Kavi Kishor P. B. and Verma D. P. S. Cloning of ornithine-δ-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis[J]. J. of Biolo. Chem., 1993, 268(25): 18673-18678.
    Deuschle K., Funck D., Hellmann H., D?schner K., Binder S. and Frommer W. B. A nuclear gene encoding mitochondrial ?1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity[J]. Plant J., 2001, 27(4): 345-355.
    Dhindsa R. S. and Cleland R.E. Water stress and protein synthesis[J]. Plant Physiol., 1975, 55: 778-785.
    Dresselhaus T., Hagel C., Loiz H. Humbeck K. and Barcelo P. Isolation and characterization of a Tritordeum cDNA encoding S-adenosylmethionine decarboxylase that is circadian-clock-regulated[J]. Plant Mol. Biol., 1996, 30: 1021-1033.
    Drolet G., Dumroff E., Legge R. and Thomson J. Radical scavenging properties of polyamines[J]. Phytochem., 1986, 25(2): 367-371.
    Edwards G. R. Ammonia, arginine, polyamines and flower initiation in apple[J]. Acta Hort., 1986, 179: 363.
    Elthon T. E. and Stewart C. R. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation[J]. Plant Physiol., 1981, 67(4): 780-784.
    Escribano M. I. and Merodio C. The relevance of polyamine levels in cherimoya (Annona cherimola Mill.) fruit ripening[J]. J. Plant Physiol., 1994, 143: 207-212.
    Faust M. and Wang S. Y. Polyamines in horticulturally important plants[J]. Hort. Reviews, 1992, 14: 333-356.
    Felix D. D. and Donald A. P. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant Soil, 2002, 245: 35-47.
    Flores H. E., Protacio C. M. and Signs M.W. Primary and secondary metabolism of polyamine in plants. In: Recent advances in phytochemistry (Poulton J.E. et al. eds). New York: Plenum Press, 1989, 23, 329-393.
    Forlani G., Scainelli D. and Nielsen E. ?1-pyrroline-5-carboxylate dehydrogenase fromcultured cells of potato (purification and properties). Plant Physiol., 1997a, 113: 1413-1418.
    Forlani G., Scainelli D. and Nielsen E. Two ?1-pyrroline-5-carboxylate dehydrogenase isoforms are expressed in Nicotiana plumbaginifolia cultured cells and are differentially modulated during the culture growth cycle. Planta, 1997b, 202: 242-248.
    Franceschetti M., Hanfrey C., Scaramagli S., Torrigiani P., Bagni N., Burtin D. and Michael A. J. Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames[J]. Biochem. J., 2001, 353: 403-409.
    Fricke W. and Pahlich E. The effect of water stress on the vacuole extravacuole compartmentation of proline in potato cell suspension culture. Physiol Plant, 1990, 78: 374-378.
    Friedman R., Levin N. and Altman A. Presence and identification of polyamines in xylem and phloem exudates of plants[J]. Plant Physiol., 1986, 82: 1154-1157.
    Galston A. W. and Sawhney R. K. Polyamines in plant physiology[J]. Plant Physiol., 1990, 94: 406-410.
    García-Ríos M., Fujita T., LaRosa P. C., Locy R. D., Clithero J. M., Bressan R. A. and Csonka L. N. Cloning of a polycistronic cDNA from tomato encodingγ-glutamyl kinase andγ-glutamyl phosphate reductase[J]. Proc Natl Acad Sci. USA, 1997, 94(15): 8249-8254.
    Ghoulam C., Foursy A. and Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environ. Exp. Bot., 2002, 47(1): 39-50.
    Gleeson D., Lelu Walter M. A. and Parkinson M. Overproduction of proline in transgenic hybrid larch (Larix×leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost[J]. Mol. Breeding, 2005, 15: 21-29.
    Gonzalez-Aguilar G. A., Zacarias L., Perez-Amador M. A., Carbonell J. and Lafuente M. T. Polyamine content and chilling susceptibility are affected by seasonal changes in temperature and by conditioning temperature in cold-stored‘Fortune’mandarin fruit. Physiologia Plantarum[J]. 2000, 108(2): 140-146.
