用户名: 密码: 验证码:
湖南甘薯品种遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过形态标记和分子标记(AFLP、SSR和RAPD)的方法,对来自湖南及其它地区甘薯品种的遗传多样性进行了系统分析,使用的品种共计61份,其中育成品种29份,地方品种32份。育成品种包括16份国内品种,其中湖南品种11份,江苏品种3份,四川品种2份;13份国外品种包括巴西品种1份,菲律宾品种2份,马来西亚品种1份,马里品种1份,美国品种4份,尼日利亚品种1份,日本品种3份。地方品种包括32份国内品种,其中湖南品种20份,广东品种6份,福建品种2份,海南品种2份,湖北品种1份,重庆品种1份。获得的结果如下:
     1.用区分甘薯品种的基本形态特征:株型、叶型、叶色、叶脉色、脉基色和茎蔓色,可以将61份甘薯品种初步区分丌,表明供试材料中育成品种和地方品种具有较丰富的形态变异,而湖南甘薯育成品种和地方品种之间遗传差异较大。
     2.用12对AFLP引物、12对SSR引物和20个RAPD引物对61份甘薯品种进行扩增,分别扩增出324条、110条和153条多态性带,平均每条(对)引物扩增出27条、9条和7.6条多态性带,可将61份甘薯品种完全区分开。AFLP在揭示多态性水平和实验的稳定性高于SSR和RAPD,表明AFLP可以作为甘薯遗传多样性分析的首选标记。
     3.利用AFLP、SSR和RAPD三种分子标记结果对供试材料进行UPGMA聚类分析,可以将61份供试材料分为六个组群。以第工组群和第Ⅲ组群包括品种最多:第工组群,共38份品种,其中地方品种20份,育成品种共18份;第Ⅲ组群,共17份品种,其中地方品种10份,育成品种7份;除湖南地方品种涟73-21-3和祁阳黄心薯聚为第Ⅱ工组群外,其余皆聚为第Ⅰ和第Ⅲ组群;尼日利亚育成品种TiB10和马来西亚育成品种暹罗红分别单独聚为第Ⅳ和第Ⅴ组群;第Ⅵ组群为美国育成品种百年纪念和巴西育成品种西蒙1号。
     4.根据三种分子标记遗传距离的计算,湖南育成品种与地方品种遗传距离分别为:0.3778-1.0000、0.2308-1.0000和0.0588-0.6842,平均遗传距离分别为0.7278、0.5443和0.2793,表明湖南甘薯品种遗传变异幅度较大。湖南地方品种间平均遗传距离分别为0.6537、0.5362和0.2955;湖南育成品种间平均遗传距离分别为0.7075、0.4583和0.295 1。通过湖南地方品种与育成品种的遗传距离比较,AFLP标记结果为地方品种遗传距离小于育成品种,SSR标记与RAPD标记结果地方品种遗传距离大于育成品种,即GDLAFLPGDMCSSR,GDLRAPD>GDMCFAPD。
     5.综合三种分子标记,得出湖南甘薯育成品种与地方品种的遗传距离为0.294 1-0.8644,平均0.5038;对不同地区地方品种及育成品种的平均遗传距离进行比较分析,地方品种湖南与广东的平均遗传距离最远,育成品种湖南与马来西亚平均遗传距离最远,因此,在今后湖南甘薯亲本选配上应重点考虑这些地区的品种。
The genetic diversity of sweetpotato was analyzed by morphological and molecular (AFLP,SSR and RAPD) markers.A total of 61 accessions,including 27 modern cultivars and 34 landraces. Modern cultuvars included 16 acceccions,among Hunan 11 species,Jiangsu 3 species and Sichuan 2 species; 13 varieties of foreign species,including Brazil 1,2 varieties of the Philippines,Malaysia,1 species,1 variety of Mali,the United States 4 copies of varieties,varieties in Nigeria 1,3 Japanese varieties.Landraces were 32 domestic varieties,including Hunan 20 varieties,Guangdong 6 varieties,Fujian 2 varieties,Chongqing 1 varieties and Hubei lvarieties.The main results were as follows:
     1.Sixty-one sweetpotato accessions were distinguished clearly based on morphological characteristics,including plant type, mature leaf shape,mature leaf color,leaf vein color,base vein color and stem color.lt was showed that sweetpotato modern cultivars and landraces possessed a high level of phenotypic differences.The genetic distance among modern cultivars and landraces in Hunan was large.
