用户名: 密码: 验证码:
茉莉酸甲酯诱导的人参发根培养及SSH文库构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参在中国有着几千年的药用历史,作为名贵药材和补品,在中医学及其他国家民族医学中一直占有重要地位。由于人参生长对环境的要求高,目前普遍采用伐林栽参方式进行人工栽培,对林地破坏严重,环境代价高昂,寻求替代资源成为解决这个难题的一个有效途径。人参发根由发根农杆菌(本实验采用A4菌株)侵染人参根外植体转化而成,属非天然植物。与传统的植物组织培养、细胞悬浮培养相比,植物发根具有生长速度快、活性物质含量高和遗传性状稳定等特点。人参发根培养目的之一就是要获得相对含量较高的人参皂苷,实现人参皂苷工厂化生产。发根中次级代谢产物含量受培养条件、营养因子、前体物和诱导子等因素影响,茉莉酸甲酯作为一种植物信号分子,能够促进次级代谢产物积累,提高发根中人参总皂苷的含量。随着生物工程的日益发展,应用代谢工程手段改变植物细胞生物合成途径,提高次级代谢产物产量已经逐渐成为研究热点。
     本文对人参发根三角瓶摇床培养进行考察,通过添加不同浓度的茉莉酸甲酯进行诱导,最终确定浓度在200μmol·L-1时效果最好,在一个培养周期内人参发根生物量增长13.82倍,人参发根总皂苷含量达到2.28%,比对照高35.71%。同时,我们使用实验室自行设计研制的发酵罐进行了人参发根培养实验,结果表明,人参发根在发酵罐中培养30天,生物量平均增长达到23.14倍,人参发根总皂苷含量达到2.04%,人参皂苷单体Rb1、Rd的含量比对照有较大提高,分别提高55.0%和30.1%。人参发根生长迅速,无需添加外源激素,次级代谢产物含量高,茉莉酸甲酯作为诱导子对于提高人参皂苷含量有明显的促进作用,同时表明经改进的发酵罐能够满足人参发根生长需要,有利于进行扩大培养。
     人参发根次级代谢产物人参皂苷的种类和含量的差异与生物合成途径中相关基因差异表达调控有关。为研究这些差异表达基因,本实验利用抑制消减杂交技术构建了以茉莉酸甲酯诱导的人参发根为检测子、以对照人参发根为驱动子的抑制消减文库(SSH文库)。采用Trizol法提取两种人参发根材料的总RNA,分离纯化,获得的高质量驱动子和检测子mRNA。采用Clontech公司SSH试剂盒进行差减杂交,构建的人参发根消减文库,经蓝白斑筛选出117个cDNA阳性克隆,文库的重组率在85%以上,满足文库构建要求,其中97个cDNA克隆测序成功。消减文库的差减效率检测表明将18S rRNA基因减弱了212倍,使差异表达cDNA也被富集了同样的倍数。菌落PCR结果表明文库的外源片段的长度分布在200~1,000 bp之间,平均片段长度在500 bp左右。结果表明:所构建的SSH文库在RNA提取质量、插入片断大小、重组率、消减效率等方面均符合文库的质量标准,能够满足下一步实验的要求。
     采用质粒提取试剂盒对文库中所有的阳性克隆进行质粒DNA提取。对人参发根构建的抑制消减杂交cDNA文库中的97个EST克隆测序,其数据经过手动去除载体序列,Seqman序列拼接组装,Blastx、Blastn和Interproscan的注释,结合GO功能分类,完成对EST序列统计分析。结果显示:对成功测序的有效克隆进行聚类分析,发现有5个重叠群和79个单拷贝EST,代表了共计84个独立基因。基因注释及功能分类结果表明:已知功能的唯一序列共53个,占63.1%,未知功能唯一序列31个,占36.9%。对84个唯一序列进行功能分类,得到11类。其中有16个克隆与代谢途径相关;31个未知基因;5个克隆与压力反应有关;6个克隆与生物合成有关;7个克隆与tRNA修饰,GTPase,离子结合相关;5个克隆与蛋白质折叠水解有关;1个克隆与转录调控有关;4个克隆与信号传导有关;4个克隆与分泌途径有关;2个克隆与电子传递有关;3个克隆与细胞组织结构有关。
     对人参皂苷合成相关的EST序列PRB3、PRB6进行分析,在Genebank上进行同源蛋白比对得到两个同源性达到97%的基因编码产物,分别是鲨烯合酶和鲨烯环氧酶,查找开放阅读框,并进行保守区预测。人参发根SSH文库构建成功,获得了在MeJA诱导下的差异表达基因,对人参皂苷合成途径中关键酶和关键基因的克隆、表达以及新基因的发现和功能研究奠定了物质基础。
Panax Ginseng is always considered as one of the most potent medicinal plant and used widely in traditional medicine. Ginseng hairy root was induced from the explant of ginseng by Agrobacterium rhizogenes(A4 strain in this study)and belonged non-natural plant. Compared with the cell development, hairy root grows quickly, the live material content is high and the hereditary is stability. Ginsenoside is a main effective composition in ginseng hairy root, with many important pharmacological functions, at present, the people wanted to get ginsenosides by culturing ginseng hairy root and achieved to factory production. In order to improve ginsenosides content of ginseng hairy root and satisfy the demand of medication product, we studied factors as nutrition components, culture conditions, precursors and elicitors. We want to change the metabolic pathway to improve the secondary metabolite by adding MeJA in medium of ginseng hairy root. With the development of bioengineering, it gradually becomes the hotspot to improve the product of supersession production by changing plant biosynthetic pathways.