    Hamill J. D., Robins R. J., Parr A. J., Evans D. M., Furze J. M. and Rhodes M. J. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation[J]. Plant Mol. Biol., 1990, 15: 27-38.
    Handa S., Bressan R. A., Handa A. K., Carpita N. C. and Hasegawa P. M. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress[J]. Plant Physiol, 1983,73: 834-843.
    Hanfrey C., Sommer S., Mayer M. J., Burtin D. and Michael A. J. Arabidopsis polyamine biosynthesis: absence of ornthine decarboxylase[J]. The Plant J., 2001, 27(6): 551-560.
    Hanzawa Y., Imai A., Michael A. J., Komeda Y. and Takahashi T. Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana[J]. FEBS Lett., 2002, 527: 176-180.
    Hanzawa Y., Michael A. J., Burtin D., Long D., Pineiro M., Coupland G., Komeda Y. and Takahashi T. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase[J]. The EMBO Journal, 2000, 19: 4248-4256.
    Hanzawa Y., Takahashi T., Komeda. ACL5, an Arabidopsis gene is required for internode elongation after flowering[J]. Plant J., 1997, 12: 863-874.
    Hanzawa Y., Takahashi T., Michael A. J., Burtin D., Long D., Pineiro M., Coupland G. and Komeda Y. ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase[J]. EMBO J., 2000, 19: 4248-4256.
    Hao Y. J., Kitashiba H., Honda C., Nada K. and Moriguchi T. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots[J]. J. of Expe. Botany, 2005a, 56(414): 1105-1115.
    Hao Y. J., Zhang Z., Kitashiba H., Honda C., Ubi B., Kita M. and Moriguchi T. Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses[J]. Gene, 2005b, 350: 41-50.
    Hare P. D. and Cress W. A. Metabolic implications of stress-induced praline accumulation in plants[J]. Plant Growth Regul., 1997, 21: 79-102.
    Hare P. D., Cress W. A. and van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant Cell Environ., 1998, 21: 535-553.
    Hasdai D., Bar-Akiva A. and Goren R. Chemical and morphological characteristics of developing fruits from old clone v. nucellar Shamouti orange trees[J]. J. Hort. Sci., 1986, 61: 389-395.
    Hashimoto T., Tamaki K., Suzuki K. and Yamada Y. Molecular cloning of plant spermidine synthases[J]. Plant Cell Physiol., 1998, 39(1): 73-79.
    Hatanaka T., Sano H. and Kusano T. Molecular cloning and characterization of coffee cDNA encoding spermidine synthase[J]. Plant Sci., 1999, 140: 161-168.
    Hayashi F., Ichino T., Osanai M. and Wada K. Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in Arabidopsis thaliana L.[J].Plant Cell Physiol., 2000, 41: 1096-1101.
    Heloir M. C., Fournioux J. C., Barbier M., Jeandet P. and Bessis R. Endogenous polyamine concentrations in juvenile, adult and micropropagated grapevine (Vitis vinifera L. cv. Pinot noir) [J]. Vitis, 1998, 37(1): 61-62.
    Hervieu F., Le Dily L., Huault C., Billard J. P. Contribution of ornithine amino transferase to proline accumulation in NaCl treated radish cotyledons[J]. Plant Cell Environ., 1995, (18): 205-210.
    Hien D. T., Jacobs M., Angenon G., Hermans C., Thu T., Son van L. and Roosens N. H. Proline accumulation and ?1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance[J]. Plant Sci., 2003, 165: 1059-1068.
    Hong Z. L., Lakkineni K., Zhang Z. M. and Verma D. P. S. Removal of Feedback Inhibition of (?)~1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiol., 2000, 122: 1129-1136.
    Hu C. A. A., Delauney A. J. and Verma D. P. S. A bifunctional enzyme (Δ~1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants[J]. Proc. Natl. Acad. Sci. USA, 1992, 89: 9354-9358.
    Hua X. J., Van De Cotte B., Van Montagu M. and Verbruggen N. Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis[J]. Plant Physiol., 1997, 114(4): 1215-1224.