     2.Using 12 AFLP primer pairs,12 SSR primer pairs and 20 RAPD primers,324,110 and 153 polymorphic bands with an average of 27,9.2 and 7.6 bands per primer (pair) respectively,were amplified among 61 materials.AFLPs were better than SSRs and RAPDs in terms of the number of polymorphic bands and the experimental stability.
     3.The UPGMA cluster analysis based on AFLP,SSR and RAPD markers classified the 61 accessions into 6 groups. The first group and the three group included most varieties:the first group had 38 species, of which 20 were landraces and 18 were modern cultivars; The three group had 17 species, of which 10 were landraces and 7 were modern cultivars; Lian 73-21-3 and Qiyanghuangxinshu of Hunan landraces were grouped together for the two, the rest were grouped into the group I and group III; TiB10 in Nigeria and Siam Red in Malaysia of modern cultivars were grouped separately into the IV group and V; the VI group was Centennial in the United States and Ximengl in Brazil of modern cultivars.
     4.The genetic distance between modern cultivars and landraces in Hunan revealed by AFLPs,SSRs and RAPDs differed greatly,being 0.3778-1.0000,0.2308-1.0000 and 0.0588-0.6842,respectively,with the mean genetic distances of 0.7278,0.5443 and 0.2793,respectively. These results supported the viewpoint that accessions in Hunan were highly genetic differences. The genetic distance of landraces in Hunan revealed by AFLPs,SSRs and RAPDs were 0.6537、0.5362 and 0.2955; The genetic distance of modern cultivars in Hunan revealed by AFLPs,SSRs and RAPDs were 0.7075、0.4583 and 0.2951, it was then AFLP<GDMC AFLP,GDL SSR>GBMCSSR,GDLRAPD>GDMC RAPD。
     5.Based on the 3 molecular markers,the genetic distance between landraces and modern cultivars in Hunan was 0.2941-0.8644,mean 0.5038.The mean genetic distance from different lands of landraces and modern cultivars were calculated by the three molecular markers respectively, the landraces from Hunan and Guangdong had the highest genetic distance.The modern cultivars from Hunan and Malaysia had the highest genetic diatance.Thus,the utilization of these lands should be emphasized in Hunan sweetpotato breeding.
引文
[1]曹清河,张安,李鹏,等.甘薯近缘野生种的抗病性鉴定与新型种间杂种的获得[J].植物遗传资源学报,2009,10(2):224-229
    [2]陈静,胡晓辉,苗华荣,等.SSR标记分析国家北方花生区试品种的遗传多样性[J].植物遗传资源学报,2009,10(3):360-366
    [3]陈俊意,蔡一林,徐莉,等.玉米基因型磷效率遗传多样性的AFLP分析[J].分子植物育种,2008,6(3):495~498
    [4]程勇,邹崇顺,李云昌,等.甘薯型油菜显性核雄性不育基因的AFLP标记鉴定[J].中国油料作物学报,2008,30(2):148-151
    [5]代国丽,蔡一林,徐德林,等.玉米穗部性状的QTL定位[J].西南师范大学学报(自然科学版),2009,34(5):133~138
    [6]戴起伟,张必泰.甘薯数量形状遗传距离在亲本选配中的初步应用[J].遗传,1988,10(3):1~3
    [7]邸宏,陈伊里,卢翠华.中国马铃薯部分品种资源遗传多样性的RAPD分析[J].东北农业大学学报,2008,39(7):1-4
    [8]段永红,孙毅,仪治本,等.高粱SSR分子连锁图说谱的构建[J].山西农业大学学报(自然科学版),2009,29(4):315~319
    [9]段远霖,赵守环,吴为人,等.用SSR标记提高水稻分子连锁图谱密度[J].分子植物育种,2003,1(4):475-479
    [10]高峰,龚一富,林忠平等.根癌农杆菌价导的甘薯遗传转化及转基因植株的再生[J作物学报,2001,27(6):751-756
    [11]高士刚,闫红飞,陈会娜,等.6个小麦抗叶锈病近等基因系的cDNA-AFLP差异表达分析[J].河北农业大学学报,2008,31(6):7~1
    [12]高运来,姚丙晨,刘春燕,等.黑龙江省主栽大豆品种遗传多样性的SSR分析[J].植物学报,2009,44(5):556~561
    [13]谷俊涛,鲍金香,王效颖,等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因[J].作物学报,2009,35(9):1597-1605