     The elicitor MeJA could improve the growth speed of ginseng hairy root when its concentration was at 200μmol·L-1, the results showed the biomass increased 13.82 fold and total ginsenoside content was 2.28 percent,35.71 percent higher than contrast. Meanwhile, hairy root cultured in bioreactor showed that biomass increases 23.14 fold, total ginsenoside content was 2.04 percent, the content ginsenoside Rbi and Rd is obviously higher than contrast. The ginseng hairy root grows quickly without any hormone and the ginsenosides content is high, so the modified bioreactor is suit to cultivate it.
     It was assumed that the different content of saponin was the result of differential expression of the genes involved in saponin biosynthes. Therefore, it was very important to clone the genes and investigate their functions. The total RNA was prepared with Trizol reagent separately from ginseng hairy root induced by MeJA and contrast. The SSH library was constructed by suppression subtractive hybridization technology. There were 117 clones from library by blue-white spot screening, and among them 97 clones were sequenced, the recombinant rate of library was above 85%. The efficiency of suppressive subtractive hybridization was 212 fold. The detection of bacterial colony PCR showed the insert fragments size ranged from 0.2-1.0 kb, average size was about 0.5 kb. All these results indicated that SSH library was qualified for further studies. Successful construction of SSH library of ginseng hairy root is essential for cloning of genes known and is also an initial key for screening and cloning of new genes.
     97 high-quality expressed sequence tags were obtained by single-pass sequencing from 117 recombinant clones, and 84 unique sequences were formed after cluster analysis by Seqman program of DNAStar software. The sequences exhibited homology to previously known ones of GenBank in the level of protein or nucleotide by analysis of blastx and blastn. Function analysis by Interproscan and the Gene Ontology showed that function-known genes were 53 accounted for 63.1% of tatol genes and classified into 10 categories, most of them related to metabolism and secretory pathway. Function prediction revealed that 16 genes related to metabolism,5 genes related to response to stress,6 genes related to biosynthesis,7 genes related to tRNA modification, GTPase, ion binding et al,5 genes related to protein folding proteolysis,1 gene related to transcription regulation,4 genes related to signal transduction,4 genes related to secretory pathway,2 genes related to electron transport,3 genes related to cell organization. Function-unkown genes were 31 genes and accounted for 36.9%.
     EST sequences of PRB3, PRB6 related to ginsenoside synthesis were analyzed by Blastx in Genebank, and homology analysis with squalene synthase and squalene epoxidase enzyme reached 97% respectively. To find the open reading frame and the conserved domain of two predict proteins. Successful construction of SSH library induced by MeJA of Ginseng hairy root, is an initial key for cloning and expressing the genes, furthermore, is essential for finding the new genes and the new functions in ginsenoside analysis pathway.