    Igarashi Y., Yoshiba Y., Sanada Y., Wada K., Yamaguchi Shinozaki K. and Shinozaki K. Characterization of the gene for ?1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L.[J]. Plant Mol. Biol., 1997, 33: 857-865.
    Igarashi Y., Yoshiba Y., Takeshita T., Nomura S., Otomo J., Yamaguchi-Shinozaki K. and Shinozaki K. Molecular cloning and characterization of a cDNA encoding proline transporter in rice[J]. Plant Cell Physiol., 2000, 41: 750-756.
    Jiménez-Bremont J. F., Rodríguez-Kessler M., Rodríguez-Guerra R., Cortes-Penagos C., Torres-Guzman J. C. and Williamson J. S. Cloning and sequence analysis of ornithine decarboxylase gene fragments from the Ascomycota[J]. Mitochondrial DNA, 2006, 17(3): 231-236.
    Kasukabe Y., He L., Nada K., Misawa S., Ihara I. and Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsisthaliana[J]. Plant Cell Physiol., 2004, 45: 712-722.
    Kaur-Sawhney R. and Floves H. E. Polyamine oxidase in oat leaves: a cell wall localised enzyme[J]. Plant Physiol., 1981, 68: 494-498.
    Kaur-Sawhney R., Flores H. E. and Gaiston A. W. Polyamine oxidase in oat leaves: a cell wall-localized enzyme[J]. Plant Physiol., 1981, 68: 494-498.
    Kavi Kishor P. B., Hong Z., Miao G. H., Hu C. A. A. and Verma D. P. S. Over expression of Δ~1-pyrroline-5-carboxylate synthetase in creases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiol., 1995, 108: 1387-1394.
    Kem J. J., Atkins R E. Free amino acid of anthers of male sterile and fertile line of grain sorghum, Sorghum bicolor (L.) Moench[J]. Crop Sci., 1972, 12: 835-839.
    Kishor P. B. K., Hong Z., Miao G. H., Hu C. A. A. and Verma D. P. S. Over expression of proline-5-carboxylate synthetase increases proline production and confers osmo- tolerance in transgenic plants[J]. Plant Physiol., 1995, 108: 1387-1394.
    Kitashiba H., Hao Y. J., Honda C. and Moriguchi T. Two types of spermine synthase gene: MdACL5 and MdSPMS are differentially involved in apple fruit development and cell growth[J]. Gene, 2005, 21(361): 101-111.
    Kiyosue T., Yoshiba Y., Yamaguchi-Shinozaki K. and Shinozaki K. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis thaliana[J]. Plant Cell, 1996, 8(8): 1323-1335.
    Kramer G. F., Wang C. Y. and Conway W. S. Correlation of reduced softening and increased polyamine levels during low-oxyen storage of‘McIntosh’apples[J]. J. Amer. Soc. Hort. Sci., 1989, 114(6): 942-946.
    Kramer G. F., Wang C. Y. and Conway W. S. Inhibition of softening by polyamine application in‘Golden Delicious’and‘McIntosh’apple[J]. J. Amer. Soc. Hort. Sci., 1991, 116(5): 813-817.
    Kumar A., Altabella T., Taylor M. A. and Tiburcio A. F. Recent advances in polyamine research[J]. Trends Plant Sci., 1997, 2(4): 124-130.
    Kumar M., Taylor A., Mad Arif S. A. and Davies H.V. Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes[J]. Plant J., 1996, 9: 147-158.
    Kumira R. and Rajam M.V. Alteration in polyamine titres during agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regenerationpotential[J]. Plant Sci., 2002, 162: 769-777.
    Kushad M. M., Orvos A. R. and Yelenowsky G. Relative changes in polyamines during citrus flower development[J]. HortSci., 1990, 25: 946-948.
    Kwak S. H. and Lee S. H. The regulation of ornithine decarboxylase gene expression by sucrose and small up stream open reading frame in tomato (Lycopersicon esculentum Mill)[J]. Plant Cell Physiol., 2001, 42: 314-323.
    Lee M. M., Lee S. H. and Park K. Y. Charcaterization and expression of two members of the S-adenosylmethionine decarboxylase gene family in carnation flower[J]. Plant Mol. Biol., 1997, 34: 371-382.