    [14]郝转芳,李新海,张世煌.玉米相对饱和遗传连锁图谱构建与一种新的AFLPs共显性分析方法探讨[J].遗传学报,2005,32(9):960-968
    [15]何平.真核生物中的微卫星及其应用[J].遗传,1998,20(4):42~47
    [16]贺学勤,刘庆昌,王玉萍,等.中国甘薯地方品种的遗传多样性分析.中国农业科学[J],2005a,38(2):250-257
    [17]贺学勤,刘庆昌,翟红,等.用RAPD、 ISSR和AFLP分子标记分析系谙关系明确的甘薯品种的亲缘关系[J].作物学报,2005b,31(10):1300-1304
    [18]贺学勤.中国甘薯地方品种的遗传多样性分析.中国农业大学,博士学位论文,2004
    [19]揭琴,姜伟,李华等.甘薯抗茎线虫病基因的遗传分析及SCAR标记[J].分子植物育种,2008,6(3):523-526
    [20]揭琴,李华,翟红,等.甘薯抗茎线虫病基因AFLP标记的开发[J].农业生物技术学报,2008,16(5):837-841
    [21]李长青,于卓,马艳红,等.高梁11A与3种苏丹草杂交新品系的AFLP分析[J].中国草地学报,2009,31(2):34-40
    [22]李凤云,盛万民,刘昭军,等.马铃薯品种遗传多样性的RAPD和AFLP标记分析[J].中国马铃薯,21(5):266-271
    [23]李强,李鹏,刘庆昌等.东亚甘薯品种AFLP标记遗传差异研究[J].分子植物育种,2008,6(5):905-911
    [24]李强,刘庆昌,马代夫,等.中国甘薯主要育成品种的遗传多样性及遗传趋势[J].江苏农业学报,2009,25(2):253-259
    [25]李强,刘庆昌,翟红等.中国甘薯主要亲本遗传多样性的ISSR分析[J].作物学报,2008,34(6):972-977
    [26]李艳秋,王立新,苏志芳,等.小麦AFLP-SCAR标记的遗传图谱定位[J].麦类作物学报,2008,28(4):543-549
    [27]李媛媛,沈金雄,王同华,等.利用SRAP、 SSR、 AFLP标记构建甘蓝型油菜遗传连锁图谱[J].中国农业科学,2007,40(6):1118-1126
    [28]刘丽,马永毅,张志明,等.利用cDNA-AFLP分析纹枯病菌诱导的玉米差异表达基因[J].植物病理学报,2009,39(4):385-391
    [29]刘章雄,王守才,戴景瑞,等.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位[J].遗传学报,2003,30(8):706~710
    [30]柳李旺,龚义勤,黄浩,等.新型分子标记SRAP与TRAP及其应用[J].遗传,2004,26(5):777~781
    [31]柳哲胜,刘庆昌,瞿红,等.用改进的SSRP方法克隆甘薯茎线虫病相关的RGA[J].分子植物育种,2005,11:369-374
    [32]陆漱韵,刘庆昌,李惟基.甘薯育种学[M].北京:中国农业大学出版社,1998,19-38
    [33]潘大仁,陈观水,周以飞,等.甘薯抗线虫病相关基因片断克隆及序 列分析初步研究[J].福建农林大学学报(自然科学版),2006,35(1):56~59
    [34]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994,13-36
    [35]宋来强、易斌、杨明贵,等.EST辅助的甘蓝型油菜显性核不育AFLP标记转化[J].作物学报,2009,35(8):1458~1461
    [36]谭祖猛,李云昌,胡琼,等.SSR和SRAP标记研究油菜杂交骨干亲本的遗传多样性[J].农业生物技术学报,2009,17(5):882-890
    [37]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002,333~339
    [38]滕长才,张永成,张凤军.青海省马铃薯辛要栽培品种的SSR遗传多样性[J].分子植物育种,2009,7(3):555-561
    [39]田松杰,石云素,宋燕春,等.利用AFLP技术研究玉米及其野生近缘种的遗传关系[J].作物学报,2004,30(4):354-359
    [40]王灏,赵卫国,李殿荣,等.甘蓝型油菜种质资源遗传多样必珠RAPD分析[J].华中农业大学学报,2009,28(5):525~531
    [41]王红意,翟红,王玉萍,等.30个中国甘薯主栽品种的RAPD指纹图谱构建及遗传变异分析[J].分子植物育种,2009,7(5):879-884
    [42]王晶珊,孙世孟,王维华,等.甘薯同一不亲和群内品种间体细胞杂交[J].植物学通报,2004,21(3):306-311
    [43]王立新,常利芳,黄岚,等.小麦AFLP片段序列多态性分析和AFLP-SCAR标记的研究[J].麦类作物学报,2007,27(6):943-951
    [44]王伟,杨文鹏,张文龙,等.贵州48个玉米杂交种及其亲本SSR指纹图谱的构建与分析[J].贵州农业科学,2009,37(11):1-8
    [45]王欣,马代夫,李强等.甘薯抗茎线虫病基因SCAR标记辅助育种初探[J].江苏农业学报,2009,25(1):49-53
    [46]王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位[J].遗传学报,2004,31(1):87-90
    [47]王振东,贾利,孙仓,等.大豆抗旱种质资源遗传多样性的RAPD分析[J].大豆科学,2009,28(1):26-32
    [48]魏艳玲,倪中福,解超杰,等.来自斯卑尔脱小麦新的抗条锈病基因YrSp的分子标记定位[J].农业生物技术学报,2003,11(1):30-33
    [49]吴洁,谭文芳,何俊蓉,等.甘薯SRAP连锁图谱构建淀粉含量QTL检测[J].分子植物育种,2005,3(6):841-845
    [50]吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(t)的精细定位[J].作物学报,2002,28(4):505-509
    [51]吴觐宇,傅玉凡,张华玲,等.美国甘薯育种材料遗传多样性的ISSR分析[J].江苏农业学报,2009,25(6):1243-1246
    [52]吴晓雷,贺超英,陈爱益.大豆属遗传多样性和进化关系[J].自然科学进展,2001,21(7):689~698
    [53]吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051~1061
    [54]谢世清,冯毅武.云南甘薯耐旱地方品种资源特性分析[J].中国农学通报,2000,16(2):33~34
    [55]熊发前,唐荣华,等.目标起始密码子多态性(SCoT):一种基于翻译起始位点的目的基因标记新技术[J].分子植物育种,2009,7(3):635~638
    [56]徐德林,蔡一林,吕学高,等.玉米株型性状QTL定位[J].玉米科学,2009,17(6):27~31