引文
[1]王建华.人参、西洋参发根体细胞胚发生及植株再生研究[D].吉林大学,2009
    [2]刘传飞,于树宏,李玲,等.发根农杆菌对葛属药用植物的遗传转化[J].植物学报,2000,42(9):936-939
    [3]刘春朝,王玉春,欧阳藩,等.青蒿毛状根合成青蒿素的培养条件研究[J].植物学报,1998,40(9):832-835
    [4]刘春朝,王玉春,欧阳藩,等.利用气升式内环流生物反应器培养青蒿毛状根生产青蒿素[J].植物学报,1999,41(2):181-183
    [5]刘伟华,徐香玲.发根农杆菌转化龙胆再生植株的研究[J].遗传,1992,5:27-29
    [6]张荫麟.发根农根菌几质粒转化赛莨菪的发根培养[J].植物学报,1988,30(4):368-372
    [7]谢道昕,范云六,倪巫冲.苏云金芽抱杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株[J].中国科学(B辑),1991,8:830-834
    [8]李晓,王学德.根癌农杆菌转化棉花花粉的研究[J].棉花学报,2004,16(6):322-327
    [9]赵寿经,杨振堂,李昌禹,等.人参高产发根无性系的筛选及其高效液体培养[J].中国农业科学,2000,33(5):103-105
    [10]刘峻,丁家宜,徐红,等.Ri质粒转化人参系统的建立与鉴定[J].中国中药杂志,2001,26(2):95-99
    [11]王冲之,丁家宜.Ri质粒转化西洋参的研究Ⅰ.西洋参毛状根培养系统的建立及鉴定[J].药物生物技术,1999,6:280-84
    [12]Takafumi Yoshikawa, Tsu tomil Furuya. Saponim preduetion by cultures of Panax Ginseng transformed with Agrobacterium rhizogenes[J]. Plant Cell Reports,1987, (6):449-453
    [13]江苏新医学院编.中药大辞典[M].上海科学技术出版社,1977,29
    [14]朴希璥.中韩人参研究的系统比较[D].北京中医药大学,2002
    [15]Osamu Tanaka, Shoji Yahara. Dammarane saponins of leaves of Panax pseudo-ginseng shusp. Himalaicus [J]. Phytochemistry,1978,17(8):1353-1358
    [16]刘菲菲,张翼仲.人参叶水溶性多糖的研究酸性杂多糖P8的纯化与结构的研究[J].东北师范大学学报,1998,3:103-108
    [17]戴勤,王亚平,周开昭,等.人参多糖对人早幼粒白血病细胞株(HL-60)增殖的影响[J].重庆医科大学学报,2001,26(2):126-131
    [18]李佩珍,杭秉芮,丁家宜.人参培养细胞多糖与人参多糖的免疫作用比较[J].中国药科大学学报,1989,20(4):216-218
    [19]曹立娅.人参多糖化学的研究[J].中草药,1989,20(6):36-41
    [20]周义发.人参茎水溶性多糖的研究Ⅱ:S-2A的纯化与结构探讨.生物化学与生物物理学报,1992,(1):22-26
    [21]Zheng H. D. Modern Study of Traditional Chinese Medicine Vol.1. Beijing:Xueyuan Perss,1997:62-134
    [22]刘春兰.人参果水溶性多糖与其蛋白质的关系研究[J].中央民族大学学报(自然科学版),1997, 6(1):49-52
    [23]郑毅男,李向高,向兰,等.红参中新化合物—精氨酸衍生物的分离与结构鉴定[J].药学学报,1996,31(3):191-195
    [24]李向高.人参中焦谷氮酸的含量测定[J].中草药,1994,25(2):75
    [25]M.H.Nam, S.Kim, J.R.Liu. Analysis of Korean ginseng[J]. Journal of Chromatography B,2005, 815:147-155
    [26]鲁岐,曹洪军,富力,等.新开河白参与高丽白参、日本白参中的游离氨基酸的比较分析[J].中国药学杂志,1991,1:33-34
    [27]张宏桂,阎吉昌,张宏.吉林生晒参脂肪酸及挥发性成分研究[J].白求恩医科大学学报,1995,21(5):490-497
    [28]葛尔宁,严建伟,梁炳圻,等.人参的氨基酸含量[J].浙江中医学院学报,1997,21(3)32-33
    [29]杨世杰.人参茎叶二醇组和三醇组皂苷对血压等作用影响[J].白求恩医科大学学报,1991,(1):20-22
    [30]王晓明.人参三醇组皂苷对大鼠心室肌细胞L型、T型、B型钙通道的阻滞作用.白求恩医科大学学报,1993,(2):119-121
    [31]Hou W, Chai H, Lin P H. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries[J]. J Vasc Surg,2005,41(5):861-868
    [32]王银萍,吴家祥,王心蕊.大豆皂苷和人参茎叶皂苷的抗糖尿病动脉粥样硬化作用[J].白求恩医科大学学报,1994,20(6):551-554
    [33]高传忠.结合现代药理研究对人参的认识[J].时珍国医国药,1999,10(2)91-92
    [34]权文富,吴霞,毕玉兰.人参皂苷-Rbl对脂质体DPPC的作用机理[J].吉林大学自然科学学报,1996,(2):49-51
    [35]陈嘉峰,崇瑞义,秦震.人参皂苷对实验性脑缺血脑组织内Ach、ChAT的影响[J].神经科学,1995,2(2):90-92