    Leisinger T. Escherichia coli and Salmonella typhimurium[M]. Cellular and Molecular Biology. American Society for Microbiology, Washington D C, 1987: 346-350.
    Li Z. Y. and Chen S. Y. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress[J]. Theor. Appl. Genet., 2000, 100(5): 782-788.
    Lin J. P. and Zhu J. K. Proline accumulation and salt-stress induced gene expression in a salt hypersensitivemutant of Arobidopsis[J]. Plant Physiol., 1997, 114: 591-596.
    Liu J. and Zhu J. K.. Proline accumulation and salt stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis[J]. Plant Physiol., 1997, 114: 591-596.
    Liu J. H., Ban Y., Wen X. P., Nakajima I. and Moriguchi T. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica)[J]. Gene, 2009, 429: 10-17.
    Mad-Arif S. A., Taylor M. A., George L. A., Butler A. R., Burch L. R., Davies H. V., Stark M. J. R. and Kumar A. Characterisation of the S-adenosylmethionine decarboxylase (SAMDC) gene of potato[J]. Plant Mol. Biol., 1994, 26: 327-338.
    Maiale S., Sánchez D. H., Guirado A., Vidal A. and Ruiz O. A. Spermine accumulation under salt stress[J]. J. Plant Physiol., 2004, 161(1): 35-42.
    Malabika R. and Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice[J]. Plant Sci., 2001, 160: 869-875.
    Malabika R.W. R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance[J]. Plant Sci., 2002, 163: 987-992.
    Malik A. U. and Singh Z. Abscission of mango fruilets as influenced by biosynthesis of polyamines[J]. Hort. Sci. Biotechnol., 2003, 78(5): 721-727.
    Marco F. and Carrasco P. Expression of the pea S-adenosylmethionine decarboxylase isinvolved in developmental and environmental responses[J]. Planta, 2002, 214: 641-647.
    Masgrau C., Altabella T., Farrás R., Flores D., Thompson A. J., Besford R. T. and Tiburcio A. F. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J., 1997, 11: 465-473.
    Mazelis M. and Creveling R. K. L-Proline dehydrogenase of Triticuim vulgare germ: purification, properties, and cofactor interactions[J]. Phytochemistry, 1974, 13: 559-565.
    Mazelis M. and Fowden L. The metabolism of proline in higher plants. II. L-proline dehydrogenase from cotyledons of germinating peanut (Arachis hypogea L.) seedlings[J]. J. Exp. Bot., 1971, 22: 137-145.
    McNamer A. D. and Stewart C. R. Nicotinamide adenine dinucleotide-dependent proline dehydrogenase in Chlorella[J]. Plant Physiol., 1974, 53: 440-444.
    Mehta R.A., Cassol T., Li N., Ali N., Handa A. K. and Mattoo A. K. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life[J]. Nature Biotech., 2002, 20: 613-618.
    Michael A. J., Furze J. M., Rhodes M. J. and Burtin D. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA[J]. Biochem. J., 1996, 314: 241-248.
    Mo H. and Pua E. C. Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress[J]. Physiol. Plantarum, 2002, 114: 439-449.
    Murahama M., Yoshida T., Hayashi F., Ichino T., Sanada Y. and Wada K. Purification and Characterization of ?1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves[J]. Plant Cell Physiol., 2001, 42(7): 742-750.
    Nakashima K., Satoh R., Kiyosue T., Yamaguchi-Shinozaki K. and Shinozaki K. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis[J]. Plant Physiol., 1998, 118: 1233-1241.
    Nam K. H., Lee S. H. and Lee J. H. Differential expression of ADC mRNA during development and upon acid stress in soybean (Glycine max) hypocotyls[J]. Plant Cell Physiol., 1997, 38: 1156-1166.
    Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K. and Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana[J]. FEBS Lett., 1999, 461(3): 205-210.
    Nanjo T., Yoshiba Y., Sanada Y., Wada K., Tsukaya H. and Kakubari Y., Yamaguchi-Shinozaki K. and Shinozaki K. Antisense suppression of proline biosynthesis results in an abnormal morphology of leaves and hypersensitivity to osmotic stress in Arabidopsis thaliana. 9th International Conference on Arabidopsis Research, University of Wisconsin Madison, 1998: 24-29.