    [57]徐微,张宗文,吴斌,等.裸燕麦种质资源AFLP标记遗传多样性分析[J].作物学报,2009,35(12):2205-2212
    [58]徐志,梅丽宏,李志英,等.利用AFLP分子标记和无毒基因构建小麦白粉菌遗传连锁图谱.中国农业科学院,博士学位论文,2008
    [59]严华军,吴乃虎.DNA分子标记技术及其在植物遗传多样性研究中的应用[J].生命科学,1996,8(3):32~36
    [60]阎文昭,王大一,李晋涛,等.22个甘薯品种(系)遗传背景的RAPD图谱分析[J].农业生物技术学报,1997,5(1):40-46
    [61]杨鑫雷,王志伟,张桂寅,等.棉花分子遗传图谱构建和纤维品质QTL分析[J].作物学报,2009,35(12):2159~2166
    [62]杨喆,刘丽君,高明杰,等.大豆高油相关QTL分子标记辅助选择研究[J].大豆科学,2008,27(6):921-924
    [63]杨志辉,朱杰华,张凤国.中国马铃薯晚疫病菌AFLP遗传多样性分析[J].菌物学报,2008,27(3):351~359
    [64]袁照年,陈选阳,张招娟,等.甘薯抗Ⅰ型薯瘟病RAPD标记筛选[J].江西农业大学学报,2005,27(6):861-938
    [65]张帆,万雪琴,潘光堂.玉米抗穗粒腐病QTL定位[J].作物学报,2007,33(3):491~496
    [66]张利国,关凤芝,吴广文,等.基于核型与RAPD标记的大麻地方品种 遗传多样性分析[J].中国麻业科学,2009,31(3):169-173
    [67]赵继荣,李宁,刘红霞,等.小麦抗黄矮病相关基因cDNA-AFLP差异表达片段的验证[J].植物遗传资源学报,2009,10(1):16-20
    [68]赵军海,冯国华,刘东涛,等.小麦育种亲本材料遗传多样性的SSR分析[J].麦类作物学报,2009,29(6):982-986
    [69]赵青松,年海,杨存义.湖南新田野生大豆自然居群遗传多样性分析[J].西北植物学报,2009,29(11):2221-2227
    [70]周延清,杨清香,张改娜.生物遗传标记与应用[M].北京:化学工业出版社,2008
    [71]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005:1-2
    [72]周志林,唐君,张允刚,等.甘薯试管保存资源污染抢救方法研究[J].江苏农业科学,2008(1):237-239
    [73]周忠,王欣,马代夫,等.甘薯抗茎线虫病基因的RAPD标记[J].农业生物技术学报,2005,13(5):549~552
    [74]朱志凯,方良俊,招倩婷,等.水稻TRAP-PCR反应体系优化与P-糖蛋白基因片段的分析[J].分子植物育种,2008,6(1):65-70
    [75]Abdalla AM, Reddy OUK, El-Zik KM, et al..Genetic diversity and relationships of diploid and retraploid cottons revealed using AFLP.Theor Appl Genet,2001,102:222~229
    [76]Adams MD, Kelley JM, Gocayne JD, et al..Complementary DNA sequencing:expressed sequence tags and human genome project[J]. Science,1991,252:1651 ~1656
    [77]Albert Kriegner, Jim Carlos Cervantes, Kornel Burg, et al..A genetic linkage map of sweetpotato[Ipomoea batatas(L.)Lam.] based on AFLP markers[J]. Molecular Breeding,2003,11:169~185
    [78]Alvaro Montenegro, Chris Avis, Andrew Weaver. Modeling the prehistoric arrival of the sweet potato in Polynesia[J]. Journal of Archaeological Science,2007:1 ~13
    [79]Andres Gonzalo Gutierrez, Silvio James Carabali,Olga Ximena giraldo, et al..Identification of a Rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa X O.glaberrima introgression lines. BMC Plant Biology,2010,10:6
    [80]Bao JS, Corke H, Sun M. Analysis of genetic diversity and relationships in vaxy rice(oryza sativa L.)using AFLP and ISSR markers.Genet Res Crop Evol,2006,53:323-330
    [81]Bart Brugmans, Doret Wouters, Hans van Os, et al..Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling.TheorApplGenet,2008,17:1379~1388
    [82]Berenyi M, Gichuki S T, Schmidt J, et al..Tyl-copia retrotransposon-based S-SAP(sequence-specific amplified polymorphism) for genetic analysis of sweetpotato[J]. Theor Appl Genet,2002,105:862 ~869
    [83]Boris Sagredo, Patricio Hinrichsen, Horacio Lopez,et al..Genetic variation of sweet potatoes(Ipomoea batatas L.) cultivated in Chile determined by RAPDs[J]. Euphytica,1 998,101:193 ~ 198
    [84]Buteler M I, Jarret R L, LaBonte D R. Sequence characterization of microsatellites in diploid and polyploidy Ipomoea[J]. Theor Appl Genet,1999,99:123~ 132
    [85]Caetano-Anolles G, Bassam BJ, Gresshoff PM. DNA amplification fingerprinting using very short arbitrary oligonucleotide primer. Bio/ Technology.1991,9:553 ~ 557