    [36]刘态,张均田.人参皂甙Rb1和Rg1对原代培养大鼠海马神经细胞的保护作用[J].药学学报,1995,30(9):674-678
    [37]陈声武,王丽娟,王岩,等.人参皂苷Rb1和Rd对不同类型记忆障碍模型小鼠学习记忆功能的影响.中国药理学与毒理学杂志,2001,15(5):330-332
    [38]连晓媛,张均田.人参皂苷Rb1对应激性性行为缺损的保护作用及机制[J].药学学报,1998,3(3):184-187
    [39]周莉.人参皂苷对体外培养甲状腺细胞的影响[J].解剖学杂志,1993,530-533
    [40]尹旭辉,廖利军,杨晓临.人参多糖对免疫功能影响的实验研究[J].沈阳部队医药,1997,10(4):301-302
    [41]赫国志.人参皂苷对慢性肺心病病人免疫功能增强与调节作用的研究[J].白求恩医科大学学报,1993,(1):50-53
    [42]赖红,吕永利,包峰.海马神经元的老龄性改变及人参皂苷对其作用的研究[J].中国医科大学学报,1996,25(3):225-228
    [43]朱建明.人参皂甙的抗衰老作用研究进展[J].中医药信息,1998,15(2):18-21
    [44]余上才,曾旭东,李晓玉.人参皂甙对神经细胞凋亡及分泌炎性细胞因子的影响[J].中国药理学会通讯,]998,15(4):33-34
    [45]李君庆,张香阁,张均田.人参皂甙Rg1抗神经细胞凋亡作用机制的研究[J].药学学报,1997,32(6):406-410
    [46]程慧,宋新波,张丽娟.人参皂苷Rg3与Rh2的研究进展[J].2010,33(4):307-311
    [47]杨桦.人参皂甙与免疫核糖核酸对癌基因表达的协同抑制作用[J].中国医科大学学报,1993,(4):255-258
    [48]李惠芳,孙桂香.人参皂甙单体Rb1逆转肿瘤细胞耐药的实验研究[J].中国小儿血液,1999,4(4):168-170
    [49]何芳.人参皂苷Rg3抗肿瘤作用的实验研究进展[J].河南科技大学学报,2005,23(2):155-156
    [50]陆平成,张旭,周坤福.人参皂甙联合TNF对肿瘤的作用[J].南京中医药大学学报,1995,11(4):27-29
    [51]周世文,周宁,徐传福.中草药抗肝细胞损伤有效成分研究进展[J].中国药学杂志,1995,30(2):67-69
    [52]吴春福,张洪玲,刘雯,等.人参茎叶皂甙对吗啡耐受性硬性的初步研究[J].中国药理学会通讯,1996,13(2):6
    [53]黄正明.人参皂甙缓解吗啡成瘾性的研究概况.国外医学·植物学分册,1991,6(5):203-205
    [54]Kawaguchi M, Hirotani M, Yoshikawa, et al. Biotransformation of Digitoxigenin by Ginseng Hairy Root Cultures [J]. Phytochemistry,1990,29 (3):837-842
    [55]杜昊,吴晓俊,王峥涛,等.发根农杆菌Ri质粒及其在植物基因工程中的应用[J].药用生物技术,2005,12(3):193-196
    [56]胡亚忱,曲德业.发根农杆菌诱导植物毛状根的发生及次生代谢物生产的研究进展[J].吉林师范大学学报,2005,2(1):30-36
    [57]王冲之,丁家宜.Ri质粒转化西洋参的研究Ⅰ西洋参毛状根培养系统的建立及鉴定[J].药物生物技术,1999,6(2):80-84
    [58]Yang D C, Choi Y E. Production of transgenic plants via Agrobacterium rhizogenes mediated transformation of Panax ginseng [J]. Plant Cell Rep,2000,19:491-496
    [59]刘峻,丁家宜,周倩耘,等.真菌诱导子对人参毛状根皂苷生物合成和生长的影响[J].中国中药杂志,2004,29(4):302-305
    [60]岳才军,刘永春.通过培养发根生产药物的研究进展[J].黑龙江八一农垦大学学报,2003,15(1):20-24
    [61]Chilton M D, Tepfer D A, Petit A, et al. Agrobacterium rhizogenes insert T-DNA into the genomes of the host plant root cell[J]. Nature,1982,295:432-434
    [62]朱蔚华,李新兰,齐玲敏.大参组织恳浮培养试验初报[J].全国人参科技资料汇编栽培分册.1987, 585-588
    [63]丁葆}祖,柏淑华,吴逸,等.人参细胞悬浮培养的研究[J].全国人参科技资料汇编Ⅰ栽培分册.1987,570-573
    [64]Strogov S E, Zaitseva G V, Belousova I M, et al. Large-scale culturing of ginseng cells in suspension scaling of a pilot plant [J]. Sov-Biotechnol,1990, (4):66-69
    [65]Shamkov N V, Zalitseva GV, Belousova N M, et al. Large-scale ginseng cell cultivation in suspension Ⅱ Elaboration of ginseng cell cultivation conditions on a poilot plant [J]. Sov-Biotechnol,1991, (1):41-44
    [66]丁家宜,张恩汉.人参组织培养产生天然药物的研究[J].南京药学院学报,1979,1:94-95
    [67]Bulgakov V P, Khodakovskaya M V, Labetskaya N V, et al. Rolgenes and ginsenoside biosynthesis[J]. Phytochemistry,1998,49(7):1929-1934