    Narendra S. and Novak J. Hormonnal Regulation of Plant Growth & Development[M]. India: Agro Bothanical Publishers, 1988: 171-203.
    Nathan R., Altman A. and Monselise S. P. Changes in activity of polymine enzymes and in polymine contents in developing fruit tissues of‘murcott’mamdarin[J]. Sci. Hortic., 1984, 22: 359-364.
    Panicot M., Minguet E. G., Ferrando A., Alcázar R., Blázquez M. A., Carbonell J., Altabella T., Koncz C. and Tiburcio A. F. A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis[J]. Plant Cell, 2002, 14: 2539-2551.
    Peng Z., Lu Q. and Verma D. P. S. Reciprocal regulation of ?1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls levels during and after osmotic stress in plants[J]. Mol. Gen. Gent., 1996, 253: 334-341.
    Pérez-Amador M. A., Carbonell J. and Granell A. Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.). Plant Mol. Biol., 1995, 28(6): 997-1009.
    Pierantonio P. and Remo R. The process of abscisic acid-induced proline ccumulation and the levels of polyamines and quaternary ammonium compounds in hydrated barley leaves. Physiol. Plantarum, 2006, 84(1): 134-139.
    Pillai M. A. and Akiyama T. Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes[J]. Mol. Genet. Genomics, 2004, 271: 141-149.
    Pistocchi R., Bagni N. and Creus J. A. Polyamine uptate in carrot cell cultures[J]. Plant physiol., 1987, 84: 374-380.
    Primikirios N. I. and Roubelakis-Angelakis K. A. Cloning and expression of an arginine decarboxylase cDNA from Vitis vinifera L. cell-suspension cultures[J]. Planta, 1999, 208: 574-582.
    Protacio C. M. and Flores H. Polymine metabolism in tobacco in vitro flower system [J]. Plant Physiol., 1989, 89(4): 586.
    Rastogi R., Dulson J. and Rothstein S. J. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening[J]. Plant Physiol.,1993, 103(3): 829-834.
    Rayapati P. J. and Stewart C. R. Solubilization of a proline dehydrogenase from maize (Zea mays L.) mitochondria[J]. Plant Physiol., 1991, 95(3): 787-791.
    Rena A. B. and Splittstoesser W. E. Proline dehydrogenase and pyrroline-5-carboxylate reductase from pumpkin cotyledons[J]. Phytochemistry, 1975, 14: 657-661.
    Rentsch D., Hirner B., Schmelzer E. and Frommer W. B. Salt stress-induced proline transporters and salt stress-repressed broad specific amino acid permeases identified by suppression of a yeast amino acid targeting mutant[J]. Plant Cell. 1996, 8: 1437-1446.
    Rerez-Amador A., Carbonell J. and Granell A. Expression of arginine decarboxylase is induced during early fruit development and in young tissue of Pisum Sativum (L.)[J]. Plant Mol. Biol., 1995, 28: 997-1009.
    Rhodes D., Handa S. and Bressan R. A. Metabolic changes ass ociated with adaptation of plant cells to water stress[J]. Plant Physiol., 1986, 82: 890-903.
    Roosens N. H. C. J., Thu T. T., Iskandar H. M., Jacobs M. Isolation of the ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana[J]. Plant Physiol., 1998, 117(1): 263-271.
    Roy M. and Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increase polyamine level and enhances sodium chloride-stress tolerance[J]. Plant Sci., 2002, 163: 987-992.
    Santa-Cruz A., Acosta M., Rus A. and Bolarin M. C. Short term salt tolerance mechanisms in differentially salt tolerant tomato species[J]. Plant Physiol. Biochem., 1999, 37(1): 65-71.
    SavouréA., Hua X. J., Bertauche N., Van Montagu M. and Verbruggen N. Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stress in Arabidopsis thaliana[J]. Mol. Gen. Genet., 1997, 254: 104-109.
    SavouréA., Jaoua S., Hua X. J., Ardiles W., Van Montagu M. and Verbruggen N. Isolation, characterization, and chromosomal location of a gene encoding the (?)~1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana[J]. FEBS Letters, 1995, 372(1): 13-19.