    [86]Chen QH, Wang YC, Li AN, et al.. Molecular mapping of two cultivar specific avirulence genes in the rice blast fungus magna porthegrisea. Molecular genetics and genomics.2007,277(2):139~148
    [87]Cheng Li-bao, LI Shu-yan and HE Guang-yuan. Isolation and expression Profile Analysis of Genes Relevant to Chilling Stress Dring Seed Imbition in Soybean. Agriculturl Sciences in China,2009,8(5):521~ 528
    [88]Dapeng Zhang, Genoveva Rossel, Albert Kriegner, et al.. AFLP assessment of diversity in sweetpotato from Latin America and the Pacific region:Its implication on the dispersal of the crop[J]. Genetic Resources and Crop Evolution,2004,51:115~120
    [89]Dapeng Zhang, Jim Cervantes, Zosimo Huaman, et al..Assessing genetic diversity of sweetpotato (Ipomoea (L.)Lam.) cultivars from Tropical America using AFLP[J]. Genetic Resources and Crop Evolution,2000,47: 659-665
    [90]Dapeng Zhang, Marc Ghislain, Zosimo Huaman, et al..RAPD variation in sweetpotato(Ipomoea batatas(L.)Lam) cultivars from South America and Papua New Guinea[J]. Genetic Resources and Crop Evolution,1998,45: 271-277
    [91]Diez J, Beguiristain T, Tacon FL, et al.. Identification of Tyl-copia retro-transposons in three ectomycorrhizal basidiomycetes:evolutionary re la-tionships and use as molecular markers.Current Genetics,2003,43:34~44
    [92]Dodds J H, Benavides J, Buitron F, et al.Biotechnology Applied to Sweetpotato improvement[C]. Sweetpotato Technology for the 21nt Century, W. A. Hill,C. K. Bonsi and P. A. Loretan(Eds.),Tuskegee University, Tuskegee, AL,USA,1992:7~19
    [93]EsmaeilzadehMM, TrethowanRM, William HM, et al.Assessment of genetic diversity in bread wheat genotypes for tolerance to drought using AFLPs and agromomic traits.Euphytica,2005,1 41:147~156
    [94]Fajardo D S, Bonte D R La, Jarret R L. Identifying and selecting for genetic diversity in Papua New Guinea sweetpotato(Ipomoea batatas (L.) Lam). Germplasm collected as botanical seed[J].Genetic Resources and Crop Evolution,2002,49:463 ~470
    [95]Guo D, Zhang H, Luo Z.Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis.Plant Science,2006, 170:528~533
    [96]Gupta PK, Rustgi S, Sharma S, et al..Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat.Mol Gen Genomics,2003,270:315~323
    [97]He XQ, Liu QC, Ishiki K, et al.. Genetic diversity and genetic relationships among Chinese Sweetpotato landraces revealed by RAPD and AFLP markers.Breeding Sci,2006,56(2):201 ~207
    [98]Hu J, VICK B A. Target region amplification polymorphism:A novel marker technique for plant genotyping plant[J].Molecular Biology Reporter,2003, 21:289~294
    [99]Huang Bing-Chao, Zhang Yang, Xie Zhen-Wen, et al..DNAfingerprinting of the Asian rice gall midge Orseolia oryzae and breeding for the resistant varieties by marker assisted selection.Chinese Bulletin of entomology,2007, 44(2):164~171
    [100]Huang J C, Sun M. Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas(Convolvulaceae) as revealed by inter-simple sequence repeat(ISSR) and restriction analysis of chloroplast DNA[J]. Theoretical and Applied Genetic,2000,100(7):1050~ 1060