    [68]Kayo Yoshimatsu, Hiroko Yamaguchi. Traits of Panax ginseng hairy roots after cold Storage and cryopreservation [J] Plant Cell Reports,1996, (15):555-560
    [69]赵明强,丁家宜,刘峻,等.人参毛状根生物合成熊果苷的研究[J].中国中药杂志,2001,26(12):819-820
    [70]栗建明,赵明强,丁家宜.人参毛状根生物合成熊果苷的分离与鉴定[J].植物资源与环境学报2004,13(1):60--65
    [71]蔡洁,丁家宜,华亚男,等.人参毛状根生物合成天麻素转化体系的建立[J].植物资源与环境学报2005,14(2):29-32
    [72]陈巍,高文远,贾伟,等.人参属药用植物组织和细胞培养的研究进展[J].中草药,2005,36(4):616
    [73]赵寿经,李昌禹,钱延春,等.人参发根的诱导及其适宜培养条件的研究[J].生物工程学报,2004,20(2):215-220
    [74]李华乔.人参发根培养装置的研制[D].吉林大学,2007
    [75]H Chen, F Chen, Y L Zhang, et al. Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza[J]. Industrial Microbiology & Biotechnology,1999,22(3):133-138
    [76]Palazon J, Mallo A, Eib R, et al. Growth and ginsenosid production in hairing root culture of Panax ginseng using novel bioreactor [J]. Plant Med,2003,69 (4):334-341
    [77]JeongG. T., Park D.H., Hwang B., et al. Comparison of growth characteristics of Panax ginseng hairy roots various bioreactors [J]. Appl Biochem Biotechnol,2003,105(108):493-501
    [78]李吕禹.人参发根诱导及高产发根无性系的筛选研究[D].2003
    [79]宁文,曹日强.真菌诱导物在植物次生代谢中的调节作用[J].植物生理学通讯,1993,29(5):321-329
    [80]Srinivasan V, Ciddi V, Bringi V. Metabolic inhibitors, elicitors and precursors as tools for probing yield limitation in taxane production by Taxus chinensis cell cultures. Biotechnol Prog,1996,12(4):457-465
    [81]王红,叶和春,李国风.诱导子的作用方式及在植物组织培养中的应用[J].植物学通讯,1999,16(1):11-18
    [82]肖春桥,高洪,池汝安.诱导子促进植物次生代谢产物生产的研究进展[J].天然产物研究与开发,2004,16(5):472-476
    [83]王和勇,罗恒,孙敏.诱导子在药用植物细胞培养中的应用[J].中草药,2004,35(8):附3-附7
    [84]梁峥,郑光植.植物呼吸代谢多条路线与代谢工程[J].植物生理学通讯,1994,30(4):290-292
    [85]苗志奇,未作君,元英进,等.水杨酸在紫杉醇生物合成中诱导作用的研究[J].生物工程学报,2000,16(4):509-513
    [86]李家儒,刘曼西,曹孟德,等.桔青霉诱导子对红豆杉培养细胞中紫杉醇生物合成的影响[J].植物研究,1998,18(1):78-82
    [87]孙卓.添加物对人参发根生长和皂苷含量的影响[D].吉林农业大学,2008
    [88]施中东,未作君,元英进,等.南方红豆衫细胞培养合成紫杉醇诱导子浓度的优化[J].天然产物研究与开发,2000,12(4):36-40
    [89]刘春朝,王玉春,赵兵,等.生物诱导子调节植物组织次生代谢的研究[J].植物学通报,1999,16(2):131-137
    [90]Li J. R., Guan Z. Y., Liu M. X. Effects of Cu2+ on taxol formation in cell cultures of Taxus chinensis [J]. Huazhong Agric Univ,1999,18(2):117-120
    [91]张荫麟,宋经元,吕桂兰,等.丹参毛状根培养的建立和丹参酮的产生[J].中国中药杂志,1995,20(5):269-271
    [92]刘长军,侯嵩生.真菌诱导子对新疆紫草悬浮培养细胞的生长和紫草素合成的影响[J].植物生理学报,1998,24(1):6-10
    [93]张向飞,张荣涛,王宁宁,等.真菌诱导子对长春花愈伤组织中吲哚生物碱积累的影响[J].中草药,2004,35(2):201-204
    [94]余龙江,朱敏,周莹,等.茉莉酸甲酯对紫杉醇生物合成的诱导作用[J].天然产物研究与开发,1998,1(5):1-6
    [95]Demole E, Lederer E, Mercier D. Isolement et determination de la structure du jasmonate de methyle, constituant odorant characteristique de l'essence de jasmin[J]. Helv Chim Acta,1962,45:645-685