    Scaramagli S., Biondi S. and Torrigiani P. Methylglyoxal (bis-guanylhydrazone) inhibition of organogensis is not due to S-adenosylmethionine decarboxylase inhibition/polyamine depletion in tobacco thin layers[J]. Plant Physiol., 1999, 107: 353-360.
    Schr(?)der G. and Schr?der J. cDNAs for S-adenosylmethionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme-processing site, evidence for the presence of both subunits in the active enzyme, and a conservedregion in the 5′mRNA leader[J]. Eur. J. Biochem., 1995, 228: 74-78.
    Schwacke R., Grallath S., Breitkreuz K. E., Stransky E., Stransky H., Frommer W. B. and Rentsch D. LeProT1, a transporter for proline, glycine betaine, andγ-amino butyric acid in tomato pollen[J]. Plant Cell, 1999, 11: 377-391.
    Serrano M., Martinez-Madrid M. C., Romojaro F. and Riquelme F. Polyamine accumulation in cold stored pepers[J]. Acta Hortic., 1995, 312: 127-133.
    Shih C. Y. and Kao C. H. Growth inhibition in suspension cultured rice cells under phosphate deprivation ismediated through putrescine accumulation[J]. Plant Physiol., 1996, 111: 721-724.
    Shiozaki S., Ogata T. and Horiuchi S. Endogenous polyamines in pericarp and seed of the grape berry during development and ripening[J]. Scientia Hort., 2000, 83: 33-41.
    Singh Z. and Singh L. Increased fruit set and retention in mango with exogenous application of polyamines[J]. J. of Hort. Sinica, 1995, 70(2): 271-277.
    Slocum R. D., Kaur-Sawhney R. and Galston A. W. The physiology and biochemistry of polyamine inplants[J]. Arch. Biochem. Biophys., 1984, 235: 283-303.
    Smirnoff N.The role of active oxygen in the response to water deficit and desiccation[J]. New Phytol., 1993, 125: 27-58.
    Smith T. A. Polyamines, Ann.Rev[J]. Plant Physiol., 1985, 36: 117-145.
    Song S. Q., Lei Y. B. and Tian X. R. Proline metabolism and cross-tolerance to salinity and heat Stress in germinating wheat seeds[J]. Russian J. of Plant Physiol., 2005, 52(6): 793-800.
    Stern R. A. and Gazit S. Application of the polymine putrescine increased yield of‘Mauritius’litchi[J]. J. of Hort Sci & Biotech., 2000, 75(5): 612-614.
    Stewart C. R. Role of carbohydrates in proline accumulation in wilted barley leaves[J]. Plant Physiol., 1978, 61: 775-778.
    Strizhov N., Abraham E., Okresz L., Blickling S., Zilberstein A., Schell J., Koncz C. and
    Szabados L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis[J]. Plant J., 1997, 12(3): 557-569.
    Sun C., Liu Y. L. and Zhang W. H. Mechanism of the effect of polyamines on the activity of tonop lasts of barley roots under salt stress[J]. Acta Bot. Sin., 2002, 44(10): 1167-1172.
    Szoke A., Miao G. H., Hong Z. and Verma D. P. S. Subcellular location of Δ~1-pyrroline-5-carboxylate redutase in root/nodule and leaf of soybean[J]. Plant Physiol., 1992, 99: 1642-1694.
    Teresa C., Ludovic B., Paul C. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress[J]. Proc. Natl. Acad. Sci. USA, 2004, 101: 9909-9914.
    Tian A. G., Zhao J. Y., Zhang J. S., Gai J. Y. and Chen S. Y. Genomic characterization of the S-adenosylmethionine decarboxylase genes from soybean[J]. Theor. Appl. Genet., 2004, 108: 842-850.
    Tiburcio A. F., Campos J. L., Figueras X. and Besford R. T. Recent advances in the understanding of polymine functions during plant development[J]. Plant Growth Regul., 1993, 12: 331-340.
    Tiburcio A. F., Kaur-Sawhney R., Galston A. W. Polyamine metabolism and osmotic stress[J]. Plant Physiol., 1986, 82: 375-378.