    [101]Jarret R L, Austin D F. Genetic diversity and systematic relationships in sweetpotato(Ipomoea Batatas(L.)Lam.) and related species as revealed by RAPD analysis[J]. Genetic Resources and Crop Evolution,1994,41:165~ 173
    [102]Jingjie Hu, Makoto Nakatani, Antonio Garcia Lalusin,et al..Genetic analysis of sweetpotata and wild relatives using inter-simple sequence repeats(ISSRs)[J]. Breeding Science,2003,53:297~304
    [103]Jingjie Hu, Makoto Nakatani, Antonio Garcia Lalusin,et al..New microsatellite markers developed from reported Ipomoea trifida sequences and their application to sweetpotato and its related wild species[J]. Scientia Horticulturase,2004,102:375~386
    [104]Junchao Huang, Harold Corke, Mei Sun. Highly polymorphic AFLP markers as a complementary tool to ITS sequences in assessing genetic diversity and phylogenetic relationships of sweetpotato(Ipomoea batatas (L.) Lam.) and its wild relatives[J]. Genetic Resources and Crop Evolution,2002,49:541~550
    [105]Jungkwan Lee, In-Young Chang, Hu Kim, et al..Genetic diversity and fitness of Fusarium Graminearum population from rice in Korea.Applied and Environmental Microbiology.2009,75(10):3289~3295
    [106]Kalendar R, Grob T, Regina M, et al.IRAP and REMAP:Two new retrotmnsposon based DNA fingerprinting techniques.Theoretical and Applied Genetics,1999,98:704~711
    [107]Karuri H W, Ateka E M, Mmata R,et al..Characterization of Kenyan sweet potato genotypes for SPVD resistance and high dry matter content using simple sequence repeat markers.African Journal of Biotechnology, 2009,8(10):2169-2175
    [108]Khan RR, Bariana HS, Dholakia Bb, et al.. Molecular mapping of stem and leaf ruat resistance in wheat.Theor Appl Genet,2005,1 11:846~850
    [109]Koniecyny A, Anasubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers. Plant Journal,1993,4:403~410
    [110]Kriegner A, CervantesJC, Burg K, et al.. A genetic linkage map of sweet potato(Ipomoea batatas (L.) Lam.) based on AFLP markers.Mol Breeding, 2003,11:169~185
    [111]Kumar P, Pathania S, Katoch P, et al.. Genetic and physical mapping of blast resistance gene Pi-42(t) on the arm of rice chromosome 12.Molecular Breedong,2010,25(2):217~228
    [112]Li G and Quiros CF. Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to map-ping and gene tagging in Brassica. Theor Appl Genet,2001,103:455~461
    [113]LI Lu-jiang, YANG Ke-cheng, PAN Guang-tang, et al.. Genetic diversity of maize population developedby two kinds of recurrent selection methods investigated with SSRmarkers.Agricultural Sciences in China,2008,7(9): 1037-1045
    [114]Long Wen-hong, XU Ming-hui, ZHANG Shu-hua. A preliminary study on the relationship between the indicajaponica RAPD differentiation of parents and heterosis in Dian type hybrid rice.Agricultural Sciences in China,2002,1(12):1303~1309
    [115]Machill DJ, Zhang Z, Rodona ED. Level of polymorphism and genetic mapping of AFLP markers in rice.Genome,1996,39:969~977
    [116]Manninen O, Kalendar R, Robison J, et al.. Application of BARE-1 retrotransposon markers to the mapping of major resistance gene for net blotch in barley. Molecular and General Genetics,2000,264:325~334