    [96]Donald F C, M ichelle L S. Jasmonic acid treatment and mammalian herbivory differentially affect chemical defenses and growth of wild mustard(Brassica kaber) [J]. Chemoecology,2001,11:137-143
    [97]Doan A T, Ervin G, Felton G. Temporal effects on jasmonate induction of antiherbivore defense in physalis angulata:seasonal and ontogenetic gradients[J]. Biochem Syst Ecol,2004,32:117-126
    [98]Aronson J.S. Towards the developmentof a gene in dexto the human genome an assessmen of the nature of high-throughputs STS sequenced ata[J]. Genomics,1996,6:829-845
    [99]Seki.M, M. Narusaka, J. Ishida, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high qualinity stresses using a full length cDNA miccroarray[J]. Plant J,2002, 31:279-292
    [100]Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing:expressed sequence tags and human genome project[J]. Science,1991,252:1651-1656
    [101]Kim SI, Kim JY, Kim EA, Kwon KH, et al. Proteome analysis of hairy root from Panax ginseng C. A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data[J]. Proteomics, 2003,3(12):2379-92
    [102]Choi D W, Jung J, Ha Y I, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites[J]. Plant Cell Rep,2005,23(8):557-566
    [103]Yamamoto K, T Sasaki. Large-scale EST sequencing in rice[J]. Plant Molecular Biology,1997, 35:135-144
    [104]GAOQi, Yue PANG, Yu WU, et al. Expressed Sequence Tags(ESTs) Analysis of the Orl Gland of Lamp etrajaponica[J]. Acts Genetica Sinica,2005,32(10):1045-1052
    [105]Todd E. Scheetz, Nishank Trivedi, Chad A. Roberts, et al. EST prep preprocessing cDNA sequence reads[J]. Bioinformatics,2003
    [106]陈士林,孙永巧,宋经元,等.西洋参cDNA文库构建及表达序列标签(EST)分析[J].药学学报,2008,43(6):657-63
    [107]罗志勇,陆秋恒,刘水平,等.人参植物皂苷生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560
    [108]王颖.人参叶和根cDNA文库构建及表达序列标签分析[D].东北师范大学,2007
    [109]Berek L, Szabo D, Petri I B, et al. Effects of naturally occurring glucosides, solasodine glucosides, ginsenosides and parishin derivatives on multidrug resistance or lymphoma cells and leukocyte functions[J]. In vivo,2001,15(2):151-156
    [110]U. Hannappel, H. J. Balzer, M. W. Ganal. Direct isolation of cDNA sequences from specific chromosomal regions of the tomato genome by the differential display technique[J]. Molecular and General Genetics MGG,1995,249(2):19-24
    [111]Cooke R, Raynal M, Laudie M, et al. Further progress towards a catalogue of all Arabidopsis genes:analysis of a set of 5000 non-redundant ESTs[J]. Plant J,1996,9(1):101-124
    [112]Gavin A J, Scheetz T E, Roberts C A, et al. Pooled library tissue tags for EST-based gene discovery[J]. Bioinformatics,2002,18:1162-1166