    Trotel-Aziz P., Niogret M. F., Deleu C., Bouchereau A., Aziz A. and Larher F. R. The control of proline consumption by abscisic acid during osmotic stress recovery of canola leaf discs[J]. Physiol. Plantarum, 2003, 117: 213-221.
    Tully R. E., Hanson A. D. and Nelsen C. H. E. Proline accumulation in water-stressed barley leaves in relation to translocation and the nitrogen-budget[J]. Plant Physiol., 1979, 63: 518-523.
    Ueda A., Shi W., Sanmiya K., Shono M. and Takabe T. Functional analysis of salt-inducible proline transporter of barley roots[J]. Plant and Cell Physiol., 2001, 42(11): 1282-1289.
    Verbruggen N., Hua X. J. (co-first author), May M. and Van Montagu M. Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator[J]. Proc Natl. Acad. Sci. USA., 1996, 93(16): 8787-8791.
    Verbruggen N., Villarroel R. and Van Montagu M. Osmoregulation of a Δ~1-pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana[J]. Plant Physiol., 1993, 103: 771-781.
    Waie B. and Rajam M. V. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene[J]. Plant Sci., 2003, 164: 727-734.
    Wakasugi T., Nagai T., Kapoor M., Sugita M., Ito M., Ito S., Tsudzuki, J., Nakashima K., Tsudzuki T., Suzuki Y., Hamada A., Ohta T., Inamura A., Yoshinaga K. and Sugiura M. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division[J]. Proc. Natl. Acad. Sci. USA., 1997, 94: 5967-5972.
    Walden R., Cordeiro A. and Tiburcio A. F. Polyamines: small molecules triggering pathwaysin plant growth and development[J]. Plant Physiol., 1997, 11(4):1009-1013
    Wang C. Y. Relation of chilling stress to polyamines in xucchini squash[J]. Acta Hort., 1993, 343: 288-289.
    Wang S. Y. and Faust M. Effect of growth retardants on root formation and polyamine content in apple seedlings[J]. J. Amer. Soc. Hort. Sci., 1986, 111: 912-917.
    Watson M. B. and Malmberg R. L. Regulation of Arabidopsis thaliana (L.) Heynh Arginine decarboxylase by potassium deficiency stress[J]. Plant Physiol., 1996, 111(4):1077-1083.
    Wi S. J., Kim W. T. and Park K. Y. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants[J]. Plant Cell Rep., 2006, 25: 1111-1121.
    Winer L. and Apelbaum A. Involvement of polyamnes in the development and ripening of avocado fruits[J]. J. Plant Physiol., 1986, 126: 223-233.
    Yoshiba Y., Kiyosue T., Katagiri T., Ueda H., Mizoguchi T., Yamaguchi-Shinozaki K., Wada K., Harada Y. and Shinozaki K. Correlation between the induction of a gene for pyrroline-5-carboxylate synthetase and accumulation of proline in Arabidopsis thaliana under osmotic stress[J]. Plant J., 1995, (7): 751-760.
    Yoshiba Y., Kiyosue T., Nakashima K., Yamaguchi-Shinozaki K. and Shinozaki K. Regulation of levels of proline as an osmolyte in plants under water stress[J]. Plant Cell Physiol., 1997, 38(10): 1095-1102.
    Young N. D. and Galston A. W. Physilogical control of arginine decarboxylase activity in potassium deficient oat shoots[J]. Plant Physiol., 1984, 76(2): 331-335.
    Young N. D. and Galston A. W. Putrescine and acid stress[J]. Plant Physiol., 1983, 71(4): 767-771.
    Zhang C. S., Lu Q., Verma D. P. S. Removal of feedback inhibition of Δ~1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants[J]. J. Biol. Chem., 1995, 270: 20491-20496.
    Zhang Z., Honda C., Kita M., Hu C., Nakayama M. and Moriguchi T. Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing[J]. Mol. Genet. Genomics, 2003, 286: 799-807.
    Zhu L. H., Tromy J., van de Peppel A. C. and Borsboom O. Polyamines in buds of apple as affected by temperature and their relationship to bud development[J]. Sci. Hort., 1999, 9(82): 203-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700