    [117]Matcel TC, Varshney RK, Barbieri M, et al.. A high-densityconsensus map of barley to compare the distribution of QTLs for pairial resistance to Puccinia hordei and of defence gene homologues.Theor Appl Genet,2007, 114:484~500
    [118]McCouch SR, Chen X, Panaud O, et al..Microsatillite marker development, mapping and application in rice genetics and breeding.Plant Mol Biol, 1997,35:89~99
    [119]McGregor C, Greyling M, Banda J,et al.. DNA fingerprinting of sweet-potato (Ipomoea batatas L.):two case studies in Africa[J].Acta Horticul-turae,2001,546:243~248
    [120]Medini M, Hamza S, Rebai A, et al.. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers.Genet Resour Crop Evol,2005,52:21 ~ 31
    [121]Michelmore R W, Paran L, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions using segregating populations.Proc NatlAcadSci USA,1991,88:9828~9832
    [122]Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Gen Genomics,2003, 270:371-377
    [123]Navinder S, Neelu J, Sunita J, et al.. Assessment of genetic diversity within and among Basmati and non-Basmati rice varieties using AFLP.ISSR and SSR markers.Euphytica,2004,140:133~146
    [124]Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc Natl Acad Sci USA,1979,76:5269-5273
    [125]Okada Y, Saito A, Nishiguchi M, et al..Virus resistance in transgenic sweet potato(Ipomoea batatas L.)expressing the coat protrin gene of sweetpotato feathery mottle virus.Theor.Appl.Genet,2001,103(5):743~751
    [126]Olson M, Hood L, Cantor C. Acommon language for physical mapping of the human genome.Science,1989,254:1434~1435
    [127]Orita M, Iwahana H. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J].Proc Natl Acad Sci USA,1989,86:2766~2770
    [128]Qi X, Lindhout P. Development of AFLP markers in barley.Mol Gen Genetics,1997,254(3):330~336
    [129]Roy JK, Lakshmikumaran MS, Balyan HS, et al.. AFLP-Based Genetic diversity and its comparison with diversity based on SSR,SAMPL,and phenotypic traits ih bread wheat.Biochem Genet,2004,42(1-2):43 ~ 59
    [130]Rubens N.Tomita, Kazuyo Fukami, Syuko Takayama, et al.. Genetic mapping of AFLP/AMF-derived DNA markers in the vicinity of the self-incompatibility locus in Ipomoea trifida[J]. Sex Plant Report,2004, 16:265~272
    [131]Sagredo B, Lafta A, Casper H,et al..Mapping of genes associated with leptine content of tetraploid potato.Theor Appl Genet,2006,114:131 ~142
    [132]Saranya Srisuwan, Darasinh Sihachakr, Sonjia Siljak-Yakovlev. The origin and evolution of sweet potato(Ipomoea batatas Lam.)and its wild relatives through the cytogenetic approaches[J]. Plant Science,2006,171:424~433
    [133]Schaal B A, Leverich W J and Rogstad S H.Comparison of methods for assessing genetic variation in plant conservation biology-In Falk,D A and K E Holsinger(eds.).Genetics and Conservation of Rare Plants.New York,Oxford University Press.1991,123 ~ 134
    [134]Shih Y Hwang, Yu T Tseng, Hsiao F Lo. Application of simple sequence repeats in determining the genetic relationships of cultuvars used in sweet potato polycross breeding in Taiwan[J]. Scientia Horticulturae,2002,93: 215-224