    [113]White JA, Todd J, Newman T, et al. A new set of Arabidopsis expressed sequence tags from developing seeds:the metabolic pathway from carbohydrates to seed oil[J]. Plant Physiology,2000,124:1582-1594
    [114]Liu J, Hara C, Umeda M, et al. Analysis of randomly isolated cDNAs from developing endosperm of rice(Oryza sativa L.):evaluation of expressed sequence tags, and expression levels of mRNAs[J]. Pland Mol Biol,1995,29(4):685-689
    [115]韩旭.疫霉菌诱导的南瓜SSH文库构建及表达序列标签分析[D].东北林业大学,2008
    [116]Marques E R, Ferreira M E S, Drummond R D, et al. Identification of Genes PreferentiallyExpressed in the Pathogenic Yeast Phase of paracoccidioides brasiliensis, Using Suppression Subtractive Hybridization and Differential Macroarray Analysis[J]. Molecular Genetics and Genomics,2004,271(6):667-677
    [117]Lopez C, Soto M, Restrepo S, et al. Gene expression profile in response to Xanthomonas Axonopodis pv.manihotis infection in cassava using a cDNA microarray[J]. Plant Molecular Biology,2005, 57:393-410
    [118]Welsh J, Chada K, Dalal S S, et al. Arbitrarily Primed PCR Fingerprinting of RNA[J]. Nucl Ac Res, 1992,20:4965-4970
    [119]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science,1992,257 (14):967-970
    [120]Wang X, Wu P, Xia M, et al. Identification of genes enriched in rice root soft thelocal nitrate treatment and the their expression patterns in split root treatment[J]. Gene,2002,297(12):93-102
    [121]Watt D A. A luminiym responsive genes in sugarcane:identification and analysis ofexpression under oxidative stress[J]. J ExpBot,2003,54(385):1163-1174
    [122]Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer[J]. Proc. Natl Acad. Sci. USA,1988, 85,8998-9002
    [123]L Diatchenko, Y F Luda, A P Campbell, et al. Suppression Subtrative hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc. Natl. Acad. Sci. USA,1996,93(12):6025-6030
    [124]郭新红,姜孝成,潘晓玲,等.用抑制差减杂交技术分离和克隆梭梭幼苗受渗透胁迫诱导相关基因的cDNA片段[J].植物生理学报,2001,27(5):401-406
    [125]Gonos E S. Cloning and Identification of Genes That Associate with Mammalian Replicative Senescence[J]. Exp Cell Rep,1998,240(1):66-74
    [126]Davis C A, Benzer S. Generation of cDNA expression libraries enriched for in-frame sequences[J]. Proc Natl Acad Sci USA,1997,94:2128-2132
    [127]Rachel Anne Mooney, Irina Artsimovitch, and Robert Landick. Information Processing by RNA Polymerase:Recognition of Regulatory Signals during RNA Chain[J]. Elongation,1998,180 (13): 3265-3275
    [128]黄骥,张红生,王东,等.基因表达序列分析[J].遗传,2002,24(2):205-206