    [135]Simon Templar Gichuki, Maria Berenyi, Dapeng Zhang,etal..Genetic diversity in sweetpotato [Ipomoea batatas(L.)Lam.] in relationship to geographic sources as assessed with RAPD markers[J]. Genetic Resources and Crop Evolution,2003,50:429~437
    [136]Sriyani Rajapakse, Sasanda D, Nilmalgoda,et al..Phylogenetic relation-ships of the sweetpotato in Ipomoea series Batatas(Convolvulaceae) based on nuclear β-amylase gene sequences[J]. Molecular Phylogenetics and Evolution,2004,30:623~632
    [137]Sun Min, Liu Pei-yin, Lei Jian-jun. Genetics Diversity Analysis of sweet potato and related wild species with RAPD markers[J]. Journal of South-west China Normal University(Natural Science),2001,26(2):191 ~ 194
    [138]TAE-Young Hwang,TAKASHI Sayama,MASAKAZU Takahashi,etal..Hi-gh density integrated linkage map based on SSR markers in soybean. DNA Research,2009,16(4):213~225
    [139]Teng W,Han Y,Du Y,et al..QTL analysis of seed weight during the develop pment of soybean(Glycine max L. Merr.).Heredity,2009,102(4):372~380
    [140]Ude GN, Kenworthy WJ, Costa JM, et al..Genetic diversity of soybean cultivars from China,Japan,North American,and North American ancestral lines determined by amplified fragment length polymorphism.Crop Sci,2003,43(5):1 858~1867
    [141]Ukoski K, Thompson P G, Watson Jr C E,et al..Identifying a randomly amplified polymorphic DNA(RAPD) marker linked to a gene form root-knot nematode resistance in sweetpotato [J]. Am er Soci.Hort Sci,1997, 122(6):818~821
    [142]Varchney RK, MarcelTC, Ramsay L, et al.. A high density barley micro -satellite consensus map with 775 SSR loci.Theor Appl Genet,2007,114: 1091 ~ 1103
    [143]Vaz Patto MC, Satovic Z, Peego S, et al.. Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers. Euphytica, 2004,137:63~72
    [144]Velasquez AC, Mihovilovich E, Bonierbale M. Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solamum-tuberosum ssp.Andigena.Theor Appl Genet,2007,114:1051 ~1058
    [145]Vos P, Hogers M, Bleeker M, et al.. AFLP:a new technique for DNA fingerprinting.Nucl Acids Res,1995,23:4407~4414
    [146]Wang XF, Zhang GY, Li XH, et al.. AFLP analysis of cotton with Fusarium and Verticillium wilts from the Huanghe and Changjiang valleys.Zcta Genetica Sinica,2004,31(12):1426~1433
    [147]Waugh R, McLean K, Flavell A J, et al.. Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence spe-cific amplification polymorphisms(S-SAP).Mol Gen Genet,1997,253:687~694
    [148]Welsh J,Honeycutt R J,McClell and M,et al..Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction Ap-PCR.Theor Appl Genet,1991,82:473~476
    [149]Welsh J, McClell and M. Fingerprinting genomes using PCR with arbitrary primers.Nucl Acids Res,1990,18(24):7213~7218
    [150]Williams J G K, Kubelik A R, Livak K J,et al..DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res.l990,18:6531~6535
    [151]Witsenbers H, Vogel J, Michelmore RW. Identification genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactaeaspp.).Genome,1997,40(6):923 ~ 936
    [152]Wyman A.R, White R. A highly polymorphic locus in human DNA.Proc natl Acad Sci USA,1980,77(11):6754~6758

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700