    [129]Velculescu V E, Vogelstein B, Kinzler K W, et al. Analysing uncharted transcriptomes with SAGE[J]. Trends in Genetics,2000,16:423-425
    [130]Schena M, Shalon D, Davis R W, et al. Qantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science,1995,270:467-470
    [131]Kim TD, Han JY, Huh GH, et al. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng[J]. Plant Cell Physiol,2011,52(1):125-37
    [132]罗志勇,陆秋恒,刘水平,等.人参植物皂茁生物合成相关新基因的筛选与鉴定[J].生物化学与生物物理学报,2003,35(6):554-560
    [133]吴琼,周应群,孙超,等.人参皂苷生物合成和次生代谢工程[J].中国生物工程杂志,2009,29(10):102-108
    [134]Zhong J J, Chen F, Hu W W. High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin[J]. Process Biochem,1999,35,491-496
    [135]Cheol-Seung Jeong, Hosakatte Niranjana Murthy, Eun-Joo Hahn, et al. Improved production of ginsenosides in suspension cultures of ginseng by medium replenishment strategy[J]. Journal of Bioscience and Bioengineering,2008,105(3):288-291
    [136]Ko K M, Yang D C, Park J C, et al. Mass culture and ginsenoside production of ginseng root by two-step culture process[J]. J Plant Biol,1996,39,63-69
    [137]Asaka I, Hirotani M, Asada Y, et al. Production of ginsenoside saponins by culturing ginseng(Panax ginseng) embryogenic tissues in bioreactors[J]. Biotechnol Lett,1993,15,1259-1264
    [138]Caspeta L, et al. Solanum chrysotrichum hairy root cultures:characterization, scale-up and production of five antifungal saponins for human use[J]. Planta Med,2005,71,1084-1087
    [139]陈英杰,徐绥绪,韩芳,等.高纯度人参茎叶皂苷提取方法的研究[J].中草药,1986,1
    [140]杜尔逊,王玉书,刘玉珍.人参地上部皂苷含量及提取工艺[[J].中草药,1980,11
    [141]庄兰英.人参的制剂及开发利用.全国人参科技资料汇编Ⅲ加工制剂分册[M].1987,346-367
    [142]Wen J J, Xie J, LiuSG, et al. Differential expression and characterization analysis of a new gene with WD domains in fish oogenesis [J]. Science in China,2001,44:541-553
    [143]任非,马俊义,任晓丹.人参抗癌活性研究进展[J].河北中医药学报,2005,20(1):39-41
    [144]Bayat A. Science, medicine, and the future [J]. Bioinformatics,2002,324:1018-1022
    [145]Marta z, Martin S, Kay P, et al. A squalene epoxidase from Nigella sativa participates in saponinbiosynthesis and mediates terbinafine resistance in yeast[J]. Cent Eur J Biol,2009, 163-169
    [146]Loguercio L, Scott H, Trolinder N, et al. HMG-CoA reductase gene family in cotton (Gossypium hirsutum L.):unique structural features and differential expression of hmg2 potentially associated with synthesis of specific isoprenoids in developing embryos[J]. Plant Cell Physiol,1999,4:750-761
    [147]Maldonado M, Burnett R, Nessler C, et al. Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Catharanthus roseus[J]. Plant Physiol,1992,100: 1613-1614